Subject: Maths		h		
Year: 11 (Foundation)				
<u>Autumn HT 1</u>	Autumn HT 2	<u>Spring HT 1</u>	<u>Spring HT 2</u>	<u>Summer HT 1</u>
Duthanaya and Tuinanamatay	Chatistics compliant and the	<u>Cincile situl and</u>	Despensive top	ahing haged upon
Pythagoras and Trigonometry	Statistics, sampling and the	Similarity and	Responsive tea	
By the end of the unit, students	averages	congruence in 2D	February Moc	k exam question
should be able to:	Duth s and af the such with	Due the second of the such	level	analysis.
Understand, recall and use	By the end of the sub-unit,	By the end of the sub-		
Pythagoras' Theorem in 2D,	students should be able to:	unit, students should		
including leaving answers in surd	• Specify the problem and:	be able to:		
form and being able to justify if	plan an investigation;	• Use the basic		
a triangle is right-angled or not;	decide what data to collect	congruence criteria for		
Calculate the length of the	and what statistical analysis is	triangles (SSS, SAS,		
hypotenuse and of a shorter side	needed;	ASA and RHS);		
in a right-angled triangle,	 consider fairness; 	Solve angle		
including decimal lengths and a	 Recognise types of data: 	problems involving		
range of units;	primary secondary, quantitative	congruence;		
Apply Pythagoras'	and qualitative;	 Identify shapes 		
Theorem with a triangle drawn	Identify which primary	which are similar;		
on a coordinate grid;	data they need to collect and in	including all circles or		
Calculate the length of a	what format, including grouped	all regular polygons		
line segment AB given pairs of	data;	with equal number of		
points;	Collect data from a variety	sides;		
• Understand, use and recall	of suitable primary and	 Understand 		
the trigonometric ratios sine,	secondary sources;	similarity of triangles		
cosine and tan, and apply them	Understand how sources	and of other plane		
to find angles and lengths in	of data may be biased and	shapes, use this to		
general triangles in 2D figures;	explain why a sample may not	make geometric		
Use the trigonometric	be representative of a whole	inferences, and solve		
ratios to solve 2D problems	population;	angle problems using		
		similarity;		

Ludus Admirandus

	1	1	
including angles of elevation and	Understand sample and	· Identify the	
depression;	population.	scale factor of an	1
Round answers to	• Calculate the mean, mode,	enlargement of a	1
appropriate degree of accuracy,	median and range for discrete	shape as the ratio of	1
either to a given number of	data;	the lengths of two	ł
significant figures or decimal	 Interpret and find a range 	corresponding sides;	ł
places, or make a sensible	of averages as follows:	 Understand the 	ł
decision on rounding in context	 median, mean and range 	effect of enlargement	ł
of question;	from a (discrete) frequency	on perimeter of	ł
• Know the exact values of	table;	shapes;	ł
sin θ and cos θ for $\theta = 0^{\circ}$, 30°,	 range, modal class, 	 Solve problems 	ł
45°, 60° and 90°; know the	interval containing the median,	to find missing lengths	ł
exact value of tan θ for $\theta = 0^{\circ}$,	and estimate of the mean from a	in similar shapes;	ł
30°, 45° and 60°.	grouped data frequency table;	Know that scale	ł
	 mode and range from a 	diagrams, including	ł
Perimeter, Area and Volume	bar chart;	bearings and maps	ł
	 median, mode and range 	are 'similar' to the	ł
By the end of the sub-unit,	from stem and leaf diagrams;	real-life examples.	ł
students should be able to:	 mean from a bar chart; 		
• Indicate given values on a	Understand that the	Transformations	
scale, including decimal value;	expression 'estimate' will be		
Know that measurements	used where appropriate, when	By the end of the sub-	ł
using real numbers depend upon	finding the mean of grouped	unit, students should	ł
the choice of unit;	data using mid-interval values;	be able to:	ł
Convert between units of	 Compare the mean, 	• Identify	ł
measure within one system,	median, mode and range (as	congruent shapes by	ł
including time and metric units	appropriate) of two distributions	eye;	ł
to metric units of length, area	using bar charts, dual bar	Understand that	ł
and volume and capacity e.g.	charts, pictograms and back-to-	rotations are specified	ł
1ml = 1cm3;	back stem and leaf;	by a centre, an angle	ł
• Make sensible estimates of	Recognise the advantages	and a direction of	ł
a range of measures in everyday	and disadvantages between	rotation;	
settings;	measures of average.	Find the centre	ł
	and and Andrea	of rotation, angle and	

Luaus Aantianaus

		1	
• Measure shapes to find	Straight Line Graphs	direction of rotation	
perimeters and areas using a		and describe rotations	
range of scales;	By the end of the sub-	fully using the angle,	
• Find the perimeter of	unit, students should be able to:	direction of turn, and	
 rectangles and triangles; 	 Use function machines to 	centre;	
 parallelograms and 	find coordinates (i.e. given the	 Rotate and draw 	
trapezia;	input x, find the output y);	the position of a shape	
 compound shapes; 	 Plot and draw graphs of y 	after rotation about	
Recall and use the	= a, x = a, y = x and y = -x;	the origin or any other	
formulae for the area of a	 Recognise straight-line 	point including	
triangle and rectangle;	graphs parallel to the axes;	rotations on a	
• Find the area of a	Recognise that equations	coordinate grid;	
trapezium and recall the	of the form $y = mx + c$	Identify correct	
formula;	correspond to straight-line	rotations from a	
• Find the area of a	graphs in the coordinate plane;	choice of diagrams;	
parallelogram;	 Plot and draw graphs of 	Understand that	
Calculate areas and	straight lines of the form $y = mx$	translations are	
perimeters of compound shapes	+ c using a table of values;	specified by a distance	
made from triangles and	 Sketch a graph of a linear 	and direction using a	
rectangles;	function, using the gradient and	vector;	
• Estimate surface areas by	y-intercept;	Translate a	
rounding measurements to 1	Identify and interpret	given shape by a	
significant figure;	gradient from an equation y =	vector;	
• Find the surface area of a	mx + c;	Use column	
prism;	· Identify parallel lines from	vectors to describe	
 Find surface area using 	their equations;	and transform 2D	
rectangles and triangles;	 Plot and draw graphs of 	shapes using single	
 Identify and name 	straight lines in the form ax + by	translations on a	
common solids: cube, cuboid,	= c;	coordinate grid;	
cylinder, prism, pyramid, sphere	Find the equation of a	Understand that	
and cone;	straight line from a graph;	distances and angles	
• Sketch nets of cuboids and	 Find the equation of the 	are preserved under	
prisms;	line through one point with a	rotations and 🚽	
	given gradient;	translations, so that	0

Luaus Aaminanaus

		[]	
Recall and use the formula	• Find approximate solutions	any figure is	
for the volume of a cuboid;	to a linear equation from a	congruent under	
 Find the volume of a 	graph.	either of these	
prism, including a triangular		transformations;	
prism, cube and cuboid;		 Understand that 	
 Calculate volumes of right 		reflections are	
prisms and shapes made from		specified by a mirror	
cubes and cuboids;		line;	
 Estimate volumes etc by 		 Identify correct 	
rounding measurements to 1	Multiplicative reasoning	reflections from a	
significant figure;	A A	choice of diagrams;	
	By the end of the unit, students	· Identify the	
	should be able to:	equation of a line of	
	 Understand and use 	symmetry;	
<u>Circles, cylinders, cones and</u>	compound measures:	Transform 2D	
spheres	· density;	shapes using single	
	· pressure;	reflections (including	
By the end of the unit, students	· speed:	those not on	
should be able to:	convert between metric	coordinate grids) with	
• Recall the definition of a	speed measures;	vertical, horizontal	
circle and identify, name and	read values in km/h and	and diagonal mirror	
draw parts of a circle including	mph from a speedometer;	lines;	
tangent, chord and segment;	calculate average speed,	Describe	
Recall and use formulae	distance, time – in miles per	reflections on a	
for the circumference of a circle	hour as well as metric measures;	coordinate grid;	
and the area enclosed by a circle	• use kinematics formulae	• Scale a shape	
circumference of a circle = $2\pi r$ =	to calculate speed, acceleration	on a grid (without a	
пd, area of a circle = пr2;	(with formula provided and	centre specified);	
• Use $\pi \approx 3.142$ or use the	variables defined in the	Understand that	
п button on a calculator;	question);	an enlargement is	
 Give an answer to a 	• change d/t in m/s to a	specified by a centre	
question involving the	formula in km/h, i.e. d/t \times (60 \times	and a scale factor;	
circumference or area of a circle	60)/1000 - with support;	• Enlarge a given	
in terms of п;	Andrea Andrea	shape using (0, 0) as	
	JULIUS AUT		

 Find radius or diameter, 	 Express a given number 	the centre of	
given area or perimeter of a	as a percentage of another	enlargement, and	
circles;	number in more complex	enlarge shapes with a	
 Find the perimeters and 	situations;	centre other than (0,	
areas of semicircles and quarter-	Calculate percentage profit	0);	
circles;	or loss;	 Find the centre 	
 Calculate perimeters and 	 Make calculations 	of enlargement by	
areas of composite shapes made	involving repeated percentage	drawing;	
from circles and parts of circles;	change, not using the formula;	Describe and	
Calculate arc lengths,	 Find the original amount 	transform 2D shapes	
angles and areas of sectors of	given the final amount after a	using enlargements	
circles;	percentage increase or	by:	
 Find the surface area and 	decrease;	· a positive	
volume of a cylinder;	 Use compound interest; 	integer scale factor;	
 Find the surface area and 	• Use a variety of measures	· a fractional	
volume of spheres, pyramids,	in ratio and proportion	scale factor;	
cones and composite solids;	problems:	· Identify the	
 Round answers to a given 	 currency conversion; 	scale factor of an	
degree of accuracy.	 rates of pay; 	enlargement of a	
	 best value; 	shape as the ratio of	
	• Set up, solve and interpret	the lengths of two	
	the answers in growth and decay	corresponding sides,	
	problems;	simple integer scale	
	Understand that X is	factors, or simple	
	inversely proportional to Y is	fractions;	
	equivalent to X is proportional to	Understand that	
	Interpret equations that describe	distances and angles	
	direct and inverse proportion.	are preserved under	
		reflections, so that	
	Real Life Graphs	any figure is	
		congruent under this	
	By the end of the sub-unit,	transformation;	
	students should be able to:	 Understand that 	
	Andrea A day	similar shapes are	
	MAAN AAN		

• Use input/output	enlargements of each	
diagrams;	other and angles are	
• Draw, label and scale	preserved – define	
axes;	similar in this unit.	
Use axes and coordinates		
to specify points in all four		
quadrants in 2D;		
 Identify points with given 		
coordinates and coordinates of a		
given point in all four quadrants;		
 Find the coordinates of 		
points identified by geometrical		
information in 2D (all four		
quadrants);		
• Find the coordinates of the		
midpoint of a line segment;		
Read values from straight-line		
graphs for real-life situations;		
Draw straight line graphs		
for real-life situations, including		
ready reckoner graphs,		
conversion graphs, fuel bills		
graphs, fixed charge and cost		
per unit,		
arapha and volocity, time		
graphs and velocity-time		
Work out time intervals for		
aranh scales		
Internret dictance_time		
graphs and calculate: the speed		
of individual sections total		
distance and total time.		

Luaus Aamiranaus

 Interpret information presented in a range of linear and non-linear graphs; Interpret graphs with negative values on axes; Find the gradient of a straight line from real-life graphs; Interpret gradient as the rate of change in distance-time and speed-time graphs, graphs of containers filling and
emptying, and unit price graphs.

WORDEN

Ludus Admirandus