Subject: Computing								
	-							
<u>Year: 9</u>		1						
Topic 1 Topic 2		<u> Topic 3</u>	<u>Topic 4</u>	<u>Topic 5</u>				
Python <u>3D</u>		Data Science	Representations	<u>Cyber Security II</u>				
Programming II	<u>Animation</u>			7				
		 Define data 	 Define key 	 Critique online 				
 Create lists and 	• Add, delete,	science	terms such as	services in relation				
access individual	and move	 Explain how 	`pixels',	to data privacy				
list items	objects	visualising data	'resolution', and	 Explain the 				
 Locate and 	 Scale and 	can help identify	`colour depth'	difference between				
correct common	rotate	patterns and	 Describe how 	data and				
syntax errors	objects	trends in order	an image can	information				
 Use selection 	• Use a	to help us gain	be represented	 Explain the need 				
(**if-elif-else*	material to	insights	as a sequence	for the Data				
statements) to	add colour	• Use an	of bits	Protection Act				
control the flow	to objects	appropriate	 Describe how 	 Identify what 				
of program	• Add, move,	software tool to	digital images	happens to data				
execution	and delete	visualise data	are composed	entered online				
Write programs	keyframes	sets and look for	of individual	 Implement 				
that display	to make	patterns or	elements	strategies to				
messages,	basic	trends	 Recall that the 	minimise the risk of				
receive	animations	Evaluate	colour of each	data being				
keyboard input,	Create	findings to	picture element	compromised				
and use simple	useful	support	is represented	through human				
arithmetic	names for	arguments for	using a	error				
expressions in	objects	or against a	sequence of	Recognise how				
assignment	• Join	prediction	binary digits	human errors pose				
statements	multiple	Recognise	 Compute the 	security risks to				
Perform	objects	examples of	representation	data				
common	together	where large	size of a digital	duc				
operations on			image, by					

	lists or		using		data sets are		multiplying	•	Define hacking in	
	individual items		parenting		used in daily life		resolution		the context of	
•	Perform	•	Play,	•	Select criteria		(number of		cyber security	
	common		pause, and	b	and use data set		pixels) with	•	Explain how a	
	operations on		move		to investigate		colour depth		DDoS attack can	
	lists or		through th	e	predictions		(number of bits	4	impact users of	
	individual items		animation	•	Define the terms		used to		online services	
•	Perform		using the		'correlation' and		represent the	•	Explain the need	
	common		timeline		'outliers' in		colour of		for the Computer	
	operations on	•	Apply		relation to data		individual		Misuse Act	
	strings or		different		trends		pixels)	•	Identify strategies	
	individual		colours to		Identify the	•	Describe how		to reduce the	
	characters		different		steps of the		colour can be		chance of a brute	
•	Use iteration		parts of th	e	investigative		represented as	2	force attack being	
	(while		same		cycle		a mixture of		successful	
	statements) to		model	•	Solve a problem		red, green, and	•	Examine how	
	control the flow	•	Use edit		by implementing		blue, with a		different types of	
	of program		mode and		steps of the		sequence of		malware causes	
	execution		extrude		investigative		bits	T	problems for	
•	Perform	•	Use loop		cycle on a data	K	representing		computer systems	
	common		cut and		set		each colour's	•	List the common	
	operations on		face editin	g 🗣	Use findings to		intensity		malware threats	
	lists or strings		-Use		support a	•	Describe the	•	Question how	
•	Use iteration		proportion	al	recommendation		trade-off		malicious bots can	
	(for statements)		editing	•	Collate data		between		have an impact on	
	to iterate over	•	Use		from a data		representation		societal issues	
	list items		subdivisior	า	capture form		size and	•	Compare security	
•	Combine key	•	Use the	•	Identify the data		perceived		threats against	
	programming		knife tool	-	needed to		quality for		probability and the	
	language		Add and		answer a		digital images		potential impact to	
	features to		edit set		question defined	•	Describe and		organisations	
	develop		lighting	\mathcal{M}	by the learner	A	assess the	.(IUS	

solutions to	Compare	 Identify the 	creative	 Explain how
meaningful	different	steps of the	benefits and	networks can
problems	render	investigative	ethical	protected from
 Use iteration 	modes	cycle	drawbacks of	common secu
(for loops) to	• Set up the	 Apply data 	digital	threats
iterate over lists	camera	cleansing	manipulation [Identify the n
and strings	• Create a 3–	techniques to a	 Explain how the 	effective met
• Use variables to	10 second	data set	manipulation of	to prevent
keep track of	animation	Describe the	digital images	cyberattacks
counts and	Render out	need for data	amounts to	
sums	the	cleansing	arithmetic 🔍	
• Apply all of the	animation	 Visualise a data 	operations on	
skills covered in		set -Analyse	their digital	
this unit		visualisations to	representation	2
		identify	Perform basic	
		patterns,	image editing	1
		trends, and	tasks using	
		outliers	appropriate	
		• Draw	software and	Т
		conclusions and	combine them	
		report findings	in order to	
		• Visualise a data	solve more	
		set	complex	
			problems	
			requiring image	
			manipulation	
			 Define key 	
			terms such as	
			`sample',	
			`sampling	
	T .	I down A	frequency/rate',	dava
	1	UUUS AC	`sample size'	ALS

Ludus Admirandus

