Subject: Maths Year: 11 (Higher)					
Autumn HT 1	Autumn HT 2	Spring HT 1	Spring HT 2	$\frac{\text { Summer HT }}{\underline{1}}$	Summer HT 2
Multiplicative Reasoning By the end of the unit, students should be able to: - Express a multiplicative relationship between two quantities as a ratio or a fraction, e.g. when $A: B$ are in the ratio 3:5, A is $\frac{3}{5} B$. When $4 a=7 b$, then $a=\frac{7 b}{4}$ or $a: b$ is $7: 4$; - Solve proportion problems using the unitary method; - Work out which product offers best value and consider rates of pay; - Work out the multiplier for repeated proportional change as a single decimal number; - Represent repeated proportional change using a multiplier raised to a power, use this to solve problems involving compound interest and depreciation; - Understand and use compound measures and: - convert between metric speed measures; - convert between density measures; - convert between pressure measures; - Use kinematics formulae from the formulae sheet to calculate speed, acceleration, etc (with variables defined in the question); - Calculate an unknown quantity from quantities that vary in direct or inverse proportion; - Recognise when values are in direct proportion by reference to the graph form, and use a graph to find the value of k in $y=k x$;	Histograms By the end of the unit, students should be able to: - Know the appropriate uses of histograms; - Construct and interpret histograms from class intervals with unequal width; - Use and understand frequency density; - From histograms: - complete a grouped frequency table; - understand and define frequency density; - Estimate the mean and median from a histogram with unequal class widths or any other information from a histogram, such as the number of people in a given interval. Inequalities By the end of the sub-unit, students should be able to: - Show inequalities on number lines; - Write down whole number values that satisfy an inequality; - Solve simple linear inequalities in one variable, and represent the solution set on a number line; - Solve two linear inequalities in x, find the solution sets and compare them to see which value of x satisfies both solve linear inequalities in two variables algebraically; - Use the correct notation to show inclusive and exclusive inequalities. - Represent the solution set for inequalities using set notation, i.e. curly brackets and 'is an element of' notation;	Further Graphs By the end of the unit, students should be able to: - Recognise, sketch and interpret graphs of the reciprocal function $y=\frac{1}{x}$ with $x \neq$ 0 - State the value of x for which the equation is not defined; - Recognise, sketch and interpret graphs of exponential functions $y=k^{x}$ for positive values of k and integer values of x; - Use calculators to explore exponential growth and decay; - Set up, solve and interpret the answers in growth and decay problems; - Interpret and analyse transformations of graphs of functions and write the functions algebraically, e.g. write the equation of $\mathrm{f}(x)+a$, or $\mathrm{f}(x-a)$: - apply to the graph of $y=f(x)$ the transformations $y=-\mathrm{f}(x), y=\mathrm{f}(-x)$ for linear, quadratic, cubic functions; - apply to the graph of $y=f(x)$ the transformations $y=f(x)+a, y=f(x$ $+$ for linear, quadratic, cubic functions; - Estimate area under a quadratic or other graph by dividing it into trapezia; - Interpret the gradient of linear or nonlinear graphs, and estimate the gradient of a quadratic or non-linear graph at a given point by sketching the tangent and finding its gradient;	Responsive tea exam	aching based u question level	February Mock alysis.

- Set up and use equations to solve word and other problems involving direct proportion (this is covered in more detail in unit 19);
- Relate algebraic solutions to graphical representation of the equations;
- Recognise when values are in inverse proportion by reference to the graph form;
- Set up and use equations to solve word and other problems involving inverse proportion, and relate algebraic solutions to graphical representation of the equations.
- Recognise and interpret graphs showing direct and inverse proportion
- Identify direct proportion from a table of values, by comparing ratios of values, for x squared and x cubed relationships;
- Write statements of proportionality for quantities proportional to the square, cube or other power of another quantity;
- Set up and use equations to solve word and other problems involving direct proportion;
- Use $y=k x$ to solve direct proportion problems, including questions where students find k, and then use k to find another value;
- Solve problems involving inverse proportion using graphs by plotting and reading values from graphs;
- Solve problems involving inverse proportionality;
- Set up and use equations to solve word and other problems involving direct proportion or inverse proportion.

Similarity and Congruence in 2D and 3D shapes

for problems identifying the solutions to two different inequalities, show this as the intersection of the two solution sets, i.e. solution of $x^{2}-3 x-10<0$ as $\{x$: $3<x<5\}$;

- Solve linear inequalities in two variables graphically;
Show the solution set of severa inequalities in two variables on a graph; - Use iteration with simple converging sequences.

Quadratics

By the end of the unit, students should be able to:

- Sketch a graph of a quadratic function, by factorising or by using the formula, identifying roots, y-intercept and turning point by completing the square;
- Be able to identify from a graph if a quadratic equation has any real roots;
- Find approximate solutions to quadratic equations using a graph;
- Expand the product of more than two linear expressions;
- Sketch a graph of a quadratic function and a linear function, identifying intersection points;
- Sketch graphs of simple cubic functions, given as three linear expressions;
- Solve simultaneous equations
algebraically (where one is linear and one is quadratic)
- Solve simultaneous equations graphically:
- find approximate solutions to simultaneous equations formed from one linear function and one quadratic function using a graphical approach;
- find graphically the intersection points of a given straight line with a circle;
- Interpret the gradient of non-linear graph in curved distance-time and velocity-time graphs:
- for a non-linear distance-time graph, estimate the speed at one point in time, from the tangent, and the average speed over several seconds by finding the gradient of the chord;
- for a non-linear velocity-time graph, estimate the acceleration at one point in time, from the tangent, and the average acceleration over several seconds by finding the gradient of the chord;
- Interpret the gradient of a linear or non-linear graph in financial contexts;
- Interpret the area under a linear or non-linear graph in real-life contexts;
- Interpret the rate of change of graphs of containers filling and emptying;
- Interpret the rate of change of unit price in price graphs.

Vectors

By the end of the unit, students should be able to:

- Understand and use vector notation, including column notation, and understand and interpret vectors as displacement in the plane with an associated direction.
- Understand that $2 \mathbf{a}$ is parallel to a and twice its length, and that a is parallel to -a in the opposite direction.
- Represent vectors, combinations of vectors and scalar multiples in the plane pictorially.
- Calculate the sum of two vectors, the difference of two vectors and a scalar multiple of a vector using column vectors (including algebraic terms). able to:
- Understand and use SSS, SAS, ASA and RHS conditions to prove the congruence of triangles using formal arguments, and to verify standard ruler and pair of compasses constructions;
- Solve angle problems by first proving congruence;
- Understand similarity of triangles and of other plane shapes, and use this to make geometric inferences;
- Prove that two shapes are similar by showing that all corresponding angles are equal in size and/or lengths of sides are in the same ratio/one is an enlargement of the other, giving the scale factor;
- Use formal geometric proof for the similarity of two given triangles;
- Understand the effect of enlargement on angles, perimeter, area and volume of shapes and solids;
- Identify the scale factor of an enlargement of a similar shape as the ratio of the lengths of two corresponding sides, using integer or fraction scale factors;
- Write the lengths, areas and volumes of two shapes as ratios in their simplest form;
- Find missing lengths, areas and volumes in similar 3D solids;
- Know the relationships between linear, area and volume scale factors of mathematically similar shapes and solids;
- Use the relationship between enlargement and areas and volumes of simple shapes and solids;
- solve simultaneous equations representing a real-life situation graphically, and interpret the solution in the context of the problem;
- Solve quadratic inequalities in one variable, by factorising and sketching the graph to find critical values;

Formula

By the end of the unit, students should be able to:

- Rationalise the denominator involving surds;
- Simplify algebraic fractions;
- Multiply and divide algebraic fractions;
- Solve quadratic equations arising from algebraic fraction equations;
- Change the subject of a formula including cases where the subject occurs on both sides of the formula, or where a power of the subject appears;
- Change the subject of a formula such as $\frac{1}{f}=\frac{1}{u}+\frac{1}{v}$, where all variables are in the denominators;

Functions

- Solve 'Show that' and proof questions using consecutive integers ($n, n+1$), squares a^{2}, b^{2}, even numbers $2 n$, odd numbers $2 n+1$;
- Use function notation
- Find $f(x)+g(x)$ and $f(x)-g(x), 2 f(x)$, $f(3 x)$ etc algebraically;
- Find the inverse of a linear function;
- Know that $\mathrm{f}^{-1}(x)$ refers to the inverse function;
- For two functions $f(x)$ and $g(x)$, find $\mathrm{gf}(x)$.

Find the length of a vector using Pythagoras' Theorem.

- Calculate the resultant of two vectors.
- Solve geometric problems in 2 D where vectors are divided in a given ratio.
- Produce geometrical proofs to prove points are collinear and vectors/lines are parallel.

Circle Geometry

By the end of the sub-unit, students should be able to:

- Recall the definition of a circle and identify (name) and draw parts of a circle, including sector, tangent, chord, segment;
- Prove and use the facts that:
- the angle subtended by an arc at the centre of a circle is twice the angle subtended at any point on the circumference;
- the angle in a semicircle is a right angle;
- the perpendicular from the centre of a circle to a chord bisects the chord;
- angles in the same segment are equal;
- alternate segment theorem;
- opposite angles of a cyclic quadrilateral sum to 180°;
- Understand and use the fact that the tangent at any point on a circle is perpendicular to the radius at that point;
- Find and give reasons for missing angles on diagrams using:
- circle theorems;
- isosceles triangles (radius properties) in circles;
- the fact that the angle between a tangent and radius is 90°.
- Solve problems involving frustums of cones where you have to find missing lengths first using similar triangles.

Further Graphs and Trigonometry

By the end of the unit, students should be able to:

- Recognise, sketch and interpret graphs of the trigonometric functions (in degrees)
$y=\sin x, y=\cos x$ and $y=\tan x$ for angles of any size.
- Know the exact values of $\sin \theta$ and $\cos \theta$ for $\theta=0^{\circ}, 30^{\circ}, 45^{\circ}, 60^{\circ}$ and 90° and exact value of $\tan \theta$ for $\theta=0^{\circ}, 30^{\circ}, 45^{\circ}$ and 60° and find them from graphs.
- Apply to the graph of $y=f(x)$ the transformations $y=-f(x), y=f(-x)$ for sine, cosine and tan functions $\mathrm{f}(x)$.
- Apply to the graph of $y=f(x)$ the transformations $y=\mathrm{f}(x)+a, y=\mathrm{f}(x+$ a)
for sine, cosine and tan functions $\mathrm{f}(x)$.
- Know and apply Area $=\frac{1}{2} a b \sin C$ to calculate the area, sides or angles of any triangle.
- Know the sine and cosine rules, and use to solve 2D problems (including involving bearings).
- Use the sine and cosine rules to solve 3D problems.
- Understand the language of planes, and recognise the diagonals of a cuboid.
- Solve geometrical problems on coordinate axes.
- Understand, recall and use trigonometric relationships and Pythagoras' Theorem in right-angled triangles, and use these to solve problems in 3D configurations.
- the fact that tangents from an external point are equal in length.
- Select and apply construction techniques and understanding of loci to draw graphs based on circles and perpendiculars of lines;
- Find the equation of a tangent to a circle at a given point, by:
- finding the gradient of the radius that meets the circle at that point (circles all centre the origin);
- finding the gradient of the tangent perpendicular to it;
- using the given point;
- Recognise and construct the graph of a circle using $x^{2}+y^{2}=r^{2}$ for radius r centred at the origin of coordinates.
- Calculate the length of a diagonal of a cuboid.
Find the angle between a line and a plane.

