Year 13 Half Term 1 Curriculum

Subject	Half Term 1 – Topic/Summary of Powerful Knowledge
English	Crime Fiction in Analysis (3 weeks):
Literature	Tropes of Crime fiction
	 Traditional plots, archetypal characters and themes
	 Victorian, Golden-Age, Hard Boiled Detective and Modern
	 Integrating critical and contextual material
	 Nominalisation to shape academic voice Discourse markers to shape the
	direction of an essay
	Thesis statements
	Counter argument
	Atonement (McEwan)
	Oliver Twist (Dickens)
	Theory and Independence - NEA (8 weeks):
	Applying critical theory
	 Feminist and Marxist ways of reading
	The Literary Canon
	Aspects of Narrative
	Selected texts from Summer Reading List
	The Critical Anthology (AQA)
Maths	Functions and Graphs
	The modulus function
	Functions and mappings
	Composite functions
	Inverse functions
	Combining transformations
	Solving modulus problems
	Binomial Expansion
	Expanding
	Expanding
	Using partial fractions
	Regression, correlation and hypothesis testing
	Exponential models
	Measuring correlation
	Hypothesis testing for zero correlation
	Conditional probability
	Set notation
	Conditional probability
	 Conditional probabilities in Venn diagrams
	Probability formulae
	Tree diagrams
	Normal distribution

r	
	The normal distribution
	 Finding probabilities for normal distributions
	The inverse normal distribution function
	The standard normal distribution
	Finding and
	Approximating a binomial distribution
	Hypothesis testing with the normal distribution
	Radians
	Radian measure
	Arc Length
	-
	Areas of sectors and segments
	Solving trigonometric equations
	Small angle approximations
Science	Biology
	Photosynthesis
	 chlorophyll absorbs light, leading to photoionisation of chlorophyll
	 some of the energy from electrons released during photoionisation is
	conserved in the production of ATP and reduced NADP
	• the production of ATP involves electron transfer associated with the
	transfer of electrons down the electron transfer chain and passage of
	protons across chloroplast membranes and is catalysed by ATP synthase
	embedded in these membranes (chemiosomotic theory)
	 photolysis of water produces protons, electrons and oxygen.
	 The light-independent reaction uses reduced NADP from the light-
	dependent reaction to form a simple sugar. The hydrolysis of ATP, also
	from the light-dependent reaction, provides the additional energy for this
	reaction.
	 The light-independent reaction in such detail as to show that:
	• carbon dioxide reacts with ribulose bisphosphate (RuBP) to form two
	molecules of glycerate 3-phosphate (GP). This reaction is catalysed by the
	enzyme rubisco
	• ATP and reduced NADP from the light-dependent reaction are used to
	reduce GP to triose phosphate
	 some of the triose phosphate is used to regenerate RuBP in the Calvin
	cycle
	 some of the triose phosphate is converted to useful organic substances.
	Required practical 7: Use of chromatography to investigate the pigments isolated
	from leaves of different plants, eg, leaves from shade-tolerant and shade-
	intolerant plants or leaves of different colours.
	Required practical 8: Investigation into the effect of a named factor on the rate of
	dehydrogenase activity in extracts of chloroplasts.
	Inheritance
	• Species exist as one or more populations.
	• A population as a group of organisms of the same species occupying a
	particular space at a particular time that can potentially interbreed.
	 The concepts of gene pool and allele frequency.
L	

	 The Hardy–Weinberg principle provides a mathematical model, which predicts that allele frequencies will not change from generation to
	generation. The conditions under which the principle applies.
	• The frequency of alleles, genotypes and phenotypes in a population can
	be calculated using the Hardy–Weinberg equation:
	 where is the frequency of one (usually the dominant) allele and is the
	frequency of the other (usually recessive) allele of the gene.
	frequency of the other (usually recessive) allele of the gene.
	Evolution may lead to speciation
	 Individuals within a population of a species may show a wide range of
	variation in phenotype. This is due to genetic and environmental factors.
	The primary source of genetic variation is mutation. Meiosis and the
	random fertilisation of gametes during sexual reproduction produce
	further genetic variation.
	 Predation, disease and competition for the means of survival result in
	differential survival and reproduction, ie natural selection.
	 Those organisms with phenotypes providing selective advantages are
	likely to produce more offspring and pass on their favourable alleles to the
	next generation. The effect of this differential reproductive success on the
	allele frequencies within a gene pool.
	 The effects of stabilising, directional and disruptive selection.
CL	
Ch	emistry
	Optical isomerism
	• Optical isomerism is a form of stereoisomerism and occurs as a result of
	chirality in molecules, limited to molecules with a single chiral centre.
	 An asymmetric carbon atom is chiral and gives rise to optical isomers
	(enantiomers), which exist as non super-imposable mirror images and
	differ in their effect on plane polarised light.
	A mixture of equal amounts of enantiomers is called a racemic mixture
	(racemate).
	Students should be able to:
	 draw the structural formulas and displayed formulas of enantiomers
	• understand how racemic mixtures (racemates) are formed and why they
	are optically inactive.
	Aldehydes and Ketones
	 Aldehydes are readily oxidised to carboxylic acids.
	 Chemical tests to distinguish between aldehydes and ketones including
	Fehling's solution and Tollens' reagent.
	 Aldehydes can be reduced to primary alcohols, and ketones to secondary
	alcohols, using NaBH $_4$ in aqueous solution. These reduction reactions are
	examples of nucleophilic addition.
	 The nucleophilic addition reactions of carbonyl compounds with KCN,
	followed by dilute acid, to produce hydroxynitriles.
	 Aldehydes and unsymmetrical ketones form mixtures of enantiomers
	when they react with KCN followed by dilute acid.
	The hazards of using KCN. Students should be able to:
	Students should be able to:
	 write overall equations for reduction reactions using [H] as the reductant

 outline the nucleophilic addition mechanism for reduction reactions with NaBH₄ (the nucleophilic addition mechanism for the reaction with KCN followed by dilute acid explain why nucleophilic addition reactions of KCN, followed by dilute acid, can produce a mixture of enantiomers. Carboxylic acids and Derivative The structures of: carboxylic acids and alcohols react, in the presence of an acid catalyst, to give esters. Carboxylic acids are weak acids but will liberate CO₂ from carbonates. Carboxylic acids and alcohols react, in the presence of an acid catalyst, to give esters. Common uses of esters (eg in solvents, plasticisers, perfumes and food flavourings). Vegetable oils and animal fats are esters of propane-1,2,3-triol (glycerol). Esters can be hydrolysed in acid or alkaline conditions to form alcohols and carboxylic acids or alts of carboxylic acids. Vegetable oils and animal fats can be hydrolysed in alkaline conditions to give soap (salts of long-chain carboxylic acids) and glycerol. Biodiesel is produced by reacting vegetable oils with methanol in the presence of a catalyst. Acylation The structures of:		
 outline the nucleophilic addition mechanism for the reaction with KCN followed by dilute acid explain why nucleophilic addition reactions of KCN, followed by dilute acid, can produce a mixture of enantiomers. Carboxylic acids and Derivative The structures of: carboxylic acids and locitation carboxylic acids and locitation carboxylic acids and alcohols react, in the presence of an acid catalyst, to give esters. Carboxylic acids and alcohols react, in the presence of an acid catalyst, to give esters. Common uses of esters (eg in solvents, plasticisers, perfumes and food flavourings). Vegetable oils and animal fats are esters of propane-1,2,3-triol (glycerol). Esters can be hydrolysed in acid or alkaline conditions to form alcohols and carboxylic acids or salts of carboxylic acids) and glycerol. Biodiesel is a mixture of methyl esters of long-chain carboxylic acids. Vegetable oils and animal fats can be hydrolysed in alkaline conditions to give soap (salts of long-chain carboxylic acids) and glycerol. Biodiesel is produced by reacting vegetable oils with methanol in the presence of a catalyst. Acylation The structures of:	•	NaBH ₄ (the nucleophile should be shown as H ⁻)
 explain why nucleophilic addition reactions of KCN, followed by dilute acid, can produce a mixture of enantiomers. Carboxylic acids and Derivative The structures of: carboxylic acids are weak acids but will liberate CO₂ from carbonates. Carboxylic acids are weak acids but will liberate CO₂ from carbonates. Carboxylic acids are weak acids but will liberate CO₂ from carbonates. Carboxylic acids are weak acids but will liberate CO₂ from carbonates. Carboxylic acids are weak acids but will liberate CO₂ from carbonates. Carboxylic acids and alcohols react, in the presence of an acid catalyst, to give esters. Common uses of esters (eg in solvents, plasticisers, perfumes and food flavourings). Vegetable oils and animal fats are esters of propane-1,2,3-triol (glycerol). Esters can be hydrolysed in acid or alkaline conditions to form alcohols and carboxylic acids or salts of carboxylic acids. Vegetable oils and animal fats can be hydrolysed in alkaline conditions to give soap (salts of long-chain carboxylic acids) and glycerol. Biodiesel is produced by reacting vegetable oils with methanol in the presence of a catalyst. Acylation The structures of:		outline the nucleophilic addition mechanism for the reaction with KCN
 Carboxylic acids and Derivative The structures of:	•	explain why nucleophilic addition reactions of KCN, followed by dilute
 carboxylic acids esters. Carboxylic acids are weak acids but will liberate CO2 from carbonates. Carboxylic acids and alcohols react, in the presence of an acid catalyst, to give esters. Common uses of esters (eg in solvents, plasticisers, perfumes and food flavourings). Vegetable oils and animal fats are esters of propane-1,2,3-triol (glycerol). Esters can be hydrolysed in acid or alkaline conditions to form alcohols and carboxylic acids or salts of carboxylic acids. Vegetable oils and animal fats can be hydrolysed in alkaline conditions to give soap (salts of long-chain carboxylic acids) and glycerol. Biodiesel is a mixture of methyl esters of long-chain carboxylic acids. Biodiesel is produced by reacting vegetable oils with methanol in the presence of a catalyst. Acylation The structures of: acid anhydrides acyl chlorides amindes. The nucleophilic addition-elimination reactions of water, alcohols, ammonia and primary amines with acyl chlorides and acid anhydrides. The industrial advantages of ethanoic anhydride over ethanoyl chloride in the manufacture of the drug aspirin. Students should be able to outline the mechanism of nucleophilic addition-elimination reactions of acyl chlorides with water, alcohols, ammonia and primary amines. Required practical 10 Preparation of: a pure organic liquid. Physics Periodic Motion Analysis of characteristics of simple harmonic motion (SHM). Condition for SHM: a ~ - x Defining equation: a = - u 2 x x = Acosut and v = t u A 2 - x 2 Graphical representations linking the variations of x, v and a with time. Appreciation that the a - t graph is derived from the gradient o	•	
 esters. Carboxylic acids are weak acids but will liberate CO₂ from carbonates. Carboxylic acids and alcohols react, in the presence of an acid catalyst, to give esters. Common uses of esters (eg in solvents, plasticisers, perfumes and food flavourings). Vegetable oils and animal fats are esters of propane-1,2,3-triol (glycerol). Esters can be hydrolysed in acid or alkaline conditions to form alcohols and carboxylic acids or salts of carboxylic acids) and glycerol. Biodiesel is and animal fats can be hydrolysed in alkaline conditions to give soap (salts of long-chain carboxylic acids) and glycerol. Biodiesel is produced by reacting vegetable oils with methanol in the presence of a catalyst. Acylation The structures of: acid anhydrides acyl chlorides amides. The nucleophilic addition-elimination reactions of water, alcohols, ammonia and primary amines with acyl chlorides and acid anhydrides. The industrial advantages of ethanoic anhydride over ethanoyl chloride in the manufacture of the drug aspirin. Students should be able to outline the mechanism of nucleophilic addition-elimination reactions of acyl chlorides with water, alcohols, ammonia and primary amines. Required practical 10 Preparation of: a pure organic solid and test of its purity a pure organic liquid. Physics Periodic Motion Analysis of characteristics of simple harmonic motion (SHM). Condition for SHM: a ~ ~ x Defining equation: a = - u 2 x x = Acosut and v = t u A 2 - x 2 Graphical representations linking the variations of x, v and a with time. Appreciation that the a - t graph is derived from the gradient of the v - t graph. Maximum speed = uA	•	The structures of:
 Carboxylic acids are weak acids but will liberate CO₂ from carbonates. Carboxylic acids and alcohols react, in the presence of an acid catalyst, to give esters. Common uses of esters (eg in solvents, plasticisers, perfumes and food flavourings). Vegetable oils and animal fats are esters of propane-1,2,3-triol (glycerol). Esters can be hydrolysed in acid or alkaline conditions to form alcohols and carboxylic acids or salts of carboxylic acids. Vegetable oils and animal fats can be hydrolysed in alkaline conditions to give soap (salts of long-chain carboxylic acids) and glycerol. Biodiesel is a mixture of methyl esters of long-chain carboxylic acids. Biodiesel is produced by reacting vegetable oils with methanol in the presence of a catalyst. Acylation The structures of: acid anhydrides acyl chlorides amides. The industrial advantages of ethanoic anhydride over ethanoyl chloride in the manufacture of the drug aspirin. Students should be able to outline the mechanism of nucleophilic addition-elimination reactions of acyl chlorides with water, alcohols, ammonia and primary amines. Required practical 10 Preparation of: a pure organic liquid. Physics Periodic Motion Analysis of characteristics of simple harmonic motion (SHM). Condition for SHM: a α - x Defining equation: a a - ω 2 x x = Acos and w = ± ω A 2 - x 2 Graphical representations linking the variations of x, wand a with time. Appreciation that the a - t graph is derived from the gradient of the x - t graph. Maximum speed = ωA Maximum acceleration = ω 2A 	•	carboxylic acids
 Carboxylic acids and alcohols react, in the presence of an acid catalyst, to give esters. Common uses of esters (eg in solvents, plasticisers, perfumes and food flavourings). Vegetable oils and animal fats are esters of propane-1,2,3-triol (glycerol). Esters can be hydrolysed in acid or alkaline conditions to form alcohols and carboxylic acids or salts of carboxylic acids) and glycerol. Biodiesel is and animal fats can be hydrolysed in alkaline conditions to give soap (salts of long-chain carboxylic acids) and glycerol. Biodiesel is produced by reacting vegetable oils with methanol in the presence of a catalyst. Acylation The structures of: acid anhydrides acyl chlorides amides. The nucleophilic addition-elimination reactions of water, alcohols, ammonia and primary amines with acyl chlorides and acid anhydrides. The industrial advantages of ethanoic anhydride over ethanoyl chloride in the manufacture of the drug aspirin. Students should be able to outline the mechanism of nucleophilic addition-elimination reactions of acyl chlorides with water, alcohols, ammonia and primary amines. Required practical 10 Preparation of:	•	esters.
 give esters. Common uses of esters (eg in solvents, plasticisers, perfumes and food flavourings). Vegetable oils and animal fats are esters of propane-1,2,3-triol (glycerol). Esters can be hydrolysed in acid or alkaline conditions to form alcohols and carboxylic acids or salts of carboxylic acids. Vegetable oils and animal fats can be hydrolysed in alkaline conditions to give soap (salts of long-chain carboxylic acids) and glycerol. Biodiesel is a mixture of methyl esters of long-chain carboxylic acids. Biodiesel is produced by reacting vegetable oils with methanol in the presence of a catalyst. Acylation The structures of: acid anhydrides acyl chlorides amides. The nucleophilic addition-elimination reactions of water, alcohols, ammonia and primary amines with acyl chlorides and acid anhydrides. The industrial advantages of ethanoic anhydride over ethanoyl chloride in the manufacture of the drug aspirin. Students should be able to outline the mechanism of nucleophilic addition-elimination reactions of acyl chlorides with water, alcohols, ammonia and primary amines. Required practical 10 Preparation of: a pure organic solid and test of its purity a pure organic solid and test of its purity a pure organic liquid. Physics Periodic Motion Analysis of characteristics of simple harmonic motion (SHM). Condition for SHM: a ~ - x Defining equation: a = - w 2 x x = Acoswt and v = ± w A 2 - x 2 Graphical representations linking the variations of x, v and a with time. Appreciation that the v - t graph is derived from the gradient of the x - t graph. Maximum speed = wA Maximum acceleration = w 2A 	•	Carboxylic acids are weak acids but will liberate CO ₂ from carbonates.
 flavourings). Vegetable oils and animal fats are esters of propane-1,2,3-triol (glycerol). Esters can be hydrolysed in acid or alkaline conditions to form alcohols and carboxylic acids or salts of carboxylic acids. Vegetable oils and animal fats can be hydrolysed in alkaline conditions to give soap (salts of long-chain carboxylic acids) and glycerol. Biodiesel is a mixture of methyl esters of long-chain carboxylic acids. Biodiesel is produced by reacting vegetable oils with methanol in the presence of a catalyst. Acylation The structures of: acid anhydrides acyl chlorides amides. The nucleophilic addition—elimination reactions of water, alcohols, ammonia and primary amines with acyl chlorides and acid anhydrides. The industrial advantages of ethanoic anhydride over ethanoyl chloride in the manufacture of the drug aspirin. Students should be able to outline the mechanism of nucleophilic addition—elimination reactions of acyl chlorides, ammonia and primary amines. Required practical 10 Preparation of: a pure organic solid and test of its purity a pure organic liquid. Physics Periodic Motion Analysis of characteristics of simple harmonic motion (SHM). Condition for SHM: a ~ - x Defining equation: a = - w 2 x x = Acoswt and v = ± w A 2 - x 2 Graphical representations linking the variations of x, v and a with time. Appreciation that the v - t graph is derived from the gradient of the v - t graph. Maximum speed = wA Maximum acceleration = w 2A 	•	
 Esters can be hydrolysed in acid or alkaline conditions to form alcohols and carboxylic acids or salts of carboxylic acids. Vegetable oils and animal fats can be hydrolysed in alkaline conditions to give soap (salts of long-chain carboxylic acids) and glycerol. Biodiesel is a mixture of methyl esters of long-chain carboxylic acids. Biodiesel is produced by reacting vegetable oils with methanol in the presence of a catalyst. Acylation The structures of: acid anhydrides acyl chlorides amides. The nucleophilic addition–elimination reactions of water, alcohols, ammonia and primary amines with acyl chlorides and acid anhydrides. The industrial advantages of ethanoic anhydride over ethanoyl chloride in the manufacture of the drug aspirin. Students should be able to outline the mechanism of nucleophilic addition–elimination reactions of acyl chlorides with water, alcohols, ammonia and primary amines. Required practical 10 Preparation of: a pure organic liquid. Physics Periodic Motion Analysis of characteristics of simple harmonic motion (SHM). Condition for SHM: a α – x Defining equation: a = – ω 2 x x = Acossut and v = ± ω A 2 – x 2 Graphical representions linking the variations of x, v and a with time. Appreciation that the a – t graph is derived from the gradient of the x – t graph. Maximum speed = ωA Maximum acceleration = ω 2A 	•	
 give soap (salts of long-chain carboxylic acids) and glycerol. Biodiesel is a mixture of methyl esters of long-chain carboxylic acids. Biodiesel is produced by reacting vegetable oils with methanol in the presence of a catalyst. Acylation The structures of: acid anhydrides acyl chlorides amides. The nucleophilic addition—elimination reactions of water, alcohols, ammonia and primary amines with acyl chlorides and acid anhydrides. The nucleophilic addition—elimination cantulation of nucleophilic addition—elimination reactions of nucleophilic addition—elimination reactions of nucleophilic addition—elimination reactions of nucleophilic addition—elimination reactions of acyl chlorides with water, alcohols, ammonia and primary amines. Students should be able to outline the mechanism of nucleophilic addition—elimination reactions of acyl chlorides with water, alcohols, ammonia and primary amines. Required practical 10 Preparation of: a pure organic solid and test of its purity a pure organic solid and test of its purity a pure organic liquid. Physics Periodic Motion Analysis of characteristics of simple harmonic motion (SHM). condition for SHM: a ∝ - x Defining equation: a = - ω 2 x x = Acos with a w a 2 - x 2 Graphical representations linking the variations of x, v and a with time. Appreciation that the v - t graph is derived from the gradient of the x - t graph. Maximum speed = ωA Maximum acceleration = ω 2A 	•	Esters can be hydrolysed in acid or alkaline conditions to form alcohols
 Biodiesel is produced by reacting vegetable oils with methanol in the presence of a catalyst. Acylation The structures of: acid anhydrides acyl chlorides amides. The nucleophilic addition—elimination reactions of water, alcohols, ammonia and primary amines with acyl chlorides and acid anhydrides. The industrial advantages of ethanoic anhydride over ethanoyl chloride in the manufacture of the drug aspirin. Students should be able to outline the mechanism of nucleophilic addition—elimination reactions of acyl chlorides with water, alcohols, ammonia and primary amines. Required practical 10 Preparation of: a pure organic liquid. Physics Periodic Motion Analysis of characteristics of simple harmonic motion (SHM). Condition for SHM: a α – x Defining equation: a = – ω 2 x x = Acosut and v = ± ω A 2 – x 2 Graphical representations linking the variations of x, v and a with time. Appreciation that the v – t graph is derived from the gradient of the x – t graph. Maximum speed = ωA Maximum acceleration = ω 2A 	•	
 presence of a catalyst. Acylation The structures of: acid anhydrides acyl chlorides amides. The nucleophilic addition—elimination reactions of water, alcohols, ammonia and primary amines with acyl chlorides and acid anhydrides. The industrial advantages of ethanoic anhydride over ethanoyl chloride in the manufacture of the drug aspirin. Students should be able to outline the mechanism of nucleophilic addition—elimination reactions of acyl chlorides with water, alcohols, ammonia and primary amines. Required practical 10 Preparation of: a pure organic solid and test of its purity a pure organic liquid. Physics Periodic Motion Analysis of characteristics of simple harmonic motion (SHM). Condition for SHM: a α – x Defining equation: a = – ω 2 x x = Acosωt and v = ± ω A 2 – x 2 Graphical representations linking the variations of x, v and a with time. Appreciation that the v – t graph is derived from the gradient of the v – t graph. Maximum speed = ωA Maximum acceleration = ω 2A 	•	Biodiesel is a mixture of methyl esters of long-chain carboxylic acids.
 Acylation The structures of: acid anhydrides acyl chlorides amides. The nucleophilic addition-elimination reactions of water, alcohols, ammonia and primary amines with acyl chlorides and acid anhydrides. The industrial advantages of ethanoic anhydride over ethanoyl chloride in the manufacture of the drug aspirin. Students should be able to outline the mechanism of nucleophilic addition-elimination reactions of acyl chlorides with water, alcohols, ammonia and primary amines. Required practical 10 Preparation of: a pure organic solid and test of its purity a pure organic liquid. Physics Periodic Motion Analysis of characteristics of simple harmonic motion (SHM). Condition for SHM: a ~ - x Defining equation: a = - ω 2 x x = Acos w and v = ± ω A 2 - x 2 Graphical representations linking the variations of x, v and a with time. Appreciation that the v - t graph is derived from the gradient of the x - t graph. Maximum speed = ωA Maximum acceleration = ω 2A 	•	Biodiesel is produced by reacting vegetable oils with methanol in the
 The structures of: acid anhydrides acyl chlorides amides. The nucleophilic addition—elimination reactions of water, alcohols, ammonia and primary amines with acyl chlorides and acid anhydrides. The industrial advantages of ethanoic anhydride over ethanoyl chloride in the manufacture of the drug aspirin. Students should be able to outline the mechanism of nucleophilic addition—elimination reactions of acyl chlorides with water, alcohols, ammonia and primary amines. Required practical 10 Preparation of: a pure organic solid and test of its purity a pure organic liquid. Physics Periodic Motion Analysis of characteristics of simple harmonic motion (SHM). Condition for SHM: a α – x Defining equation: a = – ω 2 x x = Acossut and v = ± ω A 2 – x 2 Graphical representations linking the variations of x, v and a with time. Appreciation that the v – t graph is derived from the gradient of the x – t graph. Maximum speed = ωA Maximum acceleration = ω 2A 		presence of a catalyst.
 acid anhydrides acyl chlorides amides. The nucleophilic addition-elimination reactions of water, alcohols, ammonia and primary amines with acyl chlorides and acid anhydrides. The industrial advantages of ethanoic anhydride over ethanoyl chloride in the manufacture of the drug aspirin. Students should be able to outline the mechanism of nucleophilic addition-elimination reactions of acyl chlorides with water, alcohols, ammonia and primary amines. Required practical 10 Preparation of: a pure organic solid and test of its purity a pure organic liquid. Physics Periodic Motion Analysis of characteristics of simple harmonic motion (SHM). Condition for SHM: a < - x Defining equation: a = - ω 2 x x = Acosωt and v = ± ω A 2 - x 2 Graphical representations linking the variations of x, v and a with time. Appreciation that the v - t graph is derived from the gradient of the x - t graph and that the a - t graph is derived from the gradient of the v - t graph. Maximum speed = ωA Maximum acceleration = ω 2A 	•	Acylation
 acyl chlorides amides. The nucleophilic addition–elimination reactions of water, alcohols, ammonia and primary amines with acyl chlorides and acid anhydrides. The industrial advantages of ethanoic anhydride over ethanoyl chloride in the manufacture of the drug aspirin. Students should be able to outline the mechanism of nucleophilic addition–elimination reactions of acyl chlorides with water, alcohols, ammonia and primary amines. Required practical 10 Preparation of: a pure organic solid and test of its purity a pure organic liquid. Physics Periodic Motion Analysis of characteristics of simple harmonic motion (SHM). Condition for SHM: a α – x Defining equation: a = – ω 2 x x = Acosωt and v = ± ω A 2 – x 2 Graphical representations linking the variations of x, v and a with time. Appreciation that the v – t graph is derived from the gradient of the x – t graph and that the a – t graph is derived from the gradient of the v – t graph. Maximum speed = ωA Maximum acceleration = ω 2A 	•	The structures of:
 amides. The nucleophilic addition–elimination reactions of water, alcohols, ammonia and primary amines with acyl chlorides and acid anhydrides. The industrial advantages of ethanoic anhydride over ethanoyl chloride in the manufacture of the drug aspirin. Students should be able to outline the mechanism of nucleophilic addition–elimination reactions of acyl chlorides with water, alcohols, ammonia and primary amines. Required practical 10 Preparation of: a pure organic solid and test of its purity a pure organic liquid. Physics Periodic Motion Analysis of characteristics of simple harmonic motion (SHM). Condition for SHM: a α - x Defining equation: a = - ω 2 x x = Acosωt and v = ± ω A 2 - x 2 Graphical representations linking the variations of x, v and a with time. Appreciation that the v - t graph is derived from the gradient of the x - t graph and that the a - t graph is derived from the gradient of the v - t graph. Maximum speed = ωA Maximum acceleration = ω 2A 	•	acid anhydrides
 The nucleophilic addition-elimination reactions of water, alcohols, ammonia and primary amines with acyl chlorides and acid anhydrides. The industrial advantages of ethanoic anhydride over ethanoyl chloride in the manufacture of the drug aspirin. Students should be able to outline the mechanism of nucleophilic addition-elimination reactions of acyl chlorides with water, alcohols, ammonia and primary amines. Required practical 10 Preparation of: a pure organic solid and test of its purity a pure organic liquid. Physics Periodic Motion Analysis of characteristics of simple harmonic motion (SHM). Condition for SHM: a < x 2 Graphical representations linking the variations of x, v and a with time. Appreciation that the v - t graph is derived from the gradient of the x - t graph. Maximum speed = ωA Maximum acceleration = ω 2A 	•	acyl chlorides
 ammonia and primary amines with acyl chlorides and acid anhydrides. The industrial advantages of ethanoic anhydride over ethanoyl chloride in the manufacture of the drug aspirin. Students should be able to outline the mechanism of nucleophilic addition—elimination reactions of acyl chlorides with water, alcohols, ammonia and primary amines. Required practical 10 Preparation of: a pure organic solid and test of its purity a pure organic liquid. Physics Periodic Motion Analysis of characteristics of simple harmonic motion (SHM). Condition for SHM: a ~ - x Defining equation: a = - ω 2 x x = Acosωt and v = ± ω A 2 - x 2 Graphical representations linking the variations of x, v and a with time. Appreciation that the v - t graph is derived from the gradient of the x - t graph and that the a - t graph is derived from the gradient of the v - t graph. Maximum speed = ωA Maximum acceleration = ω 2A 	•	amides.
 The industrial advantages of ethanoic anhydride over ethanoyl chloride in the manufacture of the drug aspirin. Students should be able to outline the mechanism of nucleophilic addition—elimination reactions of acyl chlorides with water, alcohols, ammonia and primary amines. Required practical 10 Preparation of: a pure organic solid and test of its purity a pure organic liquid. Physics Periodic Motion Analysis of characteristics of simple harmonic motion (SHM). Condition for SHM: a ~ - x Defining equation: a = - ω 2 x x = Acosωt and v = ± ω A 2 - x 2 Graphical representations linking the variations of x, v and a with time. Appreciation that the v - t graph is derived from the gradient of the x - t graph. Maximum speed = ωA Maximum acceleration = ω 2A 	•	The nucleophilic addition-elimination reactions of water, alcohols,
 Students should be able to outline the mechanism of nucleophilic addition—elimination reactions of acyl chlorides with water, alcohols, ammonia and primary amines. Required practical 10 Preparation of: a pure organic solid and test of its purity a pure organic liquid. Physics Periodic Motion Analysis of characteristics of simple harmonic motion (SHM). Condition for SHM: a ∝ - x Defining equation: a = - ω 2 x x = Acosωt and v = ± ω A 2 - x 2 Graphical representations linking the variations of x, v and a with time. Appreciation that the v - t graph is derived from the gradient of the x - t graph and that the a - t graph is derived from the gradient of the v - t graph. Maximum speed = ωA Maximum acceleration = ω 2A 	•	The industrial advantages of ethanoic anhydride over ethanoyl chloride in
addition-elimination reactions of acyl chlorides with water, alcohols, ammonia and primary amines. • Required practical 10 • Preparation of: • a pure organic solid and test of its purity • a pure organic liquid. Physics • Periodic Motion Analysis of characteristics of simple harmonic motion (SHM). Condition for SHM: $a \propto -x$ Defining equation: $a = -\omega 2 x x =$ Acos ω t and $v = \pm \omega A 2 - x 2$ Graphical representations linking the variations of x, v and a with time. Appreciation that the v - t graph is derived from the gradient of the x - t graph and that the a - t graph is derived from the gradient of the v - t graph. Maximum speed = ωA Maximum acceleration = $\omega 2A$		
 ammonia and primary amines. Required practical 10 Preparation of: a pure organic solid and test of its purity a pure organic liquid. Physics Periodic Motion Analysis of characteristics of simple harmonic motion (SHM). Condition for SHM: a ∝ - x Defining equation: a = - ω 2 x x = Acosωt and v = ± ω A 2 - x 2 Graphical representations linking the variations of x, v and a with time. Appreciation that the v - t graph is derived from the gradient of the x - t graph and that the a - t graph is derived from the gradient of the v - t graph. Maximum speed = ωA Maximum acceleration = ω 2A 		
 Required practical 10 Preparation of: 		
 Preparation of: a pure organic solid and test of its purity a pure organic liquid. Physics Periodic Motion Analysis of characteristics of simple harmonic motion (SHM). Condition for SHM: a ∝ - x Defining equation: a = - ω 2 x x = Acosωt and v = ± ω A 2 - x 2 Graphical representations linking the variations of x, v and a with time. Appreciation that the v - t graph is derived from the gradient of the x - t graph and that the a - t graph is derived from the gradient of the v - t graph. Maximum speed = ωA Maximum acceleration = ω 2A 	•	
 a pure organic solid and test of its purity a pure organic liquid. Physics Periodic Motion Analysis of characteristics of simple harmonic motion (SHM). Condition for SHM: a ∝ - x Defining equation: a = - ω 2 x x = Acosωt and v = ± ω A 2 - x 2 Graphical representations linking the variations of x, v and a with time. Appreciation that the v - t graph is derived from the gradient of the x - t graph and that the a - t graph is derived from the gradient of the v - t graph. Maximum speed = ωA Maximum acceleration = ω 2A 		
 a pure organic liquid. Physics Periodic Motion Analysis of characteristics of simple harmonic motion (SHM). Condition for SHM: a ∝ - x Defining equation: a = - ω 2 x x = Acosωt and v = ± ω A 2 - x 2 Graphical representations linking the variations of x, v and a with time. Appreciation that the v - t graph is derived from the gradient of the x - t graph and that the a - t graph is derived from the gradient of the v - t graph. Maximum speed = ωA Maximum acceleration = ω 2A 	•	
Physics • Periodic Motion Analysis of characteristics of simple harmonic motion (SHM). Condition for SHM: $a \propto -x$ Defining equation: $a = -\omega 2 x x =$ Acos ω t and $v = \pm \omega A 2 - x 2$ Graphical representations linking the variations of x, v and a with time. Appreciation that the v - t graph is derived from the gradient of the x - t graph and that the a - t graph is derived from the gradient of the v - t graph. Maximum speed = ωA Maximum acceleration = $\omega 2A$	•	
• Periodic Motion Analysis of characteristics of simple harmonic motion (SHM). Condition for SHM: $a \propto -x$ Defining equation: $a = -\omega 2 x x =$ Acos ωt and $v = \pm \omega A 2 - x 2$ Graphical representations linking the variations of x, v and a with time. Appreciation that the v - t graph is derived from the gradient of the x - t graph and that the a - t graph is derived from the gradient of the v - t graph. Maximum speed = ωA Maximum acceleration = $\omega 2A$	Physi	
(SHM). Condition for SHM: $a \propto -x$ Defining equation: $a = -\omega 2 x x =$ Acos ω t and $v = \pm \omega A 2 - x 2$ Graphical representations linking the variations of x, v and a with time. Appreciation that the v – t graph is derived from the gradient of the x – t graph and that the a – t graph is derived from the gradient of the v – t graph. Maximum speed = ωA Maximum acceleration = $\omega 2A$	•	
Acos ω t and v = ± ω A 2 – x 2 Graphical representations linking the variations of x, v and a with time. Appreciation that the v – t graph is derived from the gradient of the x – t graph and that the a – t graph is derived from the gradient of the v – t graph. Maximum speed = ω A Maximum acceleration = ω 2A		
variations of x, v and a with time. Appreciation that the v – t graph is derived from the gradient of the x – t graph and that the a – t graph is derived from the gradient of the v – t graph. Maximum speed = ωA Maximum acceleration = $\omega 2A$		
derived from the gradient of the x – t graph and that the a – t graph is derived from the gradient of the v – t graph. Maximum speed = ωA Maximum acceleration = $\omega 2A$		
derived from the gradient of the v – t graph. Maximum speed = ωA Maximum acceleration = $\omega 2A$		
Maximum acceleration = ω 2A		
• Study of mass-spring system: $T = 2\pi$ m k Study of simple pendulum: $T = 2\pi$		
• Study of mass-spring system. I – 2/t in K Study of simple pendulum. I – 2/t	•	Study of mass-spring system: T = 2π m k Study of simple pendulum: T = 2π
l g Questions may involve other harmonic oscillators (eg liquid in U-tube)		l g Questions may involve other harmonic oscillators (eg liquid in U-tube)

	 but full information will be provided in questions where necessary. Variation of Ek , Ep , and total energy with both displacement and time. Effects of damping on oscillations. Required practical 7: Investigation into simple harmonic motion using a mass-spring system and a simple pendulum. Motion in a circular path at constant speed implies there is an acceleration and requires a centripetal force. Magnitude of angular speed w = v r = 2π f Radian measure of angle. Direction of angular velocity will not be considered. Centripetal acceleration a = v 2 r = w 2 r The derivation of the centripetal acceleration formula will not be examined. Centripetal force F = mv2 r = mw 2 r Qualitative treatment of free and forced vibrations. Resonance and the effects of damping on the sharpness of resonance. Examples of these effects in mechanical systems and situations involving stationary waves. Thermal Physics Internal energy is the sum of the randomly distributed kinetic energies and potential energies of the particles in a body. The internal energy of a system is increased when energy is transferred to it by heating or when work is done on it (and vice versa), eg a qualitative treatment of the first law of thermodynamics. Appreciation that during a change of state the potential energies. Calculations trons/versef e free energy. For a change of temperature: Q = mc Δ θ where c is specific heat capacity. Calculations including continuous flow. For a change of state Q = ml where I is the specific latent heat. Gas laws as experimental relationships between p, V, Tand the mass of the gas. Concept of absolute zero of temperature. Ideal gas equation: pV = nRT for n moles and pV = NKT for N molecules. Work done = pAV Avogadro constant NA, molar gas constant R, Boltzmann constant k Molar mass and molecular mass. Required practical 8: Investigation of Boyle's law (constant temperature) and Charles's law (constant pressure) for a gas Brownian motion as evi
	is kinetic energy of the atoms. Use of average molecular kinetic energy = 1 2m crms 2 = 3 2 kT = 3RT 2NA Appreciation of how knowledge and understanding of the behaviour of a gas has changed over time.
History	African American Civil Rights 1865-1992
-	Thematic study covering black leaders,
	Federal Government,
	white opposition
	 Depth studies – Gilded Age, New Deal, Black Power
Art	BTEC Art and Design - Personal Investigation and The Creative Process
-	Understand the stages and activities within the creative process
	- onderstand the stages and detivities within the creative process

	 Introduction to Year 2 A level Fine Art and BTEC Art and Design Development Ideas /Final Pieces
Business	 <u>Marketing</u> Discuss the different methods used to market products and services and whether these are likely to be the same in the near future. Discuss and decide upon a definition of marketing. Compare aims and objectives and corporate and marketing objectives. Investigate the marketing objectives of 4 contrasting organisations.
Computing	 Students will use the basic skills they have developed in Microsoft Access at the end of year 12 (term 3b) and apply them to a given scenario. Use abstraction to pick out key information in a scenario. Define a data type Define relationships between data Order Data into logical groups Set rules that data must meet to be valid and accepted Be able to search a database for specific information Evaluate the effectiveness of a database solution Pick out what the database needs to accomplish from the scenario Define the data type Divide the fields into logical groups Decide on Primary key/secondary keys and create relationships between the groups
Games Design	Media Messaging Students will study how messages are conveyed in the media. They will study how theories of media representation have helped to shape and define the concept. They will look at different types of audiences and define how they are represented in the media. • Demonstrate knowledge and understanding of media terminology, semiotics, theories, concepts and messages • Apply knowledge and understanding of media concepts, semiotics, theories and formal techniques to constructed representations
Film Studies	Silent Cinema • Modern Misconceptions about Silent Cinema • Lumiere Brothers and George Melies: Realist vs. Expressive debate • Introduction to silent comedy • Buster Keaton as auteur • Pioneering use of film techniques Set texts: One Week (Keaton, 1920)

	The Scarecrow (Keaton, 1920)
	The 'High Sign' (Keaton, 1921)
	Cops (Keaton, 1922)
	Short Film Study and Production
	Editing workshops
	 Reviewing sequences and planning for improvement
	Set texts:
	15 short films (pupils study a minimum of 3 totalling a minimum of 80 minutes)
Health	Unit 2 (single and double):
	 Introduction to roles and responsibilities in the health and social care sector e.g., roles and responsibilities of social worker, specialist doctor) Introduction to specific role and responsibilities in the health and social care sector e.g., promoting an anti-discriminatory practice, empowering individuals
	Unit 4 (double): Introduction to question 1: • Research methodologies • Data types
	Reliability and validity
	Introduction to question 1:
	Importance of secondary research
	Impact on wider society
	Unit 8 (double):
	Completion of public health policy and its aims
	 <u>Unit 14 (single):</u> Completion of causes, signs and symptoms and diabetes and Alzheimer's
Music	Unit 5: Music Performance Session Skills
	 Learning Aim, A The study of musical styles within genres. Styles should include; Musical styles-theoretical and historical aspects of the use of – harmony, choice of chord extensions, scales, riffs, melodic conventions, rhythmic conventions, tonality, roles of instruments, textures, lyrics, vocal techniques used and role of improvisation. Sonic conventions-theoretical and historical aspects of – instrument type and model, choice of amplifier and settings, use of effects and live processing, pedals, tone, choice of synthesiser model, synthesiser settings, live processing, samplers, choice of samples. Stylistic interpretation-theoretical and historical aspects of phrasing, groove, instrumentation, arrangement, performance conventions, instrument-specific techniques.
PE	Exam Unit Unit 3 – Sports organization and development

	 LO1: Understand how sport in the UK is organised
	LO2: Understand sports development
	Coursework Unit
	<u>Unit 2 – Sports coaching and activity leadership</u>
	LO3: Being able to use methods to improve skills, techniques and tactics in
	sport
	LO4: Being able to plan sports and activity sessions.
Photography	Personal Project
	This part of the course the students select a topic for their personal project and
	produce a body of work that explores their chosen topic.
RE/PSHE	Self-Management:
	Life after examinations and school
	Mindfulness
	Physical and mental well-being
	Practical strategies to relax and reduce stress
Psychology	Unit 3 Exam unit
	Health Belief Model
	Locus of control
	Theory of planned behaviour
	Self-efficacy theory
	Transtheoretical model
	 Causes of stress and physiological responses to stress
	Stress and ill health
	 Physiological addiction – smoking and alcohol
Sociology	Theories and methods
	 Sociological theories of society: Structural vs. social action theories and
	conflict vs. consensus theories.
	Functionalist explanations of society
	Crime and Deviance
	Definitions of crime and deviance with examples
	• Functionalist, Marxist, labelling theory and right realist explanations of
	crime, deviance, social order and social control
	How crime statistics are socially constructed.
Hospitality	Unit 1: The Hospitality Industry
	Understand the scale and diversity of the hospitality industry
	Understand the classification systems and their standards
	Know the organisation and structure of hospitality businesses