Aberford C of E Primary School - Multiplication and Division Calculations Policy

Bar Model

Benefits

Children can use the single bar model to represent multiplication as repeated addition. They could use counters, cubes or dots within the bar model to support calculation before moving on to placing digits into the bar model to represent the multiplication.

Division can be represented by showing the total of the bar model and then dividing the bar model into equal groups.

It is important when solving word problems that the bar model represents the problem.

Sometimes, children may look at scaling problems. In this case, more than one bar model is useful to represent this type of problem, e.g. There are 3 girls in a group. There are 5 times more boys than girls. How many boys are there?
The multiple bar model provides an opportunity to compare the groups.

Aberford C of E Primary School - Calculations Policy

Number Shapes

$5 \times 4=20$
$4 \times 5=20$

$5 \times 4=20$
$4 \times 5=20$

$$
18 \div 3=6
$$

Benefits

Number shapes support children's understanding of multiplication as repeated addition.

Children can build multiplications in a row using the number shapes. When using odd numbers, encourage children to interlock the shapes so there are no gaps in the row. They can then use the tens number shapes along with other necessary shapes over the top of the row to check the total. Using the number shapes in multiplication can support children in discovering patterns of multiplication e.g. odd \times odd $=$ even, odd \times even $=$ odd, even \times even $=$ even.

When dividing, number shapes support children's understanding of division as grouping. Children make the number they are dividing and then place the number shape they are dividing by over the top of the number to find how many groups of the number there are altogether e.g. There are 6 groups of 3 in 18 .

Aberford C of E Primary School - Calculations Policy

Benefits

Bead strings to 100 can support children in their understanding of multiplication as repeated addition. Children can build the multiplication using the beads. The colour of beads supports children in seeing how many groups of 10 they have, to calculate the total more efficiently.
Encourage children to count in multiples as they build the number e.g. 4, 8, 12, 16, 20.

Children can also use the bead string to count forwards and backwards in multiples, moving the beads as they count.

When dividing, children build the number they are dividing and then group the beads into the number they are dividing by e.g. 20 divided by 4 - Make 20 and then group the beads into groups of four. Count how many groups you have made to find the answer.

Aberford C of E Primary School - Calculations Policy

Number Tracks

$6 \times 3=18$
$3 \times 6=18$
$3 \times 6=18$

$$
18 \div 3=6
$$

Benefits

Number tracks are useful to support children to count in multiples, forwards and backwards. Moving counters or cubes along the number track can support children to keep track of their counting. Translucent counters help children to see the number they have landed on whilst counting.

When multiplying, children place their counter on 0 to start and then count on to find the product of the numbers.
When dividing, children place their counter on the number they are dividing and the count back in jumps of the number they are dividing by until they reach 0 . Children record how many jumps they have made to find the answer to the division.

Number tracks can be useful with smaller multiples but when reaching larger numbers they can become less efficient.

Aberford C of E Primary School - Calculations Policy

Number Lines (labelled)

$4 \times 5=20$
$5 \times 4=20$

$20 \div 4=5$

Benefits

Labelled number lines are useful to support children to count in multiples, forwards and backwards as well as calculating single-digit multiplications.

When multiplying, children start at 0 and then count on to find the product of the numbers.
When dividing, start at the number they are dividing and the count back in jumps of the number they are dividing by until they reach 0 .
Children record how many jumps they have made to find the answer to the division.

Labelled number lines can be useful with smaller multiples, however they become inefficient as numbers become larger due to the required size of the number line.

Aberford C of E Primary School - Calculations Policy

Number Lines (blank)

A blue car travels 12 miles.
A red car 4 times less.
How far does the red car travel?

Benefits

Children can use blank number lines to represent scaling as multiplication or division.

Blank number lines with intervals can support children to represent scaling accurately. Children can label intervals with multiples to calculate scaling problems.

Blank number lines without intervals can also be used for children to represent scaling.

Aberford C of E Primary School - Calculations Policy

Base 10/ Dienes (multiplication)

Benefits

Using Base 10 or Dienes is an effective way to support children's understanding of column multiplication. It is important that children write out their calculation alongside the equipment so they can see how the concrete and written representations match.

As numbers become larger in multiplication or the amounts of groups becomes higher, Base 10 / Dienes becomes less efficient due to the amount of equipment and number of exchanges needed.

Base 10 also supports the area model of multiplication well. Children use the equipment to build the number in a rectangular shape which they then find the area of by calculating the total value of the pieces This area model can be linked to the grid method or the formal column method of multiplying 2 -digits by 2 -digits.

Aberford C of E Primary School - Calculations Policy

Base 10/ Dienes (division)

Benefits

$68 \div 2=34$

$72 \div 3=24$

Using Base 10 or Dienes is an effective way to support children's understanding of division.

When numbers become larger, it can be an effective way to move children from representing numbers as ones towards representing them as tens and ones in order to divide. Children can then share the Base 10/ Dienes between different groups e.g. by drawing circles or by rows on a place value grid.

When they are sharing, children start with the larger place value and work from left to right. If there are any left in a column, they exchange e.g. one ten for ten ones. When recording, encourage children to use the partwhole model so they can consider how the number has been partitioned in order to divide. This will support them with mental methods.

Aberford C of E Primary School - Calculations Policy

Place Value Counters (multiplication)

Benefits

Using place value counters is an effective way to support children's understanding of column multiplication. It is important that children write out their calculation alongside the equipment so they can see how the concrete and written match.

As numbers become larger in multiplication or the amounts of groups becomes higher, Base 10 / Dienes becomes less efficient due to the amount of equipment and number of exchanges needed The counters should be used to support the understanding of the written method rather than support the arithmetic.

Place value counters also support the area model of multiplication well. Children can see how to multiply 2digit numbers by 2 -digit numbers.

Aberford C of E Primary School - Calculations Policy

Place Value Counters (division)

Benefits

Using place value counters is an effective way to support children's understanding of division.

When working with smaller numbers, children can use place value counters to share between groups. They start by sharing the larger place value column and work from left to right. If there are any counters left over once they have been shared, they exchange the counter e.g. exchange one ten for ten ones. This method can be linked to the part-whole model to support children to show their thinking.

Place value counters also support children's understanding of short division by grouping the counters rather than sharing them. Children work from left to right through the place value columns and group the counters in the number they are dividing by. If there are any counters left over after they have been grouped, they exchange the counter e.g. exchange one hundred for ten tens.

Aberford C of E Primary School - Calculations Policy

Multiplication

Skill	Year	Representations and models	
Solve one-step problems with multiplication	$1 / 2$	Bar model Number shapes Counters	Ten frames Bead strings Number lines
Multiply 2-digit by 1- digit numbers	$3 / 4$	Place value counters Base 10	Short written method Expanded written method
Multiply 3-digit by 1- digit numbers	4	Place value counters Base 10	Short written method

Aberford C of E Primary School - Calculations Policy

Multiplication

Skill	Year	Representations and models	
Multiply 2-digit by 2- digit numbers	5	Place value counters Base 10	Short written method Grid method
Multiply 2-digit by 3- digit numbers	5	Place value counters	Short written method Grid method
Multiply 2-digit by 4- digit numbers	$5 / 6$	Formal written method	

Aberford C of E Primary School - Calculations Policy

Year $1 / 2$ - Solve 1 -step problems using multiplication
Children represent
multiplication as
repeated addition in
many different ways.

Aberford C of E Primary School - Calculations Policy

Year 3/4 - Multiply 2-digit numbers by 1-digit numbers

$34 \times 5=170$

	H	T	O	
		3	4	
\times			5	
	7	7	0	
1				2

Aberford C of E Primary School - Calculations Policy

Year 3/4 - Multiply 3-digit numbers by 1-digit numbers

When moving to 3 digit by 1-digit multiplication, encourage children to move towards the short, formal written method.
Base 10 and place value counters continue to support the understanding of the written method. Limit the number of exchanges needed in the questions and move children away from resources when multiplying larger numbers.

Aberford C of E Primary School - Calculations Policy

Year 5 - Multiply 4-digit numbers by 1-digit numbers

-

$1,826 \times 3=5,478$

	Th	H	T	O
	1	8	2	6
\times				3
	5	4	7	8
2	1			
1				

When multiplying 4digit numbers, place value counters are the best manipulative to use to support children in their understanding of the formal written method.
If children are multiplying larger numbers and struggling with their times tables, encourage the use of multiplication grids so children can focus on the use of the written method.

Aberford C of E Primary School - Calculations Policy Year 5 - Multiply 2-digit numbers by 2-digit numbers

Aberford C of E Primary School - Calculations Policy

Year 5 - Multiply 3-digit numbers by 2-digit numbers

Aberford C of E Primary School - Calculations Policy

Year 5/6 - Multiply 4-digit numbers by 2-digit numbers

When multiplying 4-

TTh	Th	H	T	O
	2	7	3	9
\times			2	8
2	1	9	1	2
5	4	7	8	0
1	6	6	9	2
7	6	1		

$2,739 \times 28=76,692$
digits by 2-digits, children should be confident in the written method.

If they are still struggling with times tables, provide multiplication grids to support when they are focusing on the use of the method.

Consider where exchanged digits are placed and make sure this is consistent.

Aberford C of E Primary School - Calculations Policy

Division

Skill	Year	Representations and models	
Solve one-step problems with division (sharing)	$1 / 2$	Bar model Real life objects	Arrays Counters
Solve one-step problems with division (grouping)	$1 / 2$	Real life objects Number shapes Bead strings Ten frames	Number lines
Divide 2-digits by 1- digit (no exchange sharing)	3	Straws Base 10 Bar model	Counters
Divide 2-digits by 1- digit (sharing with exchange)	3	Straws Base 10 Bar model	Part-whole model

Aberford C of E Primary School - Calculations Policy

Division

Skill	Year	Representations and models	
Divide 2-digits by 1- digit (sharing with remainders)	$3 / 4$	Straws Base 10 Bar model	Place value counters Part-whole model
Divide 2-digits by 1- digit (grouping)	$4 / 5$	Place value counters Counters	Place value grid Written short division
Divide 3-digits by 1- digit (sharing with exchange)	4	Base 10 Bar model	Place value counters Part-whole model
Divide 3-digits by 1- digit (grouping)	$4 / 5$	Place value counters Counters	Place value grid Written short division

Aberford C of E Primary School - Calculations Policy

Division

Skill	Year	Representations and models	
Divide 4-digits by 1- digit (grouping)	5	Place value counters Counters	Place value grid Written short division
Divide multi-digits by 2-digits (short division)	6	Written short division	List of multiples
Divide multi-digits by 2-digits (long division)	6	Written long division	List of multiples

Aberford C of E Primary School - Calculations Policy

Year 1/2 - Solve 1-step problems using multiplication (sharing)

Aberford C of E Primary School - Calculations Policy

Year 1/2 - Solve 1-step problems using multiplication (grouping)

-00000-00000-00000-00000-

There are 20 apples altogether.
They are put in bags of 5 .
How many bags are there?

Children solve problems by grouping and counting the number of groups. Grouping encourages children to count in multiples and links to repeated subtraction on a number line.
They can use concrete
representations in fixed groups such as number shapes which helps to show the link between
multiplication and division.

Aberford C of E Primary School - Calculations Policy

Year 1/2 - Divide 2-digits by 1-digit (sharing with no exchange)

Aberford C of E Primary School - Calculations Policy

Year 3/4 - 2-digit by 1-digit (sharing with exchange)

Aberford C of E Primary School - Calculations Policy

Year 3/4-2-digits by 1-digit (sharing with remainders)

Aberford C of E Primary School - Calculations Policy

Year 4/5 - 2-digits by 1-digit (grouping)

When using the short division method, children use grouping. Starting with the largest place value, they group by the divisor.

Language is important here. Children should consider 'How many groups of 4 tens can we make?' and 'How many groups of 4 ones can we make?'

Remainders can also be seen as they are left ungrouped.

Aberford C of E Primary School - Calculations Policy

Year 4 - 3-digits by 1-digit (sharing)

Children can continue to use place value counters to share 3 digit numbers into equal groups. Children should start with the equipment outside the place value grid before sharing the hundreds, tens and ones equally between the rows. This method can also help to highlight remainders.
Flexible partitioning in a part-whole model supports this method.

Aberford C of E Primary School - Calculations Policy

Year 5 - 3-digits by 1-digit (grouping)

Children can continue to use grouping to support their understanding of short division when dividing a 3-digit number by a 1-digit number.

Place value counters or plain counters can be used on a place value grid to support this understanding. Children can also draw their own counters and group them through a more pictorial method.

Aberford C of E Primary School - Calculations Policy

Year 5 - 4-digits by 1-digit (grouping)

Place value counters

$8,532 \div 2=4,266$
or plain counters can be used on a place value grid to support children to divide 4digits by 1-digit. Children can also draw their own counters and group them through a more pictorial method.

Children should be encouraged to move away from the concrete and pictorial when dividing
numbers with multiple exchanges.

Aberford C of E Primary School - Calculations Policy

Year 6 - Divide multi digits by 2-digits (short division)
$432 \div 12=36$

$7,335 \div 15=489$

	0	4	8	9
15	7	${ }^{7} 3$	13_{3}	13_{5}

15	30	45	60	75	90	105	120	135	150

When children begin
to divide up to 4-
digits by 2-digits,
written methods
become the most
accurate as concrete
and pictorial
representations
become less effective.
Children can write out
multiples to support
their calculations with
larger remainders.
Children will also
solve problems with
remainders where the
quotient can be
rounded as
appropriate.

Aberford C of E Primary School - Calculations Policy

Year 6 - Divide multi digits by 2-digits (long division)

Aberford C of E Primary School - Calculations Policy

Year 6 - Divide multi digits by 2-digits (long division)
$372 \div 15=24 \mathrm{r} 12$

$1 \times 15=15$
$2 \times 15=30$
$3 \times 15=45$
$4 \times 15=60$
$5 \times 15=75$
$10 \times 15=150$

$$
372 \div 15=24 \frac{4}{5}
$$

When a remainder is left at the end of a calculation, children can either leave it as a remainder or convert it to a fraction.
This will depend on the context of the question.

Children can also answer questions where the quotient needs to be rounded according to the context.

Aberford C of E Primary School - Calculations Policy

Glossary

Array - An ordered collection of counters, cubes or other item in rows and columns.

Commutative - Numbers can be multiplied in any order.

Dividend - In division, the number that is divided.

Divisor - In division, the number by which another is divided.

Exchange - Change a number or expression for another of an equal value.

Factor - A number that multiplies with another to make a product.

Multiplicand - In multiplication, a number to be multiplied by another.

Partitioning - Splitting a number into its component parts.

Product - The result of multiplying one number by another.

Quotient - The result of a division
Remainder - The amount left over after a division when the divisor is not a factor of the dividend.

Scaling - Enlarging or reducing a number by a given amount, called the scale factor

