

	Nuclear Physics		
1	What is the size of the average atom?	1 x 10 ⁻¹⁰ m or 0.1nm	
2	Draw a labelled diagram of an atom.	Proton Nucleus Neutron Electron	
3	Which two sub atomic particles are found in the nucleus?	Protons and neutrons	
4	What properties does a nucleus have?	Very dense and positively charged	
5	What charges do protons, neutrons and electrons have?	Protons = +1 (<u>P</u> rotons are <u>P</u> ositive) Neutrons = 0 (<u>Neutr</u> ons are <u>Neutr</u> al) Electrons = -1	
6	What are the relative masses of protons, neutrons and electrons?	Protons = 1 Neutrons = 1 Electrons = 0 or 1/2000 or 0.0005	
7	What is the radius of nucleus compared to radius of atom?	1/10000 of the size (one ten thousandth of the size)	
8	Electrons go up an energy level when (HT only)	They absorb electromagnetic radiation	
9	Electrons move down an energy level when (HT only)	They emit electromagnetic radiation	
10	Are atoms positive, negative or neutral? In nuclear physics, nuclei are represented with the following notation: 4 He	Neutral	
11	What does 'He' represent?	This is the chemical symbol that tells us it is a 'Helium Nucleus'	
12	What does the 4 represent?	The mass number of the nucleus.	
13	What does the 2 represent?	The atomic number.	
14	What is the atomic number?	Number of protons	
15	What is the mass number?	Number of protons AND neutrons.	

		1
16	How many protons does Calcium (Ca) have?	Protons = 20
10	How many neutrons does Calcium (Ca) have?	Neutrons = 20
	What is the relative mass of Calcium(Ca)?	Relative mass = 40
	What is the relative mass of calcium(ca):	Relative mass – 40
	$^{40}_{20}Ca$	
	2000	
17	What is an "ion"?	A charged atom (lost or gained electrons)
18	What are isotopes?	Atoms of the same element with the
		SAME number of protons but a DIFFERENT
40	December the state of different and the	number of neutrons.
19	Describe the plum pudding model	The atom is a ball of positive charge with
20	Miles Salles and a falle and a second and a falle and a second	negative electrons embedded in it
20	What is the name of the current model of the atom?	Nuclear model
21	Describe the Gold foil experiment by Rutherford	Alpha particles directed towards a piece
		of gold foil.
		Most particles pass straight through foil, Some is deflected through small angles
		Very small number of alpha particles are
		deflected back at the alpha source
22	State two conclusions from the gold foil / alpha	1) mass of an atom is concentrated in a
22	scattering experiment	nucleus in the centre
	scattering experiment	2) nucleus is positive
23	State the conclusion provided by Niels Bohr	Electrons orbit the nucleus in shells
24	For an electron to be excited to a higher energy level,	The difference in energy between the two
	the energy of the incoming photon must be equal to	levels
	What type of ion does an atom become if it loses	A positive ion
	electrons?	·
	Radioactive decay an	d radiation
1	What two words can we use to describe the process	Random and unpredictable
	of radioactive decay?	
2	What is the word to describe the rate at which a	Activity
	source of unstable nuclei decays	,
3	What is the word to describe the number of decays	Count rate
	recorded each second by a detector	
4	What is the equipment for measuring radiation?	Geiger-Muller tube
	What are the units of measurement for a activity of a	Becquerels (Bq)
	radioactive sample?	
5	Name the four types of nuclear radiation	alpha particle, beta particle, gamma ray,
		neutron
6	Describe the structure of an alpha particle	2 neutrons & 2 protons (helium nucleus)
	• •	
7	What is a beta particle?	A negative electron

8	What is a gamma ray?	A high energy electromagnetic wave from the nucleus
9	What is the nuclear symbol for alpha radiation?	$^{'4}_{2}\alpha'$ (greek symbol for alpha) Or $^{'4}_{2}He'$ the Symbol for Helium
10	What is the nuclear symbol for beta radiation?	$\binom{0}{-1}\beta'$ (greek symbol for beta)
11	What is the nuclear symbol for Gamma radiation?	Or ${}^{\prime}_{-1}{}^{0}e^{\prime}$ (symbol for an electron) ${}^{\prime}\gamma^{\prime}$ (greek symbol for gamma)
12	Three main types of radiation in order of high to low ionising power.	alpha, beta, gamma
13	Three main types of radiation in order of high to low penetrating power.	gamma, beta, alpha
14	Which materials are able to stop each type of radiation?	Alpha = paper, beta = aluminium, gamma = thick lead or concrete
15	Distances alpha, beta and gamma can go in air.	Alpha: 3-5cm, Beta: around 1m, Gamma: over 1km.
16	Define "irradiation"	Exposing an object to nuclear radiation. The irradiated object does not become radioactive.
17	Define "half-life"	The time it takes for the number of unstable nuclei of the isotope in a sample to halve.
18	If there are 1000 nuclei in a radioactive sample, how many should be left after 2 half lives?	1000 → 500 → <u>250</u>
19	If a half-life is 200 years, how many half lives have there been in 600years?	600/200= 3 half lives
20	What proportion of radioactive nuclei will be left from a sample after 4 half lives?	$1 \to \frac{1}{2} \to \frac{1}{4} \to \frac{1}{8} \to \frac{1}{16}$
21	Below is a decay equation – what does each symbol represent? ${}^{222}_{136}Rn \to {}^{218}_{134}Po + {}^4_2\alpha$	$^{222}_{136}Rn$ $^{-}$ Parent nucleus appears on the left of the arrow – in this case it is Radon -222 $^{218}_{134}Po$ Daughter Nucleus appears after the arrow to show the decay has taken place – in this case it is Polonium $^{4}_{2}\alpha$

		The decay produces radiation – in this
22	How is an alpha decay of Thorium-228 ($^{228}_{90}Th$) represented by an equation?	case it's alpha. $^{228}_{90}Th \rightarrow ~^{224}_{88}Ra + {}^4_2\alpha$
	, , ,	Note the mass and atomic numbers.
		Thorium loses 2 protons and 2 neutrons in
		alpha decay and so decays into Radium.
		In alpha decay – 4 is taken from the mass
		number and 2 is taken from the atomic
		number.
		Total mass numbers and total atomic
		numbers must be balanced on both sides.
23	How is a beta (-) minus decay of Carbon -14 $\binom{14}{6}$ C)	$^{14}_{6}C \rightarrow ^{14}_{7}N + ^{0}_{-1}\beta$
	represented by an equation?	In beta - decay – the mass number stays
		the same and
	Describe the process of β – decay (a neutron becomes	Carbon 14 loses a neutron and gains a
	a proton plus an electron)	proton in beta decay. Therefore the mass
		of the nucleus does not change but the
		atomic number goes up by 1.
23	How is a beta plus (+) decay of Carbon -14 $\binom{14}{6}$ C)	$^{14}_{6}C \rightarrow ^{14}_{5}B + ^{0}_{1}\beta$
	represented by an equation?	In beta + decay – the mass number stays
		the same and
	Describe the process of β + decay (a proton becomes a	Carbon 14 loses a proton and gains a
	neutron plus a positron)	neutron in beta decay. Therefore the
		mass of the nucleus does not change but
		the atomic number goes up by 1.