Subject: Maths

Year: 11 (Foundation)

Autumn HT 1	Autumn HT 2		Spring HT 2	Summer HT 1
Pythagoras and Trigonometry By the end of the unit, students should be able to: Understand, recall and use Pythagoras' Theorem in 2D, including leaving answers in surd form and being able to justify if a triangle is right-angled or not; Calculate the length of the hypotenuse and of a shorter side in a right-angled triangle, including decimal lengths and a range of units; Apply Pythagoras' Theorem with a triangle drawn on a coordinate grid; Calculate the length of a line segment $A B$ given pairs of points; Understand, use and recall the trigonometric ratios sine, cosine and tan, and apply them to find angles and lengths in general triangles in 2D figures; Use the trigonometric ratios to solve 2D problems	Statistics, sampling and the averages By the end of the sub-unit, students should be able to: Specify the problem and: plan an investigation; decide what data to collect and what statistical analysis is needed; consider fairness; Recognise types of data: primary secondary, quantitative and qualitative; Identify which primary data they need to collect and in what format, including grouped data; Collect data from a variety of suitable primary and secondary sources; Understand how sources of data may be biased and explain why a sample may not be representative of a whole population;	Similarity and congruence in 2D By the end of the subunit, students should be able to: Use the basic congruence criteria for triangles (SSS, SAS, ASA and RHS); Solve angle problems involving congruence; Identify shapes which are similar; including all circles or all regular polygons with equal number of sides; Understand similarity of triangles and of other plane shapes, use this to make geometric inferences, and solve angle problems using similarity;	Responsive teaching based upon February Mock exam question level analysis.	

including angles of elevation and depression;

Round answers to appropriate degree of accuracy, either to a given number of significant figures or decimal places, or make a sensible decision on rounding in context of question;

Know the exact values of $\sin \theta$ and $\cos \theta$ for $\theta=0^{\circ}, 30^{\circ}$, $45^{\circ}, 60^{\circ}$ and 90°; know the exact value of $\tan \theta$ for $\theta=0^{\circ}$, $30^{\circ}, 45^{\circ}$ and 60°.

Perimeter, Area and Volume

By the end of the sub-unit, students should be able to: - Indicate given values on a scale, including decimal value;

Know that measurements using real numbers depend upon the choice of unit;

Convert between units of measure within one system, including time and metric units to metric units of length, area and volume and capacity e.g. $1 \mathrm{ml}=1 \mathrm{~cm} 3$;

Make sensible estimates of a range of measures in everyday settings;

- Understand sample and population.

Calculate the mean, mode, median and range for discrete data;

Interpret and find a range of averages as follows:

- median, mean and range from a (discrete) frequency table;
range, modal class, interval containing the median, and estimate of the mean from a grouped data frequency table; mode and range from a bar chart;
median, mode and range from stem and leaf diagrams; mean from a bar chart; Understand that the expression 'estimate' will be used where appropriate, when finding the mean of grouped data using mid-interval values;

Compare the mean, median, mode and range (as appropriate) of two distributions using bar charts, dual bar charts, pictograms and back-toback stem and leaf;

Recognise the advantages and disadvantages between measures of average.

- Identify the scale factor of an enlargement of a shape as the ratio of the lengths of two corresponding sides;

Understand the effect of enlargement on perimeter of shapes;

Solve problems to find missing lengths in similar shapes;

Know that scale diagrams, including bearings and maps are 'similar' to the real-life examples.

Transformations

By the end of the subunit, students should be able to:

- Identify congruent shapes by eye;

Understand that rotations are specified by a centre, an angle and a direction of rotation;

Find the centre of rotation, angle and

Measure shapes to find perimeters and areas using a range of scales; Find the perimeter of rectangles and triangles; parallelograms and trapezia; compound shapes; Recall and use the formulae for the area of a triangle and rectangle; Find the area of a trapezium and recall the formula; Find the area of a parallelogram; Calculate areas and perimeters of compound shapes made from triangles and rectangles; Estimate surface areas by rounding measurements to 1 significant figure; Find the surface area of a prism; Find surface area using rectangles and triangles; Identify and name common solids: cube, cuboid, cylinder, prism, pyramid, sphere and cone; Sketch nets of cuboids and prisms;	Straight Line Graphs By the end of the subunit, students should be able to: Use function machines to find coordinates (i.e. given the input x, find the output y); Plot and draw graphs of y $=a, x=a, y=x \text { and } y=-x ;$ Recognise straight-line graphs parallel to the axes; Recognise that equations of the form $y=m x+c$ correspond to straight-line graphs in the coordinate plane; Plot and draw graphs of straight lines of the form $y=m x$ $+c$ using a table of values; Sketch a graph of a linear function, using the gradient and y-intercept; Identify and interpret gradient from an equation $y=$ mx + c; Identify parallel lines from their equations; Plot and draw graphs of straight lines in the form ax + by = C; Find the equation of a straight line from a graph; Find the equation of the line through one point with a given gradient;	direction of rotation and describe rotations fully using the angle, direction of turn, and centre; Rotate and draw the position of a shape after rotation about the origin or any other point including rotations on a coordinate grid; Identify correct rotations from a choice of diagrams; Understand that translations are specified by a distance and direction using a vector; Translate a given shape by a vector; Use column vectors to describe and transform 2D shapes using single translations on a coordinate grid; Understand that distances and angles are preserved under rotations and translations, so that

Recall and use the formula
for the volume of a cuboid;
.\quad Find the volume of a
prism, including a triangular
prism, cube and cuboid;
. Calculate volumes of right
prisms and shapes made from
cubes and cuboids;
- Estimate volumes etc by
rounding measurements to 1
significant figure;
Circles, cylinders, cones and
spheres

By the end of the unit, students should be able to:

- Recall the definition of a circle and identify, name and draw parts of a circle including tangent, chord and segment;

Recall and use formulae for the circumference of a circle and the area enclosed by a circle circumference of a circle $=2 \pi r=$ nd, area of a circle $=\pi r 2$;

Use п ≈ 3.142 or use the π button on a calculator;

Give an answer to a question involving the circumference or area of a circle in terms of π;

Find approximate solutions to a linear equation from a graph.
any figure is congruent under either of these transformations; - Understand that reflections are specified by a mirror line;

Identify correct

Multiplicative reasoning

By the end of the unit, students should be able to:

Understand and use
compound measures:
. density;
pressure;
speed:
convert between metric speed measures;
read values in km/h and mph from a speedometer;
calculate average speed, distance, time - in miles per hour as well as metric measures; use kinematics formulae to calculate speed, acceleration (with formula provided and variables defined in the question);
change d / t in m / s to a formula in km / h, i.e. $\mathrm{d} / \mathrm{t} \times(60 \times$ 60)/1000 - with support;
reflections from a choice of diagrams;

Identify the equation of a line of symmetry;

Transform 2D shapes using single reflections (including those not on coordinate grids) with vertical, horizontal and diagonal mirror lines;

Describe
reflections on a coordinate grid;

Scale a shape on a grid (without a centre specified);

Understand that an enlargement is specified by a centre and a scale factor;
Enlarge a given shape using $(0,0)$ as

Find radius or diameter, given area or perimeter of a circles; Find the perimeters and areas of semicircles and quartercircles; Calculate perimeters and areas of composite shapes made from circles and parts of circles; Calculate arc lengths, angles and areas of sectors of circles; Find the surface area and volume of a cylinder; Find the surface area and volume of spheres, pyramids, cones and composite solids; Round answers to a given degree of accuracy.	Express a given number as a percentage of another number in more complex situations; Calculate percentage profit or loss; Make calculations involving repeated percentage change, not using the formula; Find the original amount given the final amount after a percentage increase or decrease; Use compound interest; Use a variety of measures in ratio and proportion problems: currency conversion; rates of pay; best value; Set up, solve and interpret the answers in growth and decay problems; Understand that X is inversely proportional to Y is equivalent to X is proportional to Interpret equations that describe direct and inverse proportion. Real Life Graphs By the end of the sub-unit, students should be able to:	the centre of enlargement, and enlarge shapes with a centre other than (0 , 0); Find the centre of enlargement by drawing; Describe and transform 2D shapes using enlargements by: a positive integer scale factor; a fractional scale factor; Identify the scale factor of an enlargement of a shape as the ratio of the lengths of two corresponding sides, simple integer scale factors, or simple fractions; Understand that distances and angles are preserved under reflections, so that any figure is congruent under this transformation; Understand that similar shapes are

Use input/output diagrams; Draw, label and scale axes; Use axes and coordinates to specify points in all four quadrants in 2D; Identify points with given coordinates and coordinates of a given point in all four quadrants; Find the coordinates of points identified by geometrical information in 2D (all four quadrants); Find the coordinates of the midpoint of a line segment; Read values from straight-line graphs for real-life situations; Draw straight line graphs for real-life situations, including ready reckoner graphs, conversion graphs, fuel bills graphs, fixed charge and cost per unit; Draw distance-time graphs and velocity-time graphs; Work out time intervals for graph scales; Interpret distance-time graphs, and calculate: the speed of individual sections, total distance and total time;	enlargements of each other and angles are preserved - define similar in this unit.

