Aberford Science Curriculum Mapping with Coverage and Skills

Class 2: Science - Cycle A

	Autumn 1	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2
Unit	Animals, including humans 1 : All about me	Plants	Animals, including humans 1: All about animals unit	Animals, including humans 2 : Health and Survival unit / Growth	Animals, including humans 2: Life cycles unit	Plants
National Curriculum Coverage	Year 1 NC objectives: - identify, name, draw and label the basic parts of the human body and say which part of the body is associated with each sense	Year 1 NC objectives: - identify and name a variety of common wild and garden plants, including deciduous and evergreen trees - identify and describe the basic structure of a variety of common flowering plants, including trees	Year 1 NC Objectives: - identify and name a variety of common animals including fish, amphibians, reptiles, birds and mammals - identify and name a variety of common animals that are carnivores, herbivores and omnivores - describe and compare the structure of a variety of common animals (fish, amphibians, reptiles, birds and mammals including pets)	Year 2 NC objectives: - notice that animals, including humans, have offspring which grow into adults - find out about and describe the basic needs of animals, including humans, for survival (water, food and air) - describe the importance for humans of exercise, eating the right amounts of different types of food, and hygiene	Year 2 NC objectives: - notice that animals, including humans, have offspring which grow into adults - find out about and describe the basic needs of animals, including humans, for survival (water, food and air) - describe the importance for humans of exercise, eating the right amounts of different types of food, and hygiene	Year 2 NC objectives: - observe and describe how seeds and bulbs grow into mature plants - find out and describe how plants need water, light and a suitable temperature to grow and stay healthy
Substantive Knowledge	Humans have key parts in common, but these vary from person to person. Humans (and other animals) find out about the world using their senses. Humans have five senses - sight, touch, taste, hearing and smelling. These senses are linked to particular parts of the body.	Growing locally, there will be a vast array of plants which all have specific names. These can be identified by looking at the key characteristics of the plant. Plants have common parts, but they vary between the different types of plants. Some trees keep their leaves all year while other trees drop their leaves during autumn and grow them again during spring.	Animals vary in many ways having different structures e.g. wings, tails, ears etc. They also have different skin coverings e.g. scales, feathers, hair. These key features can be used to identify them. Animals eat certain things - some eat other animals, some eat plants, some eat both plants and animals.	All animals, including humans, have the basic needs of feeding, drinking and breathing that must be satisfied in order to survive. To grow into healthy adults, they also need the right amounts and types of food and exercise. Good hygiene is also important in preventing infections and illnesses.	Animals, including humans, have offspring which grow into adults. In humans and some animals, these offspring will be young, such as babies or kittens, that grow into adults. In other animals, such as chickens or insects, there may be eggs laid that hatch to young or other stages which then grow to adults. The young of some animals do not look like their parents e.g. tadpoles.	Plants may grow from either seeds or bulbs. These then germinate and grow into seedlings which then continue to grow into mature plants. These mature plants may have flowers which then develop into seeds, berries, fruits etc. Seeds and bulbs need to be planted outside at particular times of year and they will germinate and grow at different rates. Some plants are better suited to growing in full sun and some grow better in partial or full shade. Plants also need different amounts of water and space to grow well and stay healthy.
Specific Vocabulary:	head, body, eyes, ears, mouth, teeth, leg, tail, wing, claw, fin, scales, feathers, fur, beak, paws, hooves, names of animals experienced first-hand from each vertebrate group, parts of the human body, senses, touch, see, smell, taste, hear, fingers, skin, eyes, nose, ears, tongue	leaf, flower, blossom, petal, fruit, berry, root, seed, trunk, branch, stem, bark, stalk, bud, names of trees in the local area, names of garden and wild flowering plants in the local area	head, body, eyes, ears, mouth, teeth, leg, tail, wing, claw, fin, scales, feathers, fur, beak, paws, hooves, names of animals experienced first-hand from each vertebrate group, parts of the human body, senses, touch, see, smell, taste, hear, fingers, skin, eyes, nose, ears, tongue	offspring, reproduction, growth, baby, toddler, child, teenager, adult, old person, names of animals and their babies (e.g. chick/chicken, kitten/cat, caterpillar/butterfly), survive, survival, water, food, air, exercise, heartbeat, breathing, hygiene, germs, disease, food types	Life cycle, foetus, womb, offspring, reproduction, transformation, metamorphosis, froglet, growth,	light, shade, Sun, warm, cool, water, space, grow, healthy, bulb, germinate, shoot, seedling

Aberford Science Curriculum Mapping with Coverage and Skills

Enquiry type:						
Working Scientifically skills (disciplinary)	Children use their observations and testing to compare objects, materials and living things. They sort and group these things, identifying their own criteria for sorting. Children use their experiences of the world around them to suggest appropriate answers to questions. They are supported to relate these to their evidence e.g. observations they have made, measurements they have taken or information they have gained from secondary sources.	Children use their observations and testing to compare objects, materials and living things. They sort and group these things, identifying their own criteria for sorting. They use simple secondary sources (such as identification sheets) to name living things. They describe the characteristics they used to identify a living thing.	The children recognise 'biggest and smallest', 'best and worst' etc. from their data. While exploring the world, the children develop their ability to ask questions (such as what something is, how things are similar and different.	The children use practical resources provided to gather evidence to answer questions generated by themselves or the teacher. They carry out: tests to classify; comparative tests; pattern seeking enquiries; and make observations over time. While exploring the world, the children develop their ability to ask questions (such as what something is, how things are similar and different, the ways things work, which alternative is better, how things change and how they happen). Where appropriate, they answer these questions. The children answer questions developed with the teacher often through a scenario. The children are involved in planning how to use resources provided to answer the questions using different types of enquiry, helping them to recognise that there are different ways in which questions can be answered.	While exploring the world, the children develop their ability to ask questions (such as what something is, how things are similar and different, the ways things work, which alternative is better, how things change and how they happen). Where appropriate, they answer these questions. Children use their observations and testing to compare objects, materials and living things. They sort and group these things, identifying their own criteria for sorting They use simple secondary sources (such as identification sheets) to name living things. They describe the characteristics they used to identify a living thing Children use their experiences of the world around them to suggest appropriate answers to questions. They are supported to relate these to their evidence e.g. observations they have made, measurements they have taken or information they have gained from secondary sources.	While exploring the world, the children develop their ability to ask questions (such as what something is, how things are similar and different, the ways things work, which alternative is better, how things change and how they happen). Where appropriate, they answer these questions. The children answer questions developed with the teacher often through a scenario. The children are involved in planning how to use resources provided to answer the questions using different types of enquiry, helping them to recognise that there are different ways in which questions can be answered. Children explore the world around them. They make careful observations to support identification, comparison and noticing change. They use appropriate senses, aided by equipment such as magnifying glasses or digital microscopes, to make their observations. Children use their observations and testing to compare objects, materials and living things. They sort and group these things, identifying their own criteria for sorting. - They use simple secondary sources (such as identification sheets) to name

Aberford Science Curriculum Mapping with Coverage and Skills

						living things. They describe the characteristics they used to identify a living thing. The children record their observations e.g. using photographs, videos, drawings, labelled diagrams or in writing. Children use their experiences of the world around them to suggest appropriate answers to questions. They are supported to relate these to their evidence e.g. observations they have made, measurements they have taken or information they have gained from secondary sources. - The children recognise 'biggest and smallest', 'best and worst' etc. from their data
Working Scientifically Vocabulary:	Pattern, compare, same different, identify, drawing, ask questions, explore	observe, changes, patterns, grouping, sorting, compare, same, different, identify (name), drawing, picture ask questions, magnifying glass, , answer questions,	Grouping, sorting, compare, same, different, identify, record results, drawing, ask questions, venn diagram,	Changes, observe, pattern, compare, same, different, record results, tally chart, ask questions, interpret results, answer questions, observe over time.	Data, measure, record, drawing, picture, table, tally, tally chart, interpret results, observe changes,	observe, changes, patterns, grouping, sorting, compare, same, different, identify (name), drawing, picture, table, tally chart, ask questions, explore, magnifying glass, hand lens, answer questions, classify

Class 2: Science - Cycle B

	Autumn 1	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2
Unit	Exploring Everyday Materials 1	Exploring Everyday Materials 2	Living things and their habitats 1	Living things and their habitats 2 Habitats from around the world	Seasonal changes	Uses of Everyday Materials
National Curriculum Coverage	Year 1 objectives: - distinguish between an object and the material from which it is made - identify and name a variety of everyday materials, including wood, plastic, glass, metal, water, and rock - describe the simple physical properties of a variety of everyday materials - compare and group together a variety of everyday materials on	Year 1 objectives: - distinguish between an object and the material from which it is made - identify and name a variety of everyday materials, including wood, plastic, glass, metal, water, and rock - describe the simple physical properties of a variety of everyday materials - compare and group together a variety of everyday materials on	Year 2 objectives: - explore and compare the differences between things that are living, dead, and things that have never been alive - identify and name a variety of plants and animals in their habitats, including microhabitats - describe how animals obtain their food from plants and other animals, using the idea of a simple food chain, and identify	Year 2 objectives: - explore and compare the differences between things that are living, dead, and things that have never been alive - identify that most living things live in habitats to which they are suited and describe how different habitats provide for the basic needs of different kinds of animals and plants, and how they depend on each other	Year 1 NC objectives: - observe changes across the 4 seasons - observe and describe weather associated with the seasons and how day length varies 1. Understand there are four seasons 2. Understand the changes that take place in autumn 3. Understand the changes that take place in winter	Year 2 objectives: - identify and compare the suitability of a variety of everyday materials, including wood, metal, plastic, glass, brick, rock, paper and cardboard for particular uses - find out how the shapes of solid objects made from some materials can be changed by squashing, bending, twisting and stretching

Aberford Science Curriculum Mapping with Coverage and Skills

	the basis of their simple physical properties 1. Identify and name a variety of everyday materials 2. Distinguish between an object and the material it is made from 3. Describe the properties of everyday materials 4. Identify objects that are natural and those that are manmade 5. Predict and identify if an object will float or sink 6. Explore which materials are best for different objects	the basis of their simple physical properties 1. Build a structure strong enough to withstand wind 2. Build a waterproof structure 3. Understand the properties of glass and its uses 4. Understand that materials are used to create a variety of furniture 5. Explore a variety of fabrics and understand their different properties 6. Explain the uses of materials and why they are suitable	and name different sources of food 1. Explore and compare the differences between things that are living, dead, and things that have never been alive 2. Identify and name a variety of plants and animals in a microhabitat 3. Design a suitable microhabitat where living things could survive 4. Find out what animals eat to survive in their habitats 5. Understand a food chain 6. Understand the journey food makes from the farm to the supermarket
Substantive Knowledge	All objects are made of one or more materials. Some objects can be made from different materials e.g. plastic, metal or wooden spoons. Materials can be described by their properties e.g. shiny, stretchy, rough etc. Some materials e.g. plastic can be in different forms with very different properties.	All objects are made of one or more materials. Some objects can be made from different materials e.g. plastic, metal or wooden spoons. Materials can be described by their properties e.g. shiny, stretchy, rough etc. Some materials e.g. plastic can be in different forms with very different properties	All objects are either living, dead or have never been alive. Living things are plants (including seeds) and animals. Dead things include dead animals and plants and parts of plants and animals that are no longer attached e.g. leaves and twigs, shells, fur, hair and feathers (This is a simplification, but appropriate for Year 2 children.) An object made of wood is classed as dead. Objects made of rock, metal and plastic have never been alive (again ignoring that plastics are made of fossil fuels). Animals and plants live in a habitat to which they are suited, which means that animals have suitable features that help them move and find food and plants have suitable features that help them to grow well. The habitat provides the basic needs of the animals and plants - shelter, food and water.

plants and animals in their habitats, including microhabitats

 - describe how animals obtain their food from plants and other animals, using the idea of a simple food chain, and identify and name different sources of food1. Learn about habitats
2. Appreciate that environments are constantly changing
3. Explore the rainforest and its problems
4. Describe life in the ocean 5. Discover the Arctic and Antarctic habitat 6. Create a model of a habitat All objects are either living, dead or have never been alive. Living things are plants (including seeds) and animals. Dead things include dead animals and plants and parts of plants and animals that are no longer attached e.g. leaves and twigs, shells, fur, hair and feathers (This is a simplification, but appropriate for Year 2 children.) An object made of wood is classed as dead. Objects made of rock, metal and plastic have never been alive (again ignoring that plastics are made of fossil fuels). Animals and plants live in a habitat to which they are suited, which means that animals have suitable features that help them move and find food and plants have suitable features that help them to grow well. The habitat provides the basic needs of the animals and plants - shelter, food and water. Within a habitat there are different microhabitats e.g. in a woodland - in the leaf litter, on the bark of trees, on the leaves. These
5. Understand the changes that take place in spring 5. Understand the changes that take place in summer 6. Investigate how you can measure rainfall

In the UK, the day length is longest at mid-summer (about 16 hours) and gets shorter each day until mid-winter (about 8 hours) before getting longer again. The weather also changes with the seasons. In the UK, it is usually colder and rainier in winter, and hotter and dryer in the summer. The change in weather causes many other changes. Some examples are: numbers of minibeasts found outside; seed and plant growth; leaves on trees; and type of clothes worn by people.

1. Identify different materials and their uses
2. Understand how to select the right materials to build a bridge
3. Explore and test the stretchiness of materials 4. Understand that materials can change their shape by twisting, bending squashing or stretching 5. Find out about Charles Macintosh and explore how materials are suitable for different purposes
4. Discover which materials change shape when making a road with John McAdam
All objects are made of one or more materials that are chosen specifically because they have suitable properties for the task. For example, a water bottle is made of plastic because it is transparent allowing you to see the drink inside and waterproo so that it holds the water. When choosing what to make an object from, the propertie needed are compared with the properties of the possible materials, identified through simple tests and classifying activities. A material can be suitable for different purposes and an object can be made of different materials. Objects made of some materials can be changed in shape by bending, stretching, squashing and twisting. For example, clay can be shaped by squashing, stretching, rolling, pressing etc. This can be a property of the material or depend on how the material has been processed e.g. thickness

Aberford Science Curriculum Mapping with Coverage and Skills

			Within a habitat there are different micro-habitats e.g. in a woodland - in the leaf litter, on the bark of trees, on the leaves. These micro-habitats have different conditions e.g. light or dark, damp or dry. These conditions affect which plants and animals live there. The plants and animals in a habitat depend on each other for food and shelter etc. The way that animals obtain their food from plants and other animals can be shown in a food chain.	conditions e.g. light or dark, damp or dry. These conditions affect which plants and animals live there. The plants and animals in a habitat depend on each other for food and shelter etc. The way that animals obtain their food from plants and other animals can be shown in a food chain.		
Specific Vocabulary:	Object, material, wood, plastic, glass, metal, water, rock, brick, paper, fabric, elastic, foil, card/cardboard, rubber, wool, clay, hard, soft, stretchy, stiff, bendy, floppy, waterproof, absorbent, breaks/tears, rough, smooth, shiny, dull, seethrough, not see-through			living, dead, never been alive, suited, suitable, basic needs, food, food chain, shelter, move, feed, water, air, survive, survival, conditions, light, dark, shady, sunny, wet, damp, dry, hot, cold, names of living things in the habitats and microhabitats studied	weather, sunny, rainy, raining, shower, windy, snowy, cloudy, hot, warm, cold, storm, thunder, lightning, hail, sleet, snow, icy, frost, puddles, rainbow, seasons, winter, summer, spring, autumn, Sun, sunrise, sunset, day length	Names of materials - wood, metal, plastic, glass, brick, rock, paper, cardboard Properties of materials - as for Year 1 plus opaque, transparent and translucent, reflective, nonreflective, flexible, rigid Shape, push/pushing, pull/pulling, twist/twisting, squash/squashing, bend/bending, stretch/stretching
Enquiry type:						

Aberford Science Curriculum Mapping with Coverage and Skills

Working Scientifically skills (disciplinary)	The children use practical resources provided to gather evidence to answer questions generated by themselves or the teacher. They carry out: tests to classify; comparative tests; pattern seeking enquiries; and make observations over time. Children use their observations and testing to compare objects, materials and living things. They sort and group these things, identifying their own criteria for sorting. The children record their observations e.g. using photographs, videos, drawings, labelled diagrams or in writing.	The children use practical resources provided to gather evidence to answer questions generated by themselves or the teacher. They carry out: tests to classify; comparative tests; pattern seeking enquiries; and make observations over time. Children use their observations and testing to compare objects, materials and living things. They sort and group these things, identifying their own criteria for sorting. The children record their observations e.g. using photographs, videos, drawings, labelled diagrams or in writing. The children are involved in planning how to use resources provided to answer the questions using different types of enquiry, helping them to recognise that there are different ways in which questions can be answered.	Children explore the world around them. They make careful observations to support identification, comparison and noticing change. Children use their experiences of the world around them to suggest appropriate answers to questions. They use simple secondary sources (such as identification sheets) to name living things. They describe the characteristics they used to identify a living thing. The children record their observations e.g. using photographs, videos, drawings, labelled diagrams or in writing.	While exploring the world, the children develop their ability to ask questions (such as what something is, how things are similar and different The children answer questions developed with the teacher often through a scenario. The children record their observations e.g. using photographs, videos, drawings, labelled diagrams or in writing.	The children use practical resources provided to gather evidence to answer questions generated by themselves or the teacher. They carry out: tests to classify; comparative tests; pattern seeking enquiries; and make observations over time. The children are involved in planning how to use resources provided to answer the questions using different types of enquiry, helping them to recognise that there are different ways in which questions can be answered. They begin to take measurements, initially by comparisons, then using non-standard units. The children recognise 'biggest and smallest', 'best and worst' etc. from their data. The children record their observations e.g. using photographs, videos, drawings, labelled diagrams or in writing.	The children use practical resources provided to gather evidence to answer questions generated by themselves or the teacher. They carry out: tests to classify; comparative tests; pattern seeking enquiries; and make observations over time. While exploring the world, the children develop their ability to ask questions (such as what something is, how things are similar and different, the ways things work, which alternative is better, how things change and how they happen). Where appropriate, they answer these questions. The children answer questions developed with the teacher often through a scenario. The children are involved in planning how to use resources provided to answer the questions using different types of enquiry, helping them to recognise that there are different ways in which questions can be answered The children record their observations e.g. using photographs, videos, drawings, labelled diagrams or in writing.
Working Scientifically Vocabulary:	Sorting, identify, drawing, picture, answer questions, test.	Sorting, identify, drawing, picture, answer questions, test, changes, explore, record results.	Compare, identify, sort, same, different, venn diagram, explore.	Compare, identify, sort, same, different, venn diagram, explore, observing over time, researching using secondary sources.	Measure, data, record results, pipette, syringe, spoon, teaspoon, scientific enquiry, observing over time, comparative testing.	researching using secondary sources, record results, block chart,

Class 3: Science - Cycle A

Aberford Science Curriculum Mapping with Coverage and Skills

	Autumn 1	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2
Unit	Animals including humans	Animals including humans	Forces and Magnets	Rocks	Plants	Scientific Enquiry
National Curriculum Coverage	Year 3 NC objectives: - identify that animals, including humans, need the right types and amount of nutrition, and that they cannot make their own food; they get nutrition from what they eat; - identify that humans and some other animals have skeletons and muscles for support, protection and movement.	Year 4 NC objectives: - describe the simple functions of the basic parts of the digestive system in humans; - identify the different types of teeth in humans and their simple functions; - construct and interpret a variety of food chains, identifying producers, predators and prey	Y3 NC objectives: - compare how things move on different surfaces; - notice that some forces need contact between 2 objects, but magnetic forces can act at a distance; - observe how magnets attract or repel each other and attract some materials and not others; - compare and group together a variety of everyday materials on the basis of whether they are attracted to a magnet, and identify some magnetic materials; - describe magnets as having 2 poles; - predict whether 2 magnets will attract or repel each other, depending on which poles are facing.	Year 3 NC objective: - compare and group together different kinds of rocks on the basis of their appearance and simple physical properties - describe in simple terms how fossils are formed when things that have lived are trapped within rock - recognise that soils are made from rocks and organic matter	Year 3 NC objectives: - identify and describe the functions of different parts of flowering plants: roots, stem/trunk, leaves and flowers - explore the requirements of plants for life and growth (air, light, water, nutrients from soil, and room to grow) and how they vary from plant to plant - investigate the way in which water is transported within plants - explore the part that flowers play in the life cycle of flowering plants, including pollination, seed formation and seed dispersal	1. How can a solar oven be made more effective: posing questions and writing predictions 2. How can a solar oven be made more effective: recording and presenting results 3. Cleaning coins: writing a method and carrying out a practical test 4. Cleaning coins: writing a conclusion 5. Making a cake: fair testing, controls and variables 6. Making a cake: scientific enquiry
Substantive Knowledge	Animals, unlike plants which can make their own food, need to eat in order to get the nutrients they need. Food contains a range of different nutrients carbohydrates (including sugars), protein, vitamins, minerals, fats, sugars, water and fibre that are needed by the body to stay healthy. A piece of food will often provide a range of nutrients. Humans, and some other animals, have skeletons and muscles which help them move and provide protection and support.	Food enters the body through the mouth. Digestion starts when the teeth start to break the food down. Saliva is added and the tongue rolls the food into a ball. The food is swallowed and passes down the oesophagus to the stomach. Here the food is broken down further by being churned around and other chemicals are added. The food passes into the small intestine. Here nutrients are removed from the food and leave the digestive system to be used elsewhere in the body. The rest of the food then passes into the large intestine. Here the water is removed for use elsewhere in the body. What is left is then stored in the rectum until it leaves the body through the anus when you go to the	A force is a push or a pull. When an object moves on a surface, the texture of the surface and the object affect how it moves. It may help the object to move better or it may hinder its movement e.g. ice skater compared to walking on ice in normal shoes. A magnet attracts magnetic material. Iron and nickel and other materials containing these, e.g. stainless steel, are magnetic. The strongest parts of a magnet are the poles. Magnets have two poles - a north pole and a south pole. If two like poles, e.g. two north poles, are brought together they will push away from each other - repel. If two unlike poles, e.g. a north and south, are brought together they will pull together - attract	Rock is a naturally occurring material. There are different types of rock e.g. sandstone, limestone, slate etc. which have different properties. Rocks can be hard or soft. They have different sizes of grain or crystal. They may absorb water. Rocks can be different shapes and sizes (stones, pebbles, boulders). Soils are made up of pieces of ground down rock which may be mixed with plant and animal material (organic matter). The type of rock, size of rock pieces and the amount of organic matter affect the property of the soil. Some rocks contain fossils. Fossils were formed millions of years ago. When plants and animals died, they fell to the seabed. They became covered and squashed	Many plants, but not all, have roots, stems/trunks, leaves and flowers/blossom. The roots absorb water and nutrients from the soil and anchor the plant in place. The stem transports water and nutrients/minerals around the plant and holds the leaves and flowers up in the air to enhance photosynthesis, pollination and seed dispersal. The leaves use sunlight and water to produce the plant's food. Some plants produce flowers which enable the plant to reproduce. Pollen, which is produced by the male part of the flower, is transferred to the female part of other flowers (pollination). This forms seeds, sometimes contained in berries or fruits which are then dispersed in different ways.	All the unit is based around working scientifically, rather than new substantive knowledge.

Aberford Science Curriculum Mapping with Coverage and Skills

		toilet. Humans have four types of teeth: incisors for cutting; canines for tearing; and molars and premolars for grinding (chewing). Living things can be classified as producers, predators and prey according to their place in the food chain.		by other material. Over time the dissolving animal and plant matter is replaced by minerals from the water.	Different plants require different conditions for germination and growth.	
Specific Vocabulary:	Nutrition, nutrients, carbohydrates, sugars, protein, vitamins, minerals, fibre, fat, water, skeleton, bones, muscles, joints, support, protect, move, skull, ribs, spine	Digestive system, digestion, mouth, teeth, saliva, oesophagus, stomach, small intestine, nutrients, large intestine, rectum, anus, teeth, incisor, canine, molar, premolars, herbivore, carnivore, omnivore, producer, predator, prey, food chain	Force, push, pull, twist, contact force, non-contact force, magnetic force, magnet, strength, bar magnet, ring magnet, button magnet, horseshoe magnet, attract, repel, magnetic material, metal, iron, steel, poles, north pole, south pole	rock, stone, pebble, boulder, grain, crystals, layers, hard, soft, texture, absorb water, fossil, bone, flesh, minerals, marble, chalk, granite, sandstone, slate, soil, types of soil (e.g. peaty, sandy, chalk, clay)	photosynthesis, pollen, insect/wind pollination, male, female, seed formation, seed dispersal (wind dispersal, animal dispersal, water dispersal), air, nutrients, minerals, soil, absorb, transport	
Enquiry type:						

Aberford Science Curriculum Mapping with Coverage and Skills

Working Scientifically skills (disciplinary)	-The children consider their prior knowledge when asking questions. They independently use a range of question stems. -Where appropriate, they answer these questions. -The children answer questions posed by the teacher. -The children sometimes decide how to record and present evidence. They record their observation e.g. using photographs, videos, pictures, labelled diagrams or writing. -Children answer their own and others' questions based on observations they have made -They communicate their findings to an audience both orally and in writing, using appropriate scientific vocabulary.	-The children consider their prior knowledge when asking questions. They independently use a range of question stems. -Where appropriate, they answer these questions. -The children answer questions posed by the teacher. -The children sometimes decide how to record and present evidence. They record their observation e.g. using photographs, videos, pictures, labelled diagrams or writing. -Children answer their own and others' questions based on observations they have made -They communicate their findings to an audience both orally and in writing, using appropriate scientific vocabulary.	-The children consider their prior knowledge when asking questions. They independently use a range of question stems. Where appropriate, they answer these questions. -The children answer questions posed by the teacher. - Given a range of resources, the children decide for themselves how to gather evidence to answer the question. -The children make systematic and careful observations. -They use a range of equipment for measuring length...They use standard units for their measurements -The children select from a range of practical resources to gather evidence to answer questions generated by themselves or the teacher. -They follow their plan to carry out: observations and tests to classify; comparative and simple fair tests; observations over time; and pattern seeking. -The children sometimes decide how to record and present evidence. They record their observation e.g. using photographs, videos, pictures, labelled diagrams or writing. -They record their measurements e.g. using tables, tally charts and bar charts (given templates, if required, to which they can add headings). They record classifications e.g. using tables, Venn diagrams, Carroll diagrams. - Children are supported to present the same data in different ways in order to help with answering the question. -Children answer their own and others' questions based on observations they have made, measurements they have

Aberford Science Curriculum Mapping with Coverage and Skills

Working Scientifically Vocabulary:	stopwatch, timer, diagram, chart, bar chart, prediction, similarity, difference, information, properties, explanation, reason	relationships, stopwatch, timer, diagram, chart, bar chart, prediction, similarity, difference, information, properties, characteristics, explanation, reason	practical work, fair testing, accurate, estimate, data, diagram, chart, bar chart, prediction, similarity, difference, information, findings, properties, conclusion, explanation	Identification key, similarity, difference, criteria, properties, characteristics	Practical work, fair testing, accurate, timer, estimate, data, diagram, identification key, chart, bar chart, prediction, similarity, difference, findings, criteria, properties, conclusion, explanation, reason	Practical work, fair testing, accurate, thermometer, estimate, data, diagram, prediction, evidence, information, findings, criteria, properties, conclusion, explanation, reason, evaluate, improve

Class 3: Science - Cycle B

	Autumn 1	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2
Unit	Electricity	States of Matter	Light	Sound	Living things and their habitats	Living things and their habitats Conservation
National Curriculum Coverage	Y4 NC objectives: - identify common appliances that run on electricity - construct a simple series electrical circuit, identifying and naming its basic parts, including cells, wires, bulbs, switches and buzzers - identify whether or not a lamp will light in a simple series circuit, based on whether or not the lamp is part of a complete loop with a battery - recognise that a switch opens and closes a circuit and associate this with whether or not a lamp lights in a simple series circuit - recognise some common conductors and insulators, and associate metals with being good conductors 1. Explore electrical appliances and electrical safety 2. Learn about electrical components in a series circuit 3. Investigate electrical circuits	Y4 NC objectives: - compare and group materials together, according to whether they are solids, liquids or gases - observe that some materials change state when they are heated or cooled, and measure or research the temperature at which this happens in degrees Celsius (${ }^{\circ} \mathrm{C}$) - identify the part played by evaporation and condensation in the water cycle and associate the rate of evaporation with temperature	Y3 NC objective: - recognise that they need light in order to see things and that dark is the absence of light; - they notice that light is reflected from surfaces; - recognise that light from the sun can be dangerous and that there are ways to protect their eyes; - recognise that shadows are formed when the light from a light source is blocked by an opaque object; - find patterns in the way that the size of shadows change.	Y4 NC objective: - identify how sounds are made, associating some of them with something vibrating - recognise that vibrations from sounds travel through a medium to the ear - find patterns between the pitch of a sound and features of the object that produced it - find patterns between the volume of a sound and the strength of the vibrations that produced it - recognise that sounds get fainter as the distance from the sound source increases	Y4 NC objectives: - recognise that living things can be grouped in a variety of ways - explore and use classification keys to help group, identify and name a variety of living things in their local and wider environment - recognise that environments can change and that this can sometimes pose dangers to living things	Y4 NC objectives: - recognise that living things can be grouped in a variety of ways - explore and use classification keys to help group, identify and name a variety of living things in their local and wider environment - recognise that environments can change and that this can sometimes pose dangers to living things 1. Describe ecosystems and how they are affected by changes in the seasons 2. Understand human impact on the environment through deforestation 3. Explore air pollution 4. Understand water pollution 5. Explore methods that can be used to conserve water 6. Understand that humans can have a positive impact on nature

Aberford Science Curriculum Mapping with Coverage and Skills

	4. Explore conductors and insulators 5. Learn about electrical switches 6. Investigate how electrical components can change within a circuit					
Substantive Knowledge	Many household devices and appliances run on electricity. Some plug in to the mains and others run on batteries. An electrical circuit consists of a cell or battery connected to a component using wires. If there is a break in the circuit, a loose connection or a short circuit, the component will not work. A switch can be added to the circuit to turn the component on and off. Metals are good conductors so they can be used as wires in a circuit. Nonmetallic solids are insulators except for graphite (pencil lead). Water, if not completely pure, also conducts electricity.	A solid keeps its shape and has a fixed volume. A liquid has a fixed volume but changes in shape to fit the container. A liquid can be poured and keeps a level, horizontal surface. A gas fills all available space; it has no fixed shape or volume. Granular and powdery solids like sand can be confused with liquids because they can be poured, but when poured they form a heap and they do not keep a level surface when tipped. Each individual grain demonstrates the properties of a solid. Melting is a state change from solid to liquid. Freezing is a state change from liquid to solid. The freezing point of water is 00 C . Boiling is a change of state from liquid to gas that happens when a liquid is heated to a specific temperature and bubbles of the gas can be seen in the liquid. Water boils when it is heated to 1000 C. Evaporation is the same state change as boiling (liquid to gas), but it happens slowly at lower temperatures and only at the surface of the liquid. Evaporation happens more quickly if the temperature is higher, the liquid is spread out or it is windy. Condensation is the change back from a gas to a liquid caused by cooling. Water at the surface of seas, rivers etc. evaporates into water vapour (a gas). This rises, cools and condenses back into a liquid forming clouds. When too much water has condensed, the water	We see objects because our eyes can sense light. Dark is the absence of light. We cannot see anything in complete darkness. Some objects, for example, the sun, light bulbs and candles are sources of light. Objects are easier to see if there is more light. Some surfaces reflect light. Objects are easier to see when there is less light if they are reflective. The light from the sun can damage our eyes and therefore we should not look directly at the sun and can protect our eyes by wearing sunglasses or sunhats in bright light. Shadows are formed on a surface when an opaque or translucent object is between a light source and the surface and blocks some of the light. The size of the shadow depends on the position of the source, object and surface.	A sound produces vibrations which travel through a medium from the source to our ears. Different mediums such as solids, liquids and gases can carry sound, but sound cannot travel through a vacuum (an area empty of matter). The vibrations cause parts of our body inside our ears to vibrate, allowing us to hear (sense) the sound. The loudness (volume) of the sound depends on the strength (size) of vibrations which decreases as they travel through the medium. Therefore, sounds decrease in volume as you move away from the source. A sound insulator is a material which blocks sound effectively. Pitch is the highness or lowness of a sound and is affected by features of objects producing the sounds. For example, smaller objects usually produce higher pitched sounds.	Living things can be grouped (classified) in different ways according to their features. Classification keys can be used to identify and name living things. Living things live in a habitat which provides an environment to which they are suited (Year 2 learning). These environments may change naturally e.g. through flooding, fire, earthquakes etc. Humans also cause the environment to change. This can be in a good way (i.e. positive human impact, such as setting up nature reserves) or in a bad way (i.e. negative human impact, such as littering). These environments also change with the seasons; different living things can be found in a habitat at different times of the year.	Living things can be grouped (classified) in different ways according to their features. Classification keys can be used to identify and name living things. Living things live in a habitat which provides an environment to which they are suited (Year 2 learning). These environments may change naturally e.g. through flooding, fire, earthquakes etc. Humans also cause the environment to change. This can be in a good way (i.e. positive human impact, such as setting up nature reserves) or in a bad way (i.e. negative human impact, such as littering). These environments also change with the seasons; different living things can be found in a habitat at different times of the year.

Aberford Science Curriculum Mapping with Coverage and Skills

		droplets in the cloud get too heavy and fall back down as rain, snow, sleet etc. and drain back into rivers etc. This is known as precipitation. This is the water cycle.				
Specific Vocabulary:	Electricity, electrical appliance/device, mains, plug, electrical circuit, complete circuit, component, cell, battery, positive, negative, connect/connections, loose connection, short circuit, crocodile clip, bulb, switch, buzzer, motor, conductor, insulator, metal, non-metal, symbol	solid, liquid, gas, heating, cooling, state change, melting, freezing, melting point, boiling, boiling point, evaporation, condensation, temperature, water cycle	light, light source, Sun, sunlight, dangerous	Sound, source, vibrate, vibration, travel, pitch (high, low), volume, faint, loud, insulation	Classification, classification keys, environment, habitat, human impact, positive, negative, migrate, hibernate	Ecosystems, deforestation, pollution, conserve, environment, positive, negative
Enquiry type:						

Aberford Science Curriculum Mapping with Coverage and Skills

Working Scientifica
 (disciplinary)

-The children consider their prior knowledge when asking questions. They independently use a range of question stems. -Where appropriate, they answer these questions. -The children answer questions posed by the teacher. -Given a range of resources, the children decide for themselves how to gather evidence to answer the question...They identify the type of enquiry that they have chosen to answer their question.
-The children make systematic and careful observations. -They use a range of equipment for measuring length, time, temperature and capacity. They use standard units for their measurements.
-The children select from a range of practical resources to gather evidence to answer questions generated by themselves or the teacher.

- They follow their plan to carry out: observations and tests to classify; comparative and simple fair tests; observations over time; and pattern seeking.
-The children sometimes decide how to record and present evidence. They record their observation e.g. using photographs, videos, pictures, labelled diagrams or writing -Children answer their own and others' questions based on observations they have made, measurements they have taken or information they have gained from secondary sources. The answers are consistent with the evidence.
-Children interpret their data to generate simple comparative statements based on their
-The children consider their prior knowledge when asking questions. They independently use a range of question stems. -Where appropriate, they answer these questions. -The children answer questions posed by the teacher. -Given a range of resources, the children decide for themselves how to gather evidence to answer the question...They identify the type of enquiry that they have chosen to answer their question.
-The children make systematic and careful observations. -They use a range of equipment for measuring length, time, temperature and capacity. They use standard units for their measurements.
-The children select from a range of practical resources to gather evidence to answer questions generated by themselves or the teacher. - They follow their plan to carry out: observations and tests to classify; comparative and simple fair tests; observations over time; and
pattern seeking.
-The children sometimes decide how to record and present evidence. They record their observation e.g. using photographs, videos, pictures, labelled diagrams or writing -Children answer their own and others' questions based on observations they have made, measurements they have taken or information they have gained from secondary sources. The answers are consistent with the evidence.
-Children interpret their data to generate simple comparative statements based on their
-The children consider their prior knowledge when asking questions. They independently use a range of question stems. Where appropriate, they answer these questions.
-The children answer questions posed by the teacher.
-Given a range of resources, the children decide for themselves how to gather evidence to answer the question. They recognise when secondary sources can be used to answer questions that cannot be answered through practical work. They identify the type of enquiry that they have chosen to answer their question. -The children make systematic and careful observations. -The children select from a range of practical resources to gather evidence to answer questions generated by themselves or the teacher. -They follow their plan to carry out: observations and tests to classify; comparative and simple fair tests; observations over time; and pattern seeking. -The children sometimes decide how to record and present evidence. They record their observation e.g. using photographs, videos, pictures, labelled diagrams or writing. -Children answer their own and others' questions based on observations they have made, measurements they have taken or information they have gained from secondary sources. The answers are consistent with the evidence.
-They communicate their findings to an audience both orally and in writing, using appropriate scientific vocabulary.
-The children consider their prior knowledge when asking questions. They independently use a range of question stems. Where appropriate, they answer these questions.
-The children answer questions posed by the teacher.
-Given a range of resources, the children decide for themselves how to gather evidence to answer the question. They recognise when secondary sources can be used to answer questions that cannot be answered through practical work. They identify the type of enquiry that they have chosen to answer their question. -The children make systematic and careful observations. -The children select from a range of practical resources to gather evidence to answer questions generated by themselves or the teacher. -They follow their plan to carry out: observations and tests to classify; comparative and simple fair tests; observations over time; and pattern seeking. -The children sometimes decide how to record and present evidence. They record their observation e.g. using photographs, videos, pictures, labelled diagrams or writing. -Children answer their own and others' questions based on observations they have made, measurements they have taken or information they have gained from secondary sources. The answers are consistent with the evidence.
-They communicate their findings to an audience both orally and in writing, using appropriate scientific vocabulary.
-The children consider their prior knowledge when asking questions. They independently use a range of question stems. -Where appropriate, they answer these questions. -The children answer questions posed by the teacher.
-Given a range of resources, the children decide for themselves how to gather evidence to answer the question. They recognise when secondary sources can be used to answer questions that cannot be answered through practical work. They identify the type of enquiry that they have chosen to answer their question. -The children sometimes decide how to record and present evidence. They record their observation e.g. using photographs, videos, pictures, labelled diagrams or writing. -They record their measurements e.g. using tables, tally charts and bar charts (given templates, if required, to which they can add headings). They record classifications e.g. using tables, Venn diagrams, Carroll diagrams.
-Children are supported to present the same data in different ways in order to help with answering the question. -Children answer their own and others' questions based on... information they have gained from secondary sources. The answers are consistent with the evidence.
-They communicate their findings to an audience both orally and in writing, using appropriate scientific vocabulary.

The children consider their prior knowledge when asking questions. They independently use a range of question stems. -Where appropriate, they answer these questions.
The children answer questions posed by the teacher.
-Given a range of resources, the children decide for themselves how to gather evidence to answer the question. They recognise when secondary sources can be used to answer questions that cannot be answered through practical work. They identify the type of enquiry that they have chosen to answer their question.
The children sometimes decide how to record and present evidence. They record their observation e.g. using photographs, videos, pictures, labelled diagrams or writing. -They record their
measurements e.g. using tables, tally charts and bar charts (given templates, if required, to which they can add headings). They record classifications e.g. using tables, Venn diagrams, Carroll diagrams.
-Children are supported to present the same data in different ways in order to help with answering the question. -Children answer their own and others' questions based on... information they have gained from secondary sources. The answers are consistent with the evidence.
-They communicate their findings to an audience both orally and in writing, using appropriate scientific vocabulary.

Aberford Science Curriculum Mapping with Coverage and Skills

evidence. They begin to identify
naturally occurring patterns and causal relationships.
-They draw conclusions based on their evidence and current subject knowledge.
-They identify ways in which they adapted their method as they progressed or how they would do it differently if they repeated the enquiry -Children use their evidence to suggest values for different items tested using the same method e.g. the distance travelled by a car on an additional surface. -Following a scientific experience, the children ask further questions which can be answered by extending the same enquiry
-They communicate their findings to an audience both orally and in writing, using appropriate scientific vocabulary.
evidence. They begin to identify naturally occurring patterns and causal relationships
-They draw conclusions based on their evidence and current subject knowledge.
-They identify ways in which
they adapted their method as they progressed or how they would do it differently if they repeated the enquiry. -Children use their evidence to suggest values for different tems tested using the same method e.g. the distance travelled by a car on an additional surface.
-Following a scientific experience, the children ask further questions which can be answered by extending the same enquiry.
-They communicate their findings to an audience both orally and in writing, using appropriate scientific vocabulary.

Aberford Science Curriculum Mapping with Coverage and Skills

Working Scientifically Vocabulary:	Practical work, prediction, similarity, difference, evidence, information, findings, criteria, properties, conclusion, explanation, reason, evaluate, improve	Practical work, fair testing, relationships, accurate, thermometer, stopwatch, timer, estimate, data, diagram, prediction, evidence, information, findings, properties, characteristics, conclusions, explanation, reason, evaluate, improve	Practical work, fair testing, relationships, estimate, data, diagram, prediction, evidence, information, findings, criteria, properties, characteristics, conclusion, explanation, reason, improve	Practical work, relationships, estimate, diagram, prediction, evidence, information, findings, criteria, properties, characteristics, explanation, reason	Relationships, data, diagram, identification key, chart, bar chart, similarity, difference, information, findings, criteria, characteristics, reason	Relationships, data, diagram, identification key, chart, bar chart, similarity, difference, information, findings, criteria, characteristics, reason

Class 4: Science - Cycle A

	Autumn 1	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2
Unit	Living Things and their Habitats	Living Things and their Habitats	Light	Electricity	Animals including humans	Animals including humans
National Curriculum Coverage	Y5 NC objectives: - describe the differences in the life cycles of a mammal, an amphibian, an insect and a bird - describe the life process of reproduction in some plants and animals	Y6 NC objectives: - describe how living things are classified into broad groups according to common observable characteristics and based on similarities and differences, including microorganisms, plants and animals - give reasons for classifying plants and animals based on specific characteristics	Y6 NC objectives: - recognise that light appears to travel in straight lines - use the idea that light travels in straight lines to explain that objects are seen because they give out or reflect light into the eye - explain that we see things because light travels from light sources to our eyes or from light sources to objects and then to our eyes - use the idea that light travels in straight lines to explain why shadows have the same shape as the objects that cast them	Y6 NC objectives - associate the brightness of a lamp or the volume of a buzzer with the number and voltage of cells used in the circuit - compare and give reasons for variations in how components function, including the brightness of bulbs, the loudness of buzzers and the on/off position of switches - use recognised symbols when representing a simple circuit in a diagram	Year 5 NC objectives: - Describe the changes as humans develop to old age	Y6 NC objectives: - identify and name the main parts of the human circulatory system, and describe the functions of the heart, blood vessels and blood - recognise the impact of diet, exercise, drugs and lifestyle on the way their bodies function - describe the ways in which nutrients and water are transported within animals, including humans

Aberford Science Curriculum Mapping with Coverage and Skills

Substantive Knowledge	As part of their life cycle, plants and animals reproduce. Most animals reproduce sexually. This involves two parents where the sperm from the male fertilises the female egg. Animals, including humans, have offspring which grow into adults. In humans and some animals, these offspring will be born live, such as babies or kittens, and then grow into adults. In other animals, such as chickens or snakes, there may be eggs laid that hatch to young which then grow to adults. Some young undergo a further change before becoming adults e.g. caterpillars to butterflies. This is called a metamorphosis. Plants reproduce both sexually and asexually. Bulbs, tubers, runners and plantlets are examples of asexual plant reproduction which involves only one parent. Gardeners may force plants to reproduce asexually by taking cuttings. Sexual reproduction occurs through pollination, usually involving wind or insects.	Living things can be formally grouped according to characteristics. Plants and animals are two main groups but there are other livings things that do not fit into these groups e.g. micro-organisms such as bacteria and yeast, and toadstools and mushrooms. Plants can make their own food whereas animals cannot. Animals can be divided into two main groups: those that have backbones (vertebrates); and those that do not (invertebrates). Vertebrates can be divided into five small groups: fish; amphibians; reptiles; birds; and mammals. Each group has common characteristics. Invertebrates can be divided into a number of groups, including insects, spiders, snails and worms. Plants can be divided broadly into two main groups: flowering plants; and non-flowering plants.	Light appears to travel in straight lines, and we see objects when light from them goes into our eyes. The light may come directly from light sources, but for other objects some light must be reflected from the object into our eyes for the object to be seen. Objects that block light (are not fully transparent) will cause shadows. Because light travels in straight lines the shape of the shadow will be the same as the outline shape of the object.	Adding more cells to a complete circuit will make a bulb brighter, a motor spin faster or a buzzer make a louder sound. If you use a battery with a higher voltage, the same thing happens. Adding more bulbs to a circuit will make each bulb less bright. Using more motors or buzzers, each motor will spin more slowly and each buzzer will be quieter. Turning a switch off (open) breaks a circuit so the circuit is not complete and electricity cannot flow. Any bulbs, motors or buzzers will then turn off as well. You can use recognised circuit symbols to draw simple circuit diagrams.	When babies are young, they grow rapidly. They are very dependent on their parents. As they develop, they learn many skills. At puberty, a child's body changes and develops primary and secondary sexual characteristics. This enables the adult to reproduce	The heart pumps blood in the blood vessels around to the lungs. Oxygen goes into the blood and carbon dioxide is removed. The blood goes back to the heart and is then pumped around the body. Nutrients, water and oxygen are transported in the blood to the muscles and other parts of the body where they are needed. As they are used, they produce carbon dioxide and other waste products. Carbon dioxide is carried by the blood back to the heart and then the cycle starts again as it is transported back to the lungs to be removed from the body. This is the human circulatory system. Diet, exercise, drugs and lifestyle have an impact on the way our bodies function. They can affect how well out heart and lungs work, how likely we are to suffer from conditions such as diabetes, how clearly we think, and generally how fit and well we feel. Some conditions are caused by deficiencies in our diet e.g. lack of vitamins. T
Specific Vocabulary:	life cycle, reproduce, sexual, fertilises, asexual, plantlets, runners, tubers, bulbs, cuttings	vertebrates, fish, amphibians, reptiles, birds, mammals, invertebrates, warm-blooded, cold-blooded, insects, spiders, snails, worms, flowering, nonflowering, mosses, ferns, conifers	As for Year 3 - Light, plus straight lines, light rays	Circuit, complete circuit, circuit diagram, circuit symbol, cell, battery, bulb, buzzer, motor, switch, voltage	Puberty - the vocabulary to describe sexual characteristics	Heart, pulse, rate, pumps, blood, blood vessels, transported, lungs, oxygen, carbon dioxide, nutrients, water, muscles, cycle, circulatory system, diet, exercise, drugs, lifestyle
Enquiry type:						

Aberford Science Curriculum Mapping with Coverage and Skills

Working Scientifically skills (disciplinary)	The children decide how to record and present evidence. They record observations e.g. using annotated photographs, videos, labelled diagrams, observational drawings, labelled scientific diagrams or writing. They communicate their findings to an audience using relevant scientific language and illustrations. They record classifications using Venn diagrams, Carroll diagrams and classification keys. They talk about how their scientific ideas change due to new evidence that they have gathered. They recognise how secondary sources can be used to answer questions that cannot be answered through practical work. During an enquiry, they make decisions e.g. whether they need to: check further secondary sources (researching); in order to get accurate data (closer to the true value). They talk about how new discoveries change scientific understanding	Talk about how new discoveries change scientific understanding. They record classifications e.g. using tables, Venn diagrams, Carroll diagrams and classification keys They communicate their findings to an audience using relevant scientific language and illustrations. They record classifications using Venn diagrams, Carroll diagrams and classification keys. They talk about how their scientific ideas change due to new evidence that they have gathered. They talk about how new discoveries change scientific understanding During an enquiry, they make decisions e.g. whether they need to: check further secondary sources (researching); in order to get accurate data (closer to the true value). They identify any limitations that reduce the trust they have in their data.	They record measurements using tables, tally charts and line graphs. The children select measuring equipment to give the most precise results e.g. ruler or tape measure, with a suitable scale. The children select from a range of practical resources to gather evidence to answer their questions. They carry out fair tests, recognising and controlling variables. They decide what measurements to make over time and for how long. Use the scientific knowledge gained from enquiry work to make predictions they can investigate using comparative and fair tests. Children use the scientific knowledge gained from enquiry work to make predictions they can investigate using comparative and fair tests. Children answer their own and others' questions based on observations they have made, measurements they have taken.	The children decide how to record and present evidence. They record observations e.g. using annotated photographs, videos, labelled diagrams, observational drawings, labelled scientific diagrams or writing. The children select measuring equipment to give the most precise results e.g. ruler - with a suitable scale. During an enquiry, they make decisions e.g. whether they need to: take repeat readings (fair testing); in order to get accurate data. Children answer their own and others' questions based on observations they have made, measurements they have taken or information they have gained from secondary sources.	They record measurements using tables, tally charts and line graphs. The children select measuring equipment to give the most precise results e.g. ruler or tape measure, with a suitable scale. They evaluate, for example, accuracy of measurements. The children decide how to record and present evidence. They record observations e.g. using annotated photographs, videos, labelled diagrams, observational drawings, labelled scientific diagrams or writing. Children answer their own and others' questions based on information they have gained from secondary sources. When doing this, they discuss whether other evidence e.g. from other groups, secondary sources and their scientific understanding, supports or refutes their answer.	The children decide how to record and present evidence. They record observations e.g. using annotated photographs, videos, labelled diagrams, observational drawings, labelled scientific diagrams or writing. They record measurements using tables, tally charts and line graphs. The children select measuring equipment to give the most precise results e.g. ruler or tape measure, with a suitable scale. They evaluate, for example, accuracy of measurements.
Working Scientifically Vocabulary:	Evidence, justify, argument (science)	causal relationship	variables, independent variable, dependent variable, control variable, evidence, justify, line graph	variables, independent variable, dependent variable, control variable, evidence, justify	bar graph, causal relationship, accuracy, precision.	scatter graph

Aberford Science Curriculum Mapping with Coverage and Skills

Class 4: Science - Cycle B

	Autumn 1	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2
Unit	Changes of Materials	Properties of Materials	Forces	Evolution and Inheritance	Earth and Space	Looking after our environment
National Curriculum Coverage	Year 5 NC objectives: - compare and group together everyday materials on the basis of their properties, including their hardness, solubility, transparency, conductivity (electrical and thermal), and response to magnets - know that some materials will dissolve in liquid to form a solution, and describe how to recover a substance from a solution - use knowledge of solids, liquids and gases to decide how mixtures might be separated, including through filtering, sieving and evaporating - give reasons, based on evidence from comparative and fair tests, for the particular uses of everyday materials, including metals, wood and plastic - demonstrate that dissolving, mixing and changes of state are reversible changes - explain that some changes result in the formation of new materials, and that this kind of change is not usually reversible, including changes associated with burning and the action of acid on bicarbonate of soda	Year 5 NC objectives: - compare and group together everyday materials on the basis of their properties, including their hardness, solubility, transparency, conductivity (electrical and thermal), and response to magnets - know that some materials will dissolve in liquid to form a solution, and describe how to recover a substance from a solution - use knowledge of solids, liquids and gases to decide how mixtures might be separated, including through filtering, sieving and evaporating - give reasons, based on evidence from comparative and fair tests, for the particular uses of everyday materials, including metals, wood and plastic - demonstrate that dissolving, mixing and changes of state are reversible changes - explain that some changes result in the formation of new materials, and that this kind of change is not usually reversible, including changes associated with burning and the action of acid on bicarbonate of soda	Year 5 NC objectives: - Explain that unsupported objects fall towards the Earth because of the force of gravity acting between the Earth and the falling object - Identify the effects of air resistance, water resistance and friction, that act between moving surfaces - Recognise that some mechanisms including levers, pulleys and gears allow a smaller force to have a greater effect	Y6 NC objectives: - recognise that living things have changed over time and that fossils provide information about living things that inhabited the Earth millions of years ago - recognise that living things produce offspring of the same kind, but normally offspring vary and are not identical to their parents - identify how animals and plants are adapted to suit their environment in different ways and that adaptation may lead to evolution	Year 5 NC objectives: - describe the movement of the Earth and other planets relative to the sun in the solar system - describe the movement of the moon relative to the Earth - describe the sun, Earth and moon as approximately spherical bodies - use the idea of the Earth's rotation to explain day and night and the apparent movement of the sun across the sky	1. Learn about climate change 2. Explore ways to reduce how much rubbish is sent to landfill 3. Explore ways to reduce energy consumption 4. Explore what happens when fuels are burnt 5. Explore the outcomes of COP26 6. Compare data associated with the weather
Substantive Knowledge	Materials have different uses depending on their properties and state (liquid, solid, gas). Properties include hardness, transparency, electrical and thermal conductivity and attraction to magnets. Some materials will dissolve in a liquid and form a solution while others	Materials have different uses depending on their properties and state (liquid, solid, gas). Properties include hardness, transparency, electrical and thermal conductivity and attraction to magnets. Some materials will dissolve in a liquid and form a solution while others	A force causes an object to start moving, stop moving, speed up, slow down or change direction. Gravity is a force that acts at a distance. Everything is pulled to the Earth by gravity. This causes unsupported objects to fall. Air resistance, water resistance and friction are contact forces that	All living things have offspring of the same kind, as features in the offspring are inherited from the parents. Due to sexual reproduction, the offspring are not identical to their parents and vary from each other. Plants and animals have characteristics that make them suited	The Sun is a star. It is at the centre of our solar system. There are 8 planets (can choose to name them, but not essential). These travel around the Sun in fixed orbits. Earth takes $3651 / 4$ days to complete its orbit around the Sun. The Earth rotates (spins) on its axis every	Greenhouse gases trap the heat from the sun and stop it leaving the Earth, causing the planet to become warmer. A warmer planet means the ice will melt. Some animals will lose their habitat

Aberford Science Curriculum Mapping with Coverage and Skills

	are insoluble and form sediment. Mixtures can be separated by filtering, sieving and evaporation. Some changes to materials such as dissolving, mixing and changes of state are reversible, but some changes such as burning wood, rusting and mixing vinegar with bicarbonate of soda result in the formation of new materials and these are not reversible.	are insoluble and form sediment. Mixtures can be separated by filtering, sieving and evaporation. Some changes to materials such as dissolving, mixing and changes of state are reversible, but some changes such as burning wood, rusting and mixing vinegar with bicarbonate of soda result in the formation of new materials and these are not reversible.	act between moving surfaces. The object may be moving through the air or water, or the air and water may be moving over a stationary object. A mechanism is a device that allows a small force to be increased to a larger force. The pay back is that it requires a greater movement. The small force moves a long distance and the resulting large force moves a small distance, e.g. a crowbar or bottle top remover. Pulleys, levers and gears are all mechanisms, also known as simple machines.	(adapted) to their environment. If the environment changes rapidly, some variations of a species may not suit the new environment and will die. If the environment changes slowly, animals and plants with variations that are best suited survive in greater numbers to reproduce and pass their characteristics on to their young. Over time, these inherited characteristics become more dominant within the population. Over a very long period of time, these characteristics may be so different to how they were originally that a new species is created. This is evolution. Fossils give us evidence of what lived on the Earth millions of year ago and provide evidence to support the theory of evolution. More recently, scientists such as Darwin and Wallace observed how living things adapt to different environments to become distinct varieties with their own characteristics.	24 hours. As Earth rotates half faces the Sun (day) and half is facing away from the Sun (night). As the Earth rotates, the Sun appears to move across the sky. The Moon orbits the Earth. It takes about 28 days to complete its orbit. The Sun, Earth and Moon are approximately spherical.	Water levels will rise, causing some land to disappear under water. Some human activities produce greenhouse gases (carbon dioxide, methane, nitric oxide): Cutting down trees means more carbon dioxide stays in the air. Farming animals produces methane gas. Transport - fuels such as diesel and petrol produce carbon dioxide. Scientists look at trends in weather data to track how the Earth's climate is changing.
Specific Vocabulary:	Thermal/electrical insulator/conductor, change of state, mixture, dissolve, solution, soluble, insoluble, filter, sieve, reversible/nonreversible change, burning, rusting, new material	Thermal/electrical insulator/conductor, change of state, mixture, dissolve, solution, soluble, insoluble, filter, sieve, reversible/nonreversible change, burning, rusting, new material	Force, gravity, Earth, air resistance, water resistance, friction, mechanisms, simple machines, levers, pulleys, gears	offspring, sexual reproduction, vary, characteristics, suited, adapted, environment, inherited, species, fossils, evolve, evolution	Sun, Moon, Earth, planets (Mercury, Jupiter, Saturn, Venus, Mars, Uranus, Neptune), spherical, Solar System, rotate, star, orbit	Weather, global warming, recycle, biodegrade, net zero, greenhouse gases, industrial revolution, combustion, COP, species, habitat

Aberford Science Curriculum Mapping with Coverage and Skills

Enquiry type:						
Working Scientifically skills (disciplinary)	Children independently ask scientific questions. Given a wide range of resources the children decide for themselves how to gather evidence to answer a scientific question. They choose a type of enquiry to carry out and justify their choice. The children select from a range of practical resources to gather evidence to answer their questions. They carry out fair tests, recognising and controlling variables. They decide what observations or measurements to make over time and for how long. They look for patterns and relationships using a suitable sample. Children use the scientific knowledge gained from enquiry work to make predictions they can investigate using comparative and fair tests They record measurements using tables. Children present the same data in different ways in order to help with answering the question. Children answer their own and others' questions based on observations they have made.	Children independently ask scientific questions. - Given a wide range of resources the children decide for themselves how to gather evidence to answer a scientific question. They choose a type of enquiry to carry out and justify their choice. - The children select from a range of practical resources to gather evidence to answer their questions. They carry out fair tests, recognising and controlling variables. They decide what observations or measurements to make over time and for how long. They look for patterns and relationships using a suitable sample. Children use the scientific knowledge gained from enquiry work to make predictions they can investigate using comparative and fair tests They record measurements using tables and line graphs. Children present the same data in different ways in order to help with answering the question. Children answer their own and others' questions based on observations they have made, measurements they have taken. They evaluate, for example, the choice of method used, the	Select measuring equipment to give the most precise results e.g. ruler, tape measure or trundle wheel, force meter with a suitable scale. Children independently ask scientific questions. This may be stimulated by a scientific experience or involve asking further questions based on their developed understanding following an enquiry. Given a wide range of resources the children decide for themselves how to gather evidence to answer a scientific question. They choose a type of enquiry to carry out and justify their choice. They recognise how secondary sources can be used to answer questions that cannot be answered through practical work. The children select from a range of practical resources to gather evidence to answer their questions. They carry out fair tests, recognising and controlling variables. They decide what observations or measurements to make over time and for how long. They look for patterns and relationships using a suitable sample. Children use the scientific knowledge gained from enquiry work to make predictions they	They recognise how secondary sources can be used to answer questions that cannot be answered through practical work. During an enquiry, they make decisions e.g. whether they need to: check further secondary sources (researching); in order to get accurate data (closer to the true value). They communicate their findings to an audience using relevant scientific language and illustrations They record classifications e.g. using tables, Venn diagrams, Carroll diagrams and classification keys Children answer their own and others' questions based on information they have gained from secondary sources. When doing this, they discuss whether other evidence e.g. from other groups, secondary sources and their scientific understanding, supports or refutes their answer They evaluate, for example, the credibility of secondary sources used.	They communicate their findings to an audience using relevant scientific language and illustrations. Children independently ask scientific questions. They talk about how their scientific ideas change due to new evidence that they have gathered. They recognise how secondary sources can be used to answer questions that cannot be answered through practical work. During an enquiry, they make decisions e.g. whether they need to: check further secondary sources (researching); in order to get accurate data (closer to the true value). Children answer their own and others' questions based on observations they have made, information they have gained from secondary sources. When doing this, they discuss whether other evidence e.g. from other groups, secondary sources and their scientific understanding, supports or refutes their answer They evaluate, for example, the credibility of secondary sources used.	They communicate their findings to an audience using relevant scientific language and illustrations They talk about how their scientific ideas change due to new evidence that they have gathered. They recognise how secondary sources can be used to answer questions that cannot be answered through practical work.

Aberford Science Curriculum Mapping with Coverage and Skills

	They evaluate, for example, the choice of method used, the control of variables, the precision and accuracy of measurements. Children present the same data in different ways in order to help with answering the question They identify any limitations that reduce the trust they have in their data.	control of vaiables, the precision and accuracy of measurements. Children present the same data in different ways in order to help with answering the question. They identify any limitations that reduce the trust they have in their data.	can investigate using comparative and fair tests		
Working Scientifically Vocabulary:	variables, independent variable, dependent variable, control variable, line graph, evidence.	variables, independent variable, dependent variable, control variable, evidence, causal relationships.	variables, independent variable, dependent variable, control variable, evidence, force meter, accuracy, precision, causal relationships.	justify, argument (science)	Argument (science), Causal relationships

