
18

QuickStart Computing

Programming

What is
programming?

Programming is the process of designing and writing
a set of instructions (a program) for a computer in a
language it can understand.

This can be really simple, such as the program to
make a robot toy trace out a square; or it can be
incredibly sophisticated, such as the software used
to forecast the weather or to generate a set of
ranked search results.

Programming is a two-step process.

•• First, you need to analyse the problem or system
and design a solution. This process will use
logical reasoning, decomposition, abstraction
and generalisation (see pages 6–17) to design
algorithms to solve the problem or model the
system.

•• Secondly, you need to express these ideas in a
particular programming language on a computer.
This is called coding, and we can refer to the
set of instructions that make up the program as
‘code’.

Programming provides the motivation for learning
computer science – there’s a great sense of
achievement when a computer does just what you
ask it, because you’ve written the precise set of
instructions necessary to make something happen.
Programming also provides the opportunity to test
out ideas and get immediate feedback on whether
something works or not.

It’s possible to teach computational thinking
without coding and vice versa, but the two seem to
work best hand-in-hand.

Teaching computational thinking without giving
pupils the opportunity to try out their ideas as
code on a computer is like teaching science without
doing any experiments. Similarly, teaching coding
without helping pupils to understand the underlying
processes of computational thinking is like doing
experiments in science without any attempt to teach
pupils the principles which underpin them.

This is reflected in the new computing curriculum,
which states that pupils should not only know
the principles of information and computation,
but should also be able to put this knowledge to
use through programming. One of the aims of the
national curriculum for computing is that pupils can
analyse problems in computational terms, and have
repeated practical experience of writing computer
programs in order to solve problems.

In key stage 1, pupils should be taught how simple
algorithms are implemented as programs on digital
devices. The phrase ‘digital devices’ encompasses
tablets, laptop computers,
programmable toys, and perhaps
also distant web servers. It can be
useful for pupils to be able to see
their algorithms, in whatever way
they’ve recorded these, and their
code side by side.

What should programming
be like in schools?

Children can use simple arrow
cards to record algorithms for
programmable toys.

Introduction to
programming

19

Programming

Pupils also should have the opportunity to create
and debug (see pages 28–29) their own programs, as
well as predicting what a program will do.

In key stage 2, pupils should be taught to design and
write programs that accomplish specific goals, which
should include controlling or simulating physical
systems, for example making and programming a
Lego robot. They should be taught to use sequence,
selection and repetition in their programs (see
pages 24–27), as well as variables to store data.
They should also learn to use logical reasoning to
detect and fix the errors in their programs.

 Classroom activity ideas

•• There are simple activities on the Barefoot
Computing website; see Further Resources below.

•• Here are some ideas for extended programming
projects:
»» Year 2: solve a maze using a floor/screen turtle
»» Year 3: create a simple animation
»» Year 4: create a question and answer maths game
»» Year 5: create more complex computer games
»» Year 6: develop a simple app for a tablet or

smartphone.

 Further resources

•• Barefoot on ‘Programming’, available at:
http://barefootcas.org.uk/barefoot-primary-
computing-resources/concepts/programming/
(free, but registration required).

•• BBC Bitesize: Controlling physical systems,
available at: www.bbc.co.uk/guides/zxjsfg8.

•• BBC Cracking the Code, for examples of source
code for complex software systems such as robot
footballers and a racing car simulator, available
at: www.bbc.co.uk/programmes/p01661pj.

•• CAS Chair, Prof Simon Peyton Jones’ explanation
of some of the computer science that forms
the basis for the computing curriculum:
http://community.computingatschool.org.uk/
resources/2936.

•• Code.org for activities and resources, available at:
http://code.org/educate.

•• Rushkoff, D., Program or be Programmed: Ten
Commands for a Digital Age (OR Books, 2010).

How do you program
a computer?
Programming a computer involves writing code.
The code is the set of instructions for the computer
written in a programming language that the
computer understands. In fact, the programming
languages we use are a halfway house – they’re
written in a language we can understand which then
gets translated by the computer into the ‘machine
code’ of instructions that can be run directly on the
silicon chips which control it.

Programs comprise precise, unambiguous instructions
– there’s no room for interpretation or debate about
the meaning of a particular line of computer code.
We can only write code using the clearly defined
vocabulary and grammar of the programming
language, but typically these are words taken from
English, so code is something that people can write
and understand, but the computer can also follow.

There are many languages to choose from. The
majority are more complex than necessary for those
just getting to grips with the ideas of programming,
but there are plenty of simple, well supported
languages that can be used very effectively in the
primary classroom. Try to pick a language that you’ll
find easy to learn, or better still, know already.

Consider these points when choosing a programming
language:

•• Not all languages run on all computer systems.
•• Choose a language that is suitable for your pupils.
There are computer languages that are readily
accessible to primary pupils – in most cases this
will mean one that has been written with pupils in
mind, or at least adapted to make it easier to learn.

•• Choose a language supported by a good range of
learning resources. It’s better still if it has online
support communities available, both for those
who are teaching the language and those who are
learning it.

•• It is beneficial to the pupils if they can continue
working in the language on their home computer,
or, even better, if they can easily continue work
on the same project via the internet.

What programming
languages should you use?

http://barefootcas.org.uk/barefoot-primary-computing-resources/concepts/programming/
http://barefootcas.org.uk/barefoot-primary-computing-resources/concepts/programming/
www.bbc.co.uk/guides/zxjsfg8
www.bbc.co.uk/programmes/p01661pj
http://community.computingatschool.org.uk/resources/2936
http://community.computingatschool.org.uk/resources/2936
http://code.org/educate

20

QuickStart Computing

There’s a view that some languages are better at
developing good programming ‘habits’ than others.
Good teaching, in which computational thinking is
emphasised alongside coding, should help to prevent
pupils developing bad coding habits at this stage.

The table below illustrates a progressive approach to
programming languages in a primary setting.

Whilst there’s much to be said for letting pupils
explore several programming languages, it’s
important that they develop a degree of fluency in
one, fairly general-purpose language, so that this
becomes a medium in which they can solve problems,
get useful things done and work creatively.

 Further resources

⚫⚫ Iry’s ‘brief, incomplete and mostly wrong history
of programming languages’: http://james-iry.blog-
spot.mx/2009/05/brief-incomplete-and-mostly-
wrong.html.

•• Utting, I., Cooper, S., Kolling, M., Maloney, J. and
Resnick, M., (2010) ‘Alice, Greenfoot, and Scratch
– A Discussion’, available at: http://kar.kent.
ac.uk/30617/2/2010-11-TOCE-discussion.pdf.

⚫⚫ Wikipedia list of ‘Hello, world!’ in many
programming languages, available at:
http://en.wikipedia.org/wiki/List_of_Hello_
world_program_examples.

How do you program
a floor turtle?
Programming in Early Years and key stage 1 is
much more likely to involve working with simple
programmable toys than using computers.
It’s much easier for pupils to learn the idea of
programming when working with a really simple
language and interface, and for them to plan and
check their programs when they can, quite literally,
put themselves in the place of the device they’re
programming.

A programmable floor turtle, such as the Bee-
Bot or Roamer-Too, is ideal for this. The Bee-Bot
programming language consists of five commands:
forward, back, turn left, turn right and pause.
Programming a Bee-Bot is simply a process of
pressing buttons in the desired order to build a
sequence of commands, with new commands being
added to the end of the sequence.

This simple device can be used as a basis for many
engaging activities, both for early programming and
across the curriculum. Younger pupils will often work
with the Bee-Bot one instruction at a time, whilst
older children will become adept at creating longer
sequences of instructions.

A number of tablet or smartphone apps and web-
based tools are based on the idea of device-specific
languages like these. These are often in the form
of a game with a sequence of progressively harder
levels in which players create ever more complex
sequences of instructions to solve challenges. For
example: Bee-Bot, LightbotTM, A.L.E.X and Cargo-Bot.

One approach for scaffolding the transition from
floor turtle programming to programming on screen
is to use an on-screen simulation of a Bee-Bot: it’s
relatively easy to make (or adapt) one yourself in
Scratch 2.0.

Which language is right
for which key stage?

Key stage Language type Language See

Early
Years/KS1 Device-specific

Bee-Bot Page 20

Roamer-Too Page 20

KS1 Limited
instruction

ScratchJr Page 22

LightbotTM Pages 20–21

KS2

Game
programming Kodu Pages 21, 22,

25 and 28

Block-based Scratch Pages 21–22,
24–28

Text-based
Logo Pages 22,

26–27, 29

TouchDevelop Page 23

Moves the
Bee-Bot forward
through its own
body length

Turns the
Bee-Bot 90°
anti-clockwise

Moves the Bee-
Bot backwards
through its own
body length

Turns the Bee-Bot
90° clockwiseAllows stored

program to run

Clears the Bee-
Bot memory

http://james-iry.blogspot.mx/2009/05/brief-incomplete-and-mostly-wrong.html
http://james-iry.blogspot.mx/2009/05/brief-incomplete-and-mostly-wrong.html
http://james-iry.blogspot.mx/2009/05/brief-incomplete-and-mostly-wrong.html
http://kar.kent.ac.uk/30617/2/2010-11-TOCE-discussion.pdf
http://kar.kent.ac.uk/30617/2/2010-11-TOCE-discussion.pdf
http://en.wikipedia.org/wiki/List_of_Hello_world_program_examples
http://en.wikipedia.org/wiki/List_of_Hello_world_program_examples

21

Programming

 Classroom activity ideas

•• Allow very young pupils to play with a floor
turtle, tinkering with it so they can develop their
own sense of the relationship between pressing
buttons and running their program.

•• Encourage pupils to plan a sequence of instructions
for a particular objective, such as getting the floor
turtle from one ‘flower’ to another. Ask pupils
to predict what will happen when they run their
program, and to explain their thinking (logical
reasoning).

•• For more complex challenges, provide pupils with
the code for a floor turtle’s route from one place
to another, including an error in the code. Ask the
pupils to work out where the bug is in the code and
then fix this, before testing out their code on the
floor turtle.

 Further resources

•• BBC on how to program a robot, available at:
www.bbc.co.uk/learningzone/clips/programming-
robots/4391.html.

•• Bee-Bots are available from TTS. Other
programmable toys include Roamer-Too (by
Valiant) and Pro-Bot (by TTS).

•• Barefoot on ‘KS1 Bee-Bots, 1, 2, 3 Programming
Activity’, available at: http://barefootcas.org.
uk/barefoot-primary-computing-resources/
concepts/programming/ks1-bee-bots-12-3-
programming-activity/ (free, but registration
required).

•• Bee-Bot and Roamer-Too simulator activities,
available at: http://scratch.mit.edu/
projects/19799927/.

•• LightbotTM, available at: http://lightbot.com/.

How do you program
things to move
around the screen?
There are a number of graphical programming
toolkits available: these make learning to code easier
than ever. In most of these, programs are developed
by dragging or selecting blocks or icons which
represent particular instructions in the programming
language. These can normally only fit together in

ways that make sense, and the amount of typing, and
thus the potential for spelling or punctuation errors,
is kept to an absolute minimum.

With toolkits like these it’s easy to experiment
with creating code. By letting the programmer
focus on the ideas of their algorithm rather than
the particular vocabulary and grammar of the
programming language, learning to program
becomes easier and often needs less teacher input.

Kodu
Microsoft’s Kodu is a rich, graphical toolkit for
developing simple, interactive 3D games.

Each object in the Kodu game world can have its own
program. These programs are ‘event driven’: they are
made up of sets of ‘when [this happens], do [that]’
conditions, so that particular actions are triggered
when certain things happen, such as a key being
pressed, one object hitting another, or the score
reaching a certain level.

Kodu interface.

Programmers can share their games with others in
the Kodu community, which facilitates informal and
independent learning. There’s also plenty of scope
for pupils to download and modify games developed
by others, which many find quite an effective way to
learn the craft of programming. This can also offer
pupils a sense of creating games with an audience
and purpose in mind.

Scratch
In MIT’s Scratch, the programmer can create
their own graphical objects, including the stage
background on which the action of a Scratch
program happens, and a number of moving objects,
or sprites, such as the characters in an animation or
game.

www.bbc.co.uk/learningzone/clips/programming-robots/4391.html
www.bbc.co.uk/learningzone/clips/programming-robots/4391.html
http://barefootcas.org.uk/barefoot-primary-computing-resources/concepts/programming/ks1-bee-bots-12-3-programming-activity/
http://barefootcas.org.uk/barefoot-primary-computing-resources/concepts/programming/ks1-bee-bots-12-3-programming-activity/
http://barefootcas.org.uk/barefoot-primary-computing-resources/concepts/programming/ks1-bee-bots-12-3-programming-activity/
http://barefootcas.org.uk/barefoot-primary-computing-resources/concepts/programming/ks1-bee-bots-12-3-programming-activity/
http://scratch.mit.edu/projects/19799927/
http://scratch.mit.edu/projects/19799927/
http://lightbot.com/

22

QuickStart Computing

Screenshot of a Scratch program.

Each object can have one or more scripts, built up
using the building blocks of the Scratch language. To
program an object in Scratch, you drag the colour-
coded block you want from the different palettes
of blocks and snap this into place with other blocks
to form a script. Scripts can run in parallel with one
another or be triggered by particular events, as in
Kodu.

A number of other projects use Scratch as a starting
point for their own platforms, for example ScratchJr
is an iPad app designed for young programmers
(key stage 1) and Berkeley’s Snap! allows even more
complex programming ideas (such as functions) to
be explored through the same sort of building block
interface.

There’s a great online community for Scratch
developers to download and share projects globally,
making it easier for pupils to pursue programming in
Scratch far beyond what’s needed for the national
curriculum. There’s also a supportive educator
community, which has developed and shared high
quality curriculum materials.

Scratch is available as a free web-based editor or as
a standalone desktop application. Files can be moved
between online and offline versions.

 Classroom activity ideas

•• Pupils could develop a game in Kodu, taking
inspiration from some of the games on the Kodu
community site. As a starting point, tell them to
create a game in which Kodu (the player’s avatar
in the game) is guided around the landscape
bumping into (or shooting) enemies.

•• Ask your pupils to create a simple scripted
animation in Scratch, perhaps with a couple of
programmed characters who take turns to act out
a story. Designing the algorithm for a program like
this is very similar to storyboarding in video work.

 Further resources

•• Armoni, M. and Ben-Ari, M., ‘Computer science
concepts in Scratch’, available at: http://stwww.
weizmann.ac.il/g-cs/scratch/scratch_en.html.

•• Berry, M., ‘Scratch across the curriculum’,
available at: http://milesberry.net/2012/06/
scratch-across-the-curriculum/.

•• Creative Computing, ‘An Introductory Computing
Curriculum Using Scratch’, available at: http://
scratched.gse.harvard.edu/guide/.

•• Kelly, J., Kodu for Kids (Que Publishing, 2013).
•• Kinect2Scratch, to program Microsoft Kinect with
Scratch, available at: http://scratch.saorog.com/.

•• Kodu Game Lab Community, available at:
www.kodugamelab.com/.

•• Other graphical programming environments for
education include Espresso Coding, 2Code from
2Simple and J2Code.

•• Scratch, available at http://scratch.mit.edu/.
•• ScratchEd online community for educators,
available at: http://scratch.mit.edu/educators/.

•• ScratchJr: www.scratchjr.org/.
•• Snap!, available at: http://snap.berkeley.edu/.

What is real
programming?
Most software development in academia and industry
takes place using text-based languages, where
programs are constructed by typing the commands
from the programming language at a keyboard.

Historically, text-based programming has been a
real barrier for children when learning to code, and
there’s no need to rush into text-based programming
as part of the primary curriculum. It is, however,
worth considering text-based programming for
an extra-curricular programming club or even in
class, if you or your colleagues feel confident with
this. Possible text-based programming languages
for primary schools could include Logo and
TouchDevelop.

http://stwww.weizmann.ac.il/g-cs/scratch/scratch_en.html
http://stwww.weizmann.ac.il/g-cs/scratch/scratch_en.html
http://milesberry.net/2012/06/scratch-across-the-curriculum/
http://milesberry.net/2012/06/scratch-across-the-curriculum/
http://scratched.gse.harvard.edu/guide/
http://scratched.gse.harvard.edu/guide/
http://scratch.saorog.com/
www.kodugamelab.com/
http://scratch.mit.edu/
http://scratch.mit.edu/educators/
www.scratchjr.org/
http://snap.berkeley.edu/

23

Programming

Logo
Logo was developed by Seymour Papert and others
at MIT as an introductory programming language
for children. It’s probably best known for its use of
‘turtle graphics’ – an approach to creating images
in which a ‘turtle’ (either a robot or a representation
on screen) is given instructions for drawing a shape,
such as:

REPEAT 4 [
	 FORWARD 100
	 RIGHT 90]

Papert saw Logo as a tool for children to think
with, just as programming is both the means to and
motivation for computational thinking.

In Logo programming, more complex programs are
built up by ‘teaching’ the computer new words.
These are called procedures. For example: defining
a procedure to draw a square of a certain size
using the key words of the language. Once you have
defined the procedure ‘square’, typing it in will then
result in the turtle drawing a square. For example:

TO SQUARE :SIDE
	 REPEAT 4 [
		 FORWARD :SIDE
		 RIGHT 90]
	 END
SQUARE 50

TouchDevelop
Typing code on a tablet computer or a smartphone
is not easy, and this can be problematic for schools
that use these devices extensively.

Developed by Microsoft Research, TouchDevelop is
a programming language and environment, which
takes into account both the challenges posed and
the opportunities offered by touch-based interfaces
such as those on tablets and smartphones.

TouchDevelop makes it quite easy to develop an app
for a smartphone or tablet on the smartphone or
tablet itself.

Although TouchDevelop is a text-based language,
programmes aren’t typed but are created by
choosing commands from the options displayed
in a menu system. In this way, TouchDevelop is a
halfway house between graphical and text-based
programming.

As with Logo, turtle graphics commands are available
as standard. On many platforms TouchDevelop can
also access some of the additional hardware built into
the device, such as the accelerometer or GPS location,
allowing more complex apps to be developed: these can
be hosted online as web-based apps or installed directly
on the device if it’s a Windows phone.

Program to draw a square using a turtle.

A particularly nice feature of TouchDevelop is
the use of interactive tutorials to scaffold pupils’
learning of the language.

 Classroom activity ideas

•• Revisit the turtle graphics activities you might
have been using for programming in the past.

•• Explore how different programming languages
can be used to simulate dice being rolled. First,
ask pupils to think about how they would do that
in Scratch. Then, challenge your pupils to create
an app in TouchDevelop which simulates rolling
a dice when the phone or tablet is shaken, or
when the screen is tapped. Ask pupils to think
about how deterministic computers can simulate
random events such as these.

 Further resources

•• Archived lesson plan from DfES for creating crystal
flowers: http://webarchive.nationalarchives.gov.
uk/20090608182316/http://standards.dfes.gov.uk/
pdf/primaryschemes/itx4e.pdf.

•• Horspool, N. and Ball, T., TouchDevelop:
Programming on the Go (APress, 2013), available
at: www.touchdevelop.com/docs/book.

•• Logo, available at: www.calormen.com/jslogo/ and
elsewhere.

•• Papert, S., Mindstorms: Children, Computers, and
Powerful Ideas (Basic Books Inc., 1980), available
at: http://dl.acm.org/citation.cfm?id=1095592.

•• TouchDevelop interactive tutorials for Hour of
CodeTM: www.touchdevelop.com/hourofcode2.

•• TouchDevelop from Microsoft Research: www.
touchdevelop.com/.

http://webarchive.nationalarchives.gov.uk/20090608182316/http://standards.dfes.gov.uk/pdf/primaryschemes/itx4e.pdf
http://webarchive.nationalarchives.gov.uk/20090608182316/http://standards.dfes.gov.uk/pdf/primaryschemes/itx4e.pdf
http://webarchive.nationalarchives.gov.uk/20090608182316/http://standards.dfes.gov.uk/pdf/primaryschemes/itx4e.pdf
www.touchdevelop.com/docs/book
www.calormen.com/jslogo/
http://dl.acm.org/citation.cfm?id=1095592
www.touchdevelop.com/hourofcode2
www.touchdevelop.com/
www.touchdevelop.com/

24

QuickStart Computing

What’s inside
a program?
Whilst the detail will vary from one language to
another, there are some common structures and
ideas which programmers use over and over again
from one language to another and from one problem
to another:

•• Sequence: running instructions in order (see
below and page 25)

•• Selection: running one set of instructions or another,
depending on what happens (see pages 25–26)

•• Repetition: running some instructions several
times (see pages 26–27)

•• Variables: a way of storing and retrieving data
from the computer’s memory (see pages 27–28).

These are so useful that it’s important to make sure
all pupils learn these.

This Scratch script shows sequence, selection,
repetition and variables. Can you work out which bit
is which
before
we look
at these
ideas in
detail?

 Further resources

•• BBC Bitesize programming tutorial ‘How do we
get computers to do what we want?’ (covering
sequence, selection and repetition), available at:
www.bbc.co.uk/guides/z23q7ty.

•• Cracking the Code clip, available at: www.bbc.
co.uk/programmes/p016j4g5.

•• Scratch multiplication test, available at: http://
scratch.mit.edu/projects/26116842/#editor.

Sequence
Programs are built up of sequences of instructions.
When pupils start programming with floor turtles,
their programs consist entirely of sequences of
instructions, built up as the stored sequence of

button presses for what the floor turtle should do.
As with any program, these instructions are precise
and unambiguous, and the floor turtle will simply take
each instruction (the stored button presses) and turn
that into signals for the motors driving its wheels.

Initially, pupils might type in just one instruction at
a time, clearing the memory after each, but as they
become more experienced as programmers, or want
to solve a problem more quickly, sequences become
more complex.

Forward
Forward
Forward
Turn left
Forward
Forward

Pupils’ first Scratch programs are also likely to
be made up of simple sequences of instructions.
Again, these need to be precise and unambiguous,
and of course
the order of the
instructions
matters. In
developing their
algorithms, pupils
will have had to
work out exactly
what order to put
the steps in to
complete a task.

A program that children
might create in Scratch.

 Classroom activity ideas

•• Give pupils progressively more complex problems
to solve with a floor turtle, asking them first
to plan their algorithm for solving these before
creating single programs on the floor turtle.

•• Provide pupils with existing projects from Scratch
(see Further resources on page 26). Allowing them
to remix these projects by changing the code and
seeing how this affects the program is a useful
learning experience.

•• Ask pupils to design, plan and code scripted
animations in Scratch, perhaps using a timeline
or storyboard to work out their algorithm before
converting this into instructions for sprites in
Scratch.

www.bbc.co.uk/guides/z23q7ty
www.bbc.co.uk/programmes/p016j4g5
www.bbc.co.uk/programmes/p016j4g5
http://scratch.mit.edu/projects/26116842/#editor
http://scratch.mit.edu/projects/26116842/#editor

25

Programming

 Further resources

•• Animation 14: UK Schools Computer Animation
Competition (key stage 2), available at:
http://animation14.cs.manchester.ac.uk/gallery/
winners/KS2/.

•• Barefoot on ‘Sequence’, available at: http://
barefootcas.org.uk/barefoot-primary-computing-
resources/concepts/programming/sequence/
(free, but registration required).

•• Cracking the Code clip on programming a robotic
toy car: www.bbc.co.uk/programmes/p01661yg.

•• Viking invasion animation in Scratch from
Barefoot Computing (for upper KS2), available at:
http://barefootcas.org.uk/programme-of-study/
use-sequence-in-programs/upper-ks2-viking-
raid-animation-activity/ (free, but registration
required).

Selection
Selection is the programming structure through
which a computer executes one or other set of
instructions according to whether a particular
condition is met or not. This ability to do different
things depending on what happens in the computer
as the program is run or out in the real world lies
at the heart of what makes programming such a
powerful tool.

Selection is an important part of creating a game in
Kodu. An object’s behaviour in a game is determined
by a set of conditions, for example: WHEN the
left arrow is pressed, the object will move left.
Similarly, interaction with other objects, variables
and environments in Kodu are programmed as a set
of WHEN … DO … conditions. For example, WHEN I
bump the apple DO eat it AND add 2 points to score.

In Scratch (and other programming languages) you
can build selection into a sequence of instructions,
allowing the computer to run different instructions
depending on whether a condition is met.

Examples of how selection can be used to start a script in Scratch.

At the core of many educational games is a simple
selection command: if the answer is right then give
a reward, else say the answer is wrong. See the
Scratch script for the times tables game on page 24.

It’s also worth noting that selection statements
can be nested inside one another. This allows more
complex sets of conditions to be used to determine
what happens in a program. Look at the way some
if blocks are inside others in the following script
to model a clock in Scratch. The script also uses
repetition and three variables for the seconds,
minutes and hours of the time:

 Classroom activity ideas

•• Encourage pupils to explore the different
conditions which the character in Kodu can
respond to in its event-driven programming. Get
pupils to think creatively about how they might
use these when developing a game of their own.
Give them time to design their game, thinking
carefully about the algorithm, i.e. the rules,
they’re using.

http://animation14.cs.manchester.ac.uk/gallery/winners/KS2/
http://animation14.cs.manchester.ac.uk/gallery/winners/KS2/
http://barefootcas.org.uk/barefoot-primary-computing-resources/concepts/programming/sequence/
http://barefootcas.org.uk/barefoot-primary-computing-resources/concepts/programming/sequence/
http://www.bbc.co.uk/programmes/p01661yg
http://barefootcas.org.uk/programme-of-study/use-sequence-in-programs/upper-ks2-viking-raid-animation-activity/
http://barefootcas.org.uk/programme-of-study/use-sequence-in-programs/upper-ks2-viking-raid-animation-activity/
http://barefootcas.org.uk/programme-of-study/use-sequence-in-programs/upper-ks2-viking-raid-animation-activity/

26

QuickStart Computing

•• Ask pupils to design simple question and answer
games in Scratch. Encourage them to first think
about the overall algorithm for their game before
coding this and then working to develop the user
interface, making this more engaging than just a
cat asking lots of questions. It’s helpful if pupils
have a target audience in mind for software
like this.

 Further resources

•• Barefoot Computing on ‘Selection’, available at:
http://barefootcas.org.uk/programme-of-study/
use-selection-programs/selection/ (free, but
registration required).

•• Papert, S., ‘Does Easy Do It? Children, Games, and
Learning’, available at: www.papert.org/articles/
Doeseasydoit.html.

Scratch projects to remix
•• Analogue clock by mgberry on Scratch, available at:
http://scratch.mit.edu/projects/28742256/#editor.

•• Addition race by mgberry on Scratch, available at:
http://scratch.mit.edu/projects/15905989/#editor.

Repetition
Repetition in programming means to repeat the
execution of certain instructions. This can make a
long sequence of instructions much shorter, and
typically easier to understand.

Using repetition in programming usually involves
spotting that some of the instructions you want the
computer to follow are the same, or very similar,
and therefore draws on the computational thinking
process of pattern recognition/generalisation (see
pages 15–16). You’ll sometimes hear the repeating
block of code referred to as a loop, i.e. the computer
keeps looping through the commands one at a time
as they’re executed (carried out).

Think about the Bee-Bot program for a square
(forward, left, forward, left,
forward, left, forward, left). Notice how
for each side we move forward and then turn left. On
a Roamer-Too or a Pro-Bot, you could use the repeat
command to simplify the coding for this by using the
built in repeat command, replacing this code with,
for example, repeat 4 [forward, left].

The same would apply in Logo, from which the
Roamer-Too and Pro-Bot programming device-
specific languages are derived.

Compare:

FORWARD 100
LEFT 120
FORWARD 100
LEFT 120
FORWARD 100
LEFT 120

with:

REPEAT 3 [
 FORWARD 100
 LEFT 120]

Both programs draw equilateral triangles. Using
repetition reduces the amount of typing and makes
the program reflect the underlying algorithm more
clearly.

In the examples above, the repeated code is run
a fixed number of times, which is the best way to
introduce the idea. You can also repeat code forever.
This can be useful in real world systems, such as
a control program for a digital thermostat, which
would continually check the temperature of a room,
sending a signal to turn the heating on when this
dropped below a certain value. This is a common
technique in game programming. For example,
the following Scratch code would make a sprite
continually chase another around the screen:

Repetition can be combined with selection, so that
a repeating block of code is run as many times as
necessary until a certain condition is met, as in this
fragment in Scratch:

You can nest one repeating block inside another. The
‘crystal flower’ programs in Logo use this idea. For
example:

REPEAT 6 [
 	 REPEAT 5 [
 		 FORWARD 100
 		 LEFT 72]
 	 LEFT 60]

http://barefootcas.org.uk/programme-of-study/use-selection-programs/selection/
http://barefootcas.org.uk/programme-of-study/use-selection-programs/selection/
www.papert.org/articles/Doeseasydoit.html
www.papert.org/articles/Doeseasydoit.html
http://scratch.mit.edu/projects/28742256/
http://scratch.mit.edu/projects/15905989/#editor

27

Programming

draws:

 Classroom activity ideas

•• Ask pupils to use simple repetition commands to
produce a ‘fish tank’ animation in Scratch, with
a number of different sprites each running their
own set of repeating motion instructions. This
can be made more complex by including some
selection commands to change the behaviour of
sprites as they touch one another.

•• Encourage pupils to experiment with ‘crystal
flower’ programs in Scratch, Logo or other
languages that support turtle graphics, and
investigate the effect of changing the number of
times a loop repeats as well as the parameters
for the commands inside the loop. There are
some great opportunities to link computing with
spiritual, social and cultural education.

 Further resources

•• Barefoot Computing on ‘Repetition’, available at:
http://barefootcas.org.uk/programme-of-study/
use-repetition-programs/repetition (free, but
registration required).

•• Digital Schoolhouse dance scripts, available at:
www.resources.digitalschoolhouse.org.uk/key-
stage-2-ages-7-10/218-scratch-teaching-dance.

•• Scratch 2.0 Fishtank Game tutorial, available at:
www.youtube.com/watch?v=-qTZ5bFEdC8.

Variables
Unlike the programming structures of sequence,
selection and repetition, a variable is an example of
a data structure. It is a simple way of storing one
piece of information somewhere in the computer’s
memory whilst the program is running, and getting
that information back later. There’s a degree of
abstraction involved – the actual detail of how
the programming language, operating system and
hardware manages storing and retrieving data
from the memory chips inside the computer isn’t
important to us as programmers, just as these
details aren’t important when we’re using the
clipboard for copying and pasting text. One way of
thinking of variables is as labelled shoeboxes, with

the difference that the contents don’t get removed
when they’re used.

The concept of a variable is one that many pupils
struggle with and it’s worth showing them lots
of examples to ensure they grasp this. A classic
example which pupils are likely to be familiar with,
particularly from computer games, is that of score.

You can use variables to store data input by the
person using your program and then refer to this
data later on.

Here, name is a variable, in which we store whatever
the user types in, and then use it a couple of times in
Scratch’s response; answer is a special temporary
variable used by Scratch to store for the time being
whatever the user types in. Notice that variables
can store text as well as numbers. Other types of
data can be stored in variables too, depending on the
particular programming language you’re working in.

Variables can also be created by the program,
perhaps to store a constant value so that we can
refer to it by name (Pi below), or the result of a
computation (Circumference in the code below),
or random numbers generated by the computer (for
example Radius below):

The idea that the contents of the ‘box’ are still there
after the variable is used is sometimes a confusing
one for those learning to program. Have a look at the
following code and decide what will be displayed on
the screen:

http://barefootcas.org.uk/programme-of-study/use-repetition-programs/repetition
http://barefootcas.org.uk/programme-of-study/use-repetition-programs/repetition
http://www.resources.digitalschoolhouse.org.uk/key-stage-2-ages-7-10/218-scratch-teaching-dance
http://www.resources.digitalschoolhouse.org.uk/key-stage-2-ages-7-10/218-scratch-teaching-dance
www.youtube.com/watch?v=-qTZ5bFEdC8

28

QuickStart Computing

You should see ‘a is 20’ followed by ‘b is 20’. Try it!

In Kodu and other game programming, variables
are useful for keeping track of rewards, such as a
score, and for introducing some sort of limit, such
as a time limit or health points that reduce each
time you’re hit. Kodu’s event-driven approach allows
particular actions to be done when variables reach a
predetermined level.

One particularly useful example of variables in
programming is as an iterator – this is a way of keeping
track of how many times you’ve been round a repeating
loop and of doing something different each time you do.
To do this, we initialise a counter to zero or one at the
beginning of the loop and then add one to it each time
we go round the loop. For example, the following script
would get Scratch to say its eight times table:

You can also use an iterator like this to work with
strings (words and sentences) one letter at a time,
or through lists of data one item at a time. Take care
with the beginning and end, as it’s all too easy to
start or end too soon or too late with iterators.

 Classroom activity ideas

•• Get pupils to create a mystery function machine
in Scratch, which accepts an input, stores this in
a variable and then uses mathematical operators
to produce an output shown on screen. Setting
the display to full screen in Scratch, pupils can
challenge one another (and you) to work out what
the program does by trying different inputs.

•• Pupils can use variables in their games programs,
in say Scratch or Kodu, using a score to reward the
player for achieving particular objectives (such as
collecting apples), and imposing a time limit.

 Further resources

•• Bagge, P., ‘Text Adventure Game’ for Scratch,
available at: http://code-it.co.uk/year4/text_
adventure_game.pdf.

•• Barefoot Computing on ‘Variables’, available at:
http://barefootcas.org.uk/programme-of-study/
work-variables/variables/ (free, but registration
required).

•• BBC Bitesize article ‘How do computer programs
use variables?’, available at: www.bbc.co.uk/
guides/zw3dwmn.

•• Binary search jigsaw and solution by
mgberry, available at: http://scratch.mit.edu/
projects/20255402/ and http://scratch.mit.edu/
projects/28907496/.

•• How to program a Scratch 2.0 times table
test, available at: www.youtube.com/
watch?v=YHGyPfGg1x8.

•• Notes and tutorial on variables in Scratch,
available at: http://wiki.scratch.mit.edu/wiki/Variable
and http://wiki.scratch.mit.edu/wiki/Variables_
Tutorial.

Can we fix the code?
Errors in algorithms and code are called ‘bugs’,
and the process of finding and fixing these is called
‘debugging’. Debugging can often take much longer
than writing the code in the first place. Whilst fixing a
program so that it does work can bring a great buzz,
staring at code that still won’t work can be the cause
of great frustration too: this can be tricky to manage
in class.

The national curriculum for key stage 2 expects
that pupils will be taught to use logical reasoning
to detect and correct errors in algorithms and
programs, so it’s not really enough for pupils to fix
their code without being able to give an explanation
for what went wrong and how they fixed this.

In programming classes, pupils focused on the task
of writing a program for a particular goal might
want help from you or others to fix their programs:
tempting as this may be, it’s worth you and they
remembering that the objective in class is not to get a
working program, but to learn how to program – their
ability to debug their own code is a big part of that.

http://code-it.co.uk/year4/text_adventure_game.pdf
http://code-it.co.uk/year4/text_adventure_game.pdf
http://barefootcas.org.uk/programme-of-study/work-variables/variables/
http://barefootcas.org.uk/programme-of-study/work-variables/variables/
www.bbc.co.uk/guides/zw3dwmn
www.bbc.co.uk/guides/zw3dwmn
http://scratch.mit.edu/projects/20255402/
http://scratch.mit.edu/projects/20255402/
http://scratch.mit.edu/projects/28907496/
http://scratch.mit.edu/projects/28907496/
https://www.youtube.com/watch?v=YHGyPfGg1x8
https://www.youtube.com/watch?v=YHGyPfGg1x8
http://wiki.scratch.mit.edu/wiki/Variable
http://wiki.scratch.mit.edu/wiki/Variables_Tutorial
http://wiki.scratch.mit.edu/wiki/Variables_Tutorial

29

Programming

One way that you can help is to provide a reasonably
robust, general set of debugging strategies which
pupils can use for any programming, or indeed more
general strategies which they can use when they
encounter problems elsewhere.

Debugging should be underpinned by logical
reasoning. The Barefoot Computing team suggest
a simple sequence of four steps, emphasising the
importance of logical reasoning:

1. Predict what should happen.
2. Find out exactly what happens.
3. Work out where something has gone wrong.
4. Fix it.

One way to help predict what should happen is to
get pupils to explain their algorithm and code to
someone else. In doing so, it’s quite likely that they’ll
spot where there’s a problem in the way they’re
thinking about the problem or in the way they’ve
coded the solution.

In finding out exactly what happens, it can be useful
to work through the code, line by line. Seymour
Papert described this as ‘playing turtle’. So, in a
turtle graphics program in Logo (or similar) pupils
could act out the role of the turtle, walking and
turning as they follow the commands in the language.

In working out where something has gone wrong,
encourage pupils to look back at their algorithms
before they look at their code. Before they can get
started with fixing bugs, they’ll need to establish
whether it was an issue with their thinking or with
the way they’ve implemented that as code.

Some programming environments allow you to step
through code one line at a time – you can do this in
Scratch by adding (wait until [space] pressed)
blocks in liberally. Scratch will default to showing
where sprites are and the contents of any variables
as it runs through code, which can also be useful in
helping to work out exactly what caused the problem.

Debugging is a great opportunity for pupils to
learn from their mistakes and to get better at
programming.

 Classroom activity ideas

•• Pupils are likely to make many authentic errors
in their own code, which they’ll want to fix.
You might find that it’s worth spending some
time giving pupils some bugs to find and fix in
other programs, both as a way to help develop
strategies for debugging and to help with
assessment of logical reasoning and programming
knowledge. Create some programs with
deliberate mistakes in, perhaps using a range
of logical or semantic errors, and set pupils the
challenge of finding and fixing these.

•• Encourage pupils to debug one another’s code.
One approach is for pupils to work on their own
program for the first part of the lesson and then
to take over their partner’s project, completing
this and then debugging this for their friend.

•• A similar paired activity is for pupils to write code
with deliberate mistakes, setting a challenge to
their partner to find and then fix the errors in the
code.

 Further resources

•• Barefoot Computing on ‘Debugging’, available
at: http://barefootcas.org.uk/barefoot-primary-
computing-resources/computational-thinking-
approaches/debugging/ (free, but registration
required).

•• BBC Bitesize ‘What is debugging?’, available at:
www.bbc.co.uk/guides/ztkx6sg.

•• Debugging challenges from Switched on
Computing, available via: http://scratch.mit.edu/
studios/306100/.

•• Rubber duck debugging, available at: http://
en.wikipedia.org/wiki/Rubber_duck_debugging.

What strategies can you use
to support debugging?

http://barefootcas.org.uk/barefoot-primary-computing-resources/computational-thinking-approaches/debugging/
http://barefootcas.org.uk/barefoot-primary-computing-resources/computational-thinking-approaches/debugging/
http://barefootcas.org.uk/barefoot-primary-computing-resources/computational-thinking-approaches/debugging/
www.bbc.co.uk/guides/ztkx6sg
http://scratch.mit.edu/studios/306100/
http://scratch.mit.edu/studios/306100/
http://en.wikipedia.org/wiki/Rubber_duck_debugging
http://en.wikipedia.org/wiki/Rubber_duck_debugging

