

Spring Term Knowledge Organiser

Spring Term

	Extract	ing metals
1.	Name the more reactive metals.	Metals that end in "ium".
		Potassium, sodium, magnesium, calcium,
		aluminium
2.	Name the least reactive metals	Silver, gold, platinum
3.	What does native mean?	Not combined with other elements, found on its
		own
4.	What happens in a displacement reaction?	A more reactive metal takes the place of a less
		reactive metal in its compound.
5.	What is an ore?	A rock that contains a metal compound
6.	Why are some metals extracted by heating with	Metals that are less reactive than carbon can be
	carbon?	displaced by carbon.
		e.g: carbon + copper oxide → copper + carbon
		dioxide
7.	Why are more reactive metals extracted by	Carbon is not reactive enough to displace the
	electrolysis?	metal from its compound so a more powerful
		reduction reaction is needed.
8.	What is oxidation?	Gain of oxygen
9.	What is reduction?	Loss of oxygen
10.	What is the disadvantage of using electrolysis	Uses a lot of energy so it is expensive
	for extracting metals?	
		ds of extraction (HT)
1	What biological substance is needed in	Bacteria
	bioleaching?	
2	Describe how bioleaching extracts metals from	Bacteria breaks away the bonds between Cu-S and
	low-grade ores.	forms a liquid called a leachate. The leachate must
		then go through electrolysis to obtain pure metal.
3	What biological substance is needed in	Plants
	phytomining?	
4	Describe how phytomining extracts metals from	Plants are grown on low grade ores and absorbs
	low-grade ores.	copper ions from the ores. The plant is then
		burned, and the copper compound is reacted with
	86-1-11'- h 1' d	acid to form copper metal.
1	Metallic bonding and p	
1	What kind of bonds are present between metallic elements?	Metallic bonds
2	Describe how metals form metallic bonds.	Motals lose the electrons in its outer shall to form
2	Describe now metals form metallic bonds.	Metals lose the electrons in its outer shell to form
		a positive metal ion (cation)
		The electrons are delocalised throughout the
		structure and holds the positive ions together.

		->>
		+ + + + + + + + + + + + + + + + + + +
3	Explain why metals are malleable	The layers of ions can slide over each other. The sea of delocalised (free) electrons holds the ions together so the metal can change shape instead of breaking
4	Why are metals good conductors of electricity?	Electrons are free to move around and carry the current
	Equilik	oria
1	Explain what is meant by a reversable reaction	A reaction that can go in both directions so the products of a reaction can react together to form the reactants.
2	Describe what is meant by 'dynamic equilibrium'	Dynamic equilibrium is when a forward and backward reaction occurs at the same speed and time.
3	What is the process of producing ammonia called?	Haber process
4	Which two gases are required to form ammonia and where are they obtained?	Nitrogen (from the air) and hydrogen (from natural gas)
5	What is the optimum temperature for producing ammonia?	450 °C
6	What is the optimum pressure for producing ammonia?	200 atmospheres
7	What catalyst is added in the Haber process?	Iron catalyst
	Le Chatelier's p	. , ,
1	Describe le chateliers principle.	The position of equilibrium will shift to oppose the change introduced.
2	If you increase the temperature of a reaction what will happen to the position of equilibrium.	Equilibrium moves to cool it
3	If you decrease the pressure of a reaction what will happen to the position of equilibrium	Equilibrium moves to raise it
4	Predict which way the position of equilibrium will move if you increase the concentration of C: A (aq) + B(aq) EXOTHERMIC C (aq) + D (aq) ENDOTHERMIC	To the left (backward reaction)
Г	Dradiet which way the position of acuilibrium	·
5	Predict which way the position of equilibrium	To the left (backward reaction)

	will move if you decrease the concentration of A:	
	A (aq) + B(aq) EXOTHERMIC C (aq) + D (aq)	
6	Predict which way the position of equilibrium will move if you decrease the temperature: A (aq) + B(aq) EXOTHERMIC C (aq) + D (aq) ENDOTHERMIC	To the right (forward reaction)
7	Predict which way the position of equilibrium will move if you decrease the pressure :	To the left (backward reaction)
		tilisers
1		
	What are NPK fertilisers?	Fertilisers that contain Nitrogen, Phosphorous and Potassium
2	What are NPK fertilisers? Why are NPK fertilisers needed?	
		Potassium To promote plant growth so that it increases crop
2	Why are NPK fertilisers needed?	Potassium To promote plant growth so that it increases crop yields. By reacting ammonia with nitric acid to make ammonium nitrate salts. These salts are soluble in water so can be taken up by plants more

1	What happens to the rate of getting to equilbria when pressure increases? Explain why.	It increases. Particles are in a smaller space so more likely to have successful collisions and form products.
2	What happens to the rate of getting to equilbria when temperature increases? Explain why.	It increases. More particles will have the required activation energy to have successful collisions and form products.
3	What happens to the rate of getting to equilbria when concentration increases? Explain why.	It increases. More particles present in the same space so more likely to have successful collisions and form products.
4	What happens to the rate of getting to equilbria when a catalyst is added? Explain why.	It increases. Catalysts increase the rate of reaction by lowering the activation energy needed for a successful collsion.
5	Predict which way the position of equilibrium will move if you add a catalyst : A (aq) + B(aq) EXOTHERMIC C (aq) + D (aq) ENDOTHERMIC	Adding a catalyst has no effect on the position of equilibrium. They increase the rate of reaction for the forward and reverse reaction.
6	Why do we sometimes have to compromise of the position of equalibrium?	A condition might be favoured but the equipment needed is too expensive. Sometimes a lower temperature is favoured but this can slow the rate of reaction so a higher temperature is needed.

	Electrolysis	
1	Define electrolysis.	A substance is decomposed (broken down) using electricity.
2	Why can electrolysis only occur if an ionic substance is molten or aqueous?	The ions are free to move.
3	What is the name of the negative and positive electrode?	Negative: Cathode Positive: Anode
4	Which ions are attracted to the anode and which to the cathode?	Anode = negativeCathode = positive
5	Define electrolyte.	lons in a solution that are free to move and can conduct electricity.
6	What happens when ions get to an electrode?	Gain or lose electrons becoming neutral atoms again.
7	What happens at the anode?	Electrons transferred from the ion to the anode and the non-metal forms.
8	What happens at the cathode?	Electrons transferred from the cathode to the ion and a metal is formed.

9	When is hydrogen formed from an aqueous solution?	If the metal is MORE reactive than hydrogen.
10	When is a metal (not hydrogen) formed from an aqueous solution?	If the metal is LESS reactive than hydrogen.
11	State one use of electrolysis.	Extracting a reactive metal from its ore.
12	Which useful product could be removed from the solution left after electrolysis of dilute sodium chloride solution?	Sodium hydroxide (bleach)
13	What would be formed at the anode in electrolysis of dilute sodium chloride solution?	Chlorine gas
14	What would be formed at the cathode in electrolysis of dilute sodium chloride solution?	Hydrogen
15	When will oxygen be produced at the anode?	When the solution does NOT contain HALIDE ions. Otherwise the halogen is produced.
	Electrolysis and ha	If equations (HT only)
1	Write an ionic half equation for the reaction of	2H ⁺ + 2e ⁻ -> H ₂
	the cathode in electrolysis of dilute sodium	
	chloride solution (HT only)	
2	Write an ionic half equation for the reaction of the anode in electrolysis of dilute sodium	2Cl ⁻ -> Cl ₂ + 2e ⁻
	chloride solution (HT only)	
3	What would be produced at the anode in electrolysis of molten aluminium oxide? (HT only)	Oxygen
4	What would be produced at the cathode in electrolysis of molten aluminium oxide? (HT only)	Aluminium
5	Write an ionic half equation for the reaction at the anode in electrolysis of molten aluminium oxide (HT only)	20 ²⁻ -> O ₂ + 4e ⁻
6	Write an ionic half equation for the reaction at the cathode in electrolysis of molten aluminium oxide (HT only)	Al ³⁺ + 3e ⁻ -> Al

	Acids	
1	Which ions make a solution alkaline?	OH ⁻ (hydroxide)
2	Which ions make a solution acidic?	H ⁺
3	Give 3 ways to measure the pH of a substance	Litmus paper, universal indicator, pH meter, Phenolphthalein, Methyl Orange
4	What pH and colour is universal indicator in a strongly ACIDIC solution?	pH 1 - 3 (red)
5	What pH and colour is universal indicator in a strongly ALKALINE solution?	pH10-14 (purple)
6	What pH and colour is universal indicator in a weak ACID?	pH 4-6 (orange/yellow)

7	What nH and colour is universal indicator in a	pH 8-9 (blue)
/	What pH and colour is universal indicator in a weak ALKALI?	pn 6-9 (blue)
8	What colour is methyl orange in acid and alkali?	Red (acid), orange (alkali)
9	What colour is phenolphthalein in acids and alkali?	Colourless (acid), pink (alkali)
10	What is the difference between the solubility of alkalis and bases?	Alkalis are soluble and bases are insoluble.
11	What is the definition of a strong acid? (HT only)	Strong acid completely ionises (breaks down into its ions) in water.
12	What is the definition of a weak acid? (HT only)	Weak acid partially ionises in water.
13	Give 3 examples of a strong acid (HT only)	Hydrochloric acid, sulfuric acid, nitric acid
14	Write the empirical formula for the following acids:	
	acius: a) Hydrochloric acid	2) HCl
	b) Nitric acid	a) HCl b) HNO ₃
	c) Sulphuric acid	c) H ₂ SO ₄
15	State three examples of weak acids (HT only)	Ethanoic acid, citric acid and carbonic acid
16	What does a decrease in pH by one-unit mean? (HT only)	The hydrogen ion concentration increases by a factor of 10.
17	acid + alkali (or base) →	salt + water
18	metal carbonate + acid →	salt + water + carbon dioxide
19	Metal oxide + acid →	salt + water
20	Metal hydroxide + acid →	salt + water
21	Metal + acid →	salt + hydrogen (H ₂)
22	If nitric acid reacts with a metal, what will the salt end in?	nitrate
23	If sulfuric acid reacts with a metal, what will the salt end in?	sulfate
24	If hydrochloric acid reacts with a metal, what will the salt end in?	chloride
25	State the observation in a test tube when a metal reacts with an acid.	Fizzing (bubbles, effervescence)
26	What is the test for hydrogen gas?	A lit splint will make a squeaky pop sound
27	What is the test for carbon dioxide gas?	Bubble gas through limewater and it will turn cloudy
28	List the steps in making a soluble salt from an insoluble base.	1) Add solid to heated acid until no more reacts (in excess) 2) Filter excess solid 3) Leave for 24hrs for water to evaporate (crystallisation) 4) Pat dry
29	What is the ionic equation for a neutralisation reaction?	$H^+(aq) + OH^-(aq) \rightarrow H_2O(I)$

30	What is an advantage of using a pH probe rather	pH probe is more precise and more accurate
	than universal indicator?	
31	Which salts are soluble in water?	The SPANCS salt
32	What does soluble mean?	Can dissolve in solvent (water)
33	Name the soluble salts	Sodium salts
		Potassium salts
		Ammonium salts
		Nitrate salts
		C hloride salts, except silver chloride and lead
		chloride
		S ulfate salts, except barium sulfate, lead sulfate
		and calcium sulfate
34	What are the 4 state symbols?	(aq) (s) (l) (g)
35	Name the insoluble salts	Carbonate salts, expect sodium carbonate,
		potassium carbonate and ammonium carbonate.
		Hydroxide salts , expect sodium hydroxide,
		potassium hydroxide and ammonium hydroxide.
36	How can you prepare pure dry soluble salt from	 Complete a titration using a single point
	an alkali (a soluble base)?	indicator such as phenolphthalein.
		Record the exact volume of acid needed to neutralise the alkali.
		3. Carry out a titration, this time without the
		indicator and add the exact volume of acid
		needed.
		4. Evaporate the water slowly away from the
		salt.
		5. Leave the salt to dry in a warm room, pat
		dry.