Subject: Computing

<u>Year: 9</u>				
Topic 1	Topic 2	Topic 3	Topic 4	Topic 5
<u>Python</u>	<u>3D</u>	Data Science	Representations	Cyber Security II
Programming II	Animation	(da - 2		
		 Define data 	 Define key 	 Critique online
 Use slicing and 	 Add, delet 	e, science	terms such as	services in relation
concatenation to	and move	 Explain how 	'pixels',	to data privacy
manipulate	objects	visualising data	'resolution', and	Explain the
strings.	 Scale and 	can help identify	'colour depth'	difference between
Identify the	rotate	patterns and	 Describe how 	data and
output of a	objects	trends in order	an image can	information
program where	• Use a	to help us gain	be represented	 Explain the need
string	material to	insights	as a sequence	for the Data
manipulation	add colour	Use an	of bits	Protection Act
has been used.	to objects	appropriate	 Describe how 	 Identify what
Use string	• Add, move		digital images	happens to data
manipulation to	and delete		are composed	entered online
generate a	keyframes	sets and look for	of individual	 Implement
username for a	to make	patterns or	elements	strategies to
registration	basic	trends	Recall that the	minimise the risk of
system.	animation		colour of each	data being
Know how to	• Create	findings to	picture element	compromised
write a basic	useful	support	is represented	through human
WHILE loop.	names for	arguments for	using a	error
Know how to	objects	or against a	sequence of	 Recognise how
use logical	• Join	prediction	binary digits	human errors pose
operators such	multiple	• Recognise	• Compute the	security risks to
as AND/OR in	objects	examples of	representation	data
programming.	together	where large	size of a digital	

- Add a login system to your programming project (Quiz)
- Understand the purpose of a subprogram in programming.
- Write a subprogram to draw a square.
- Create a subprogram for the quiz in your programming project.
- Create a 10question multiple-choice quiz in Python.
- Include a
 working login
 system before a
 user can
 attempt the
 quiz.
- Use the subprogram created to use the quiz again.

- using parenting
- Play, pause, and move through the animation using the timeline
- Apply different colours to different parts of the same model
- Use edit mode and extrude
- Use loop cut and face editing -Use proportional editing
- Use subdivision
- Use the knife tool -Add and edit set lighting

- data sets are used in daily life
- Select criteria and use data set to investigate predictions
- Define the terms 'correlation' and 'outliers' in relation to data trends
- Identify the steps of the investigative cycle
- Solve a problem by implementing steps of the investigative cycle on a data set
- Use findings to support a intensity
 recommendation
 each colour's intensity
 Describe the
- Collate data from a data capture form
- Identify the data needed to answer a question defined by the learner

- image, by
 multiplying
 resolution
 (number of
 pixels) with
 colour depth
 (number of bits
 used to
 represent the
 colour of
 individual
 pixels)
- Describe how colour can be represented as a mixture of red, green, and blue, with a sequence of bits representing each colour's intensity
- Describe the trade-off between representation size and perceived quality for digital images

- Define hacking in the context of cyber security
- Explain how a DDoS attack can impact users of online services
- Explain the need for the Computer Misuse Act
- Identify strategies to reduce the chance of a brute force attack being successful
- Examine how different types of malware causes problems for computer systems
- List the common malware threats
- Question how malicious bots can have an impact on societal issues
- Compare security threats against probability and the potential impact to organisations

Compare	Identify the Describe and Explain how
different	steps of the assess the networks can be
render	investigative creative protected from
modes	cycle benefits and common security
Set up the	Apply data
camera	cleansing drawbacks of • Identify the most
• Create a 3-	techniques to a digital effective methods
10 second	data set manipulation [to prevent
animation	Describe the Explain how the cyberattacks
Render out	need for data manipulation of
the	cleansing digital images
animation	Visualise a data
	set -Analyse arithmetic
	visualisations to operations on
	identify their digital
	patterns, representation
	trends, and • Perform basic outliers image editing
	Draw tasks using
	conclusions and appropriate
	report findings software and
	Visualise a data
	set in order to
	solve more
	complex
	problems
	requiring image
	manipulation
	Define key
	terms such as
	`sample',
	\(\frac{1}{3}\)\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

	frequency/rate',
	'sample size'
	Describe how
	sounds are
	represented as
	sequences of
	bits
	Explain the
	function of
	microphones
	and speakers as
4 1	
	components
	that capture
	and generate
	sound
	Recall that
	sound is a wave
	Calculate
	representation
	size for a given
	digital sound,
	given its
	attributes
	• Explain how
	attributes such
	as sampling
	frequency and
	sample size
	affect
	characteristics
$T = J = \Lambda$	such as
IMANSA	representation

size and
perceived
quality, and the
trade-offs
involved
Perform basic
sound editing
tasks using
appropriate
software and
combine them
in order to
solve more
complex
problems
requiring sound
manipulation -
Define
'compression',
and describe
why it is
necessary
Recall that
bitmap images
and pulse code
sound are not
the only binary
representations
of images and
sound available

Ludus Admirandus