

Why is Maths important?	To demonstrate to our students that mathematics is a creative, interconnected,
	imaginative and inspiring world that can make life orderly and limit chaos.
What is Math's value within	Mathematics has answers to natural wonders such as the unlikelihood of finding a four-
the curriculum and in	leaf clover and the reason only regular polygons with 3, 4 or 6 sides tessellate. It also
everyday life?	delivers manmade solutions for desired systems such as the Hindu-Arabic number
	system, which has helped our way of life progress.
	Students will use mathematics in everyday problems such as through personal finance,
	ensuring the best price is selected or even purchasing the correct amount of material
	for a project. However, maths inspires students to be critical thinkers and problem
	solvers, which are skills that can enhance career prospects and make everyday
	problems easier.
How does Maths reinforce	Knowledge – We deliver a knowledge-based rich and academically rigorous curriculum
the Alsop values of	that has the highest ambition for all. Our curriculum is designed to be progressive from
Knowledge Respect and	Year 7 to Year 11. It focuses on fluency and retention of knowledge, skills and
Opportunity?	understanding over time.
	Respect: At Alsop we respect that every student has the ability to succeed in maths,
	given the necessary amount of time and practice needed to learn new concepts.
	Mathematics is learnt in a hierarchical way; new knowledge is added on to previous
	learning. This means that students cannot learn new knowledge without having the
	correct foundations in place and jumping ahead can lower a student's confidence in
	their own ability. However, decisions about when to progress should always be based
	on the security of pupils' understanding and their readiness to progress to the next
	stage. Pupils who grasp concepts rapidly should be challenged through being offered
	rich and sophisticated problems before any acceleration through new content. Those
	who are not sufficiently fluent with earlier material should consolidate their
	understanding, including through additional practice, before moving on.
	Opportunity: The curriculum is designed with a 'no ceilings' approach to learning. All
	students have the opportunity to progress further with no limit placed on what new
	knowledge can be learnt. If a student is ready to move on, they will but only once
	current learning delivers secure knowledge. A key part of our curriculum is the
	opportunities to see maths in a wider context than set out in the statuary framework of
	the national curriculum. Opportunities include exploring the golden ratio, looking at
	maths in architecture, finding links between maths other areas such as science,
	engineering and architecture, code breaking and number bases.
	Through mostory we build an atodayte substanting loss to destanting the second statements of the
How does Maths build on the	Inrough mastery, we build on students substantive knowledge taught in KS2 to further
Toundations laid at KS2?	problem solve and combine structures. Students will be extended through depth of
	The process for learning a new concept in maths at Alson is:
	Learn the new knowledge in small stens
	 Practice lots to become fluent in using the knowledge
	Reason to understand what connections can be made to other mathematical
	concepts, develop an argument and communicate it using mathematical
	language.

	Use reasoning and your knowledge to solve multi-layered problems.
How your does Maths	Mathematical problems require a specific reading skill that requires a balance between
support reading?	knowledge and reasoning. Students will be expected to pick out key parts of
	information needed to answer a problem but the knowledge needed is often not given
	in the expected order. Therefore, students will have to read a problem thoroughly,
	select in order the important bits of information and then calculate. We aim to teach
	this level of reading in every lesson through problem solving and communication
	questioning.
	In maths we also have key vocabulary which we focus upon through our program of
	study every lesson. This is important for the learning of new content as definitions in
	maths very often have different definitions across other curriculums. For example, the
	words 'prime' and 'corresponding' have multiple meanings.
How does Maths challenge all	Our mastery curriculum suggests every student can learn and do maths. Students who
learners?	have lower prior attainment are specifically planned for using concrete and pictorial
	techniques. Students with higher prior attainment are extended through a range of
	problem solving and reasoning structures for further their development and allow
	better links to be made.
How is Maths inclusive for all	All students have access to all lessons and resources. Where our students have secured
learners?	enough knowledge and are ready to be extended, our teachers will push them on to
	progress to more complex concepts.
	SEND: Class Profile Sheets used by every teacher so they can successfully identify and
	implement support strategies for our SEND and disadvantaged pupils. Where
	necessary, students may receive extra scaffolding to support their understanding.
	Scaffolding will be removed as students practice their knowledge in order to avoid
	reliance on extra written structures.
What role does assessment	Students are formatively assessed in class to ensure all misconceptions are identified
play in Maths?	before practice through a range of hinge questioning and reasoning questions designed
, , , , , , , , , ,	to make students think about how concepts are connected and how they are not.
	Students have a summative assessment after each small unit of two to three weeks to
	help track progress and identify and fill in gaps at the earliest possible opportunity. This
	avoids pre-requisites being missed.
How are British values	Democracy: ethical issues e.g. business and economics. How data can be manipulated
interwoven into the Maths	through its presentation possibly liking to elections. Students may be asked if data
curriculum?	snoken of is relevant?
	The rule of Law: Through mathematical investigations students are encouraged to
	develop their own rules and to give examples that follow the rule and exceptions to the
	rule Through the study of mathematicians, students may learn of the rule of law and
	how it affected their lives. F.g. Alan Turing's contribution to ending WW2 and how
	the rule of law at that time affected him
	Individual Liberty: Opportunities to discuss and deliver different ways and approaches
	to problem solving
	Respect: others right to learn and teachers right to teach
	Tolerance: Accentance of positive criticism. Allowing mistakes and building on these
	Trying different methods and showing resilience
	SMSC
How is SMSC interwoven into	Spiritual development in Maths through deep thinking and questioning into their
the Maths curriculum?	understanding of Maths and how it relates to the world around them Examples of the

	spiritual development in mathematics include: Investigating Rangoli patterns and
	Islamic art and the uses of symmetry
	Moral Development in Maths: We promote discussion about mathematical
	understanding and challenge assumptions, supporting students to question information
	and data that they are presented with. We recognise how logical reasoning can be
	used to make decisions and choices that help them to learn in mathematics.
	Social Development in Mathematics: Fundamental to Mathematics is problem solving
	skills and teamwork, through creative thinking, discussion, explaining and presenting
	ideas. Students are encouraged to develop their Mathematical reasoning skills,
	communicating with others and explaining concepts to each other.
	Examples of the social development in mathematics include: UKMT Team Maths
	challenges
	Cultural Development in Maths: Mathematics is a universal language with a multitude
	of cultural inputs throughout the ages. The ability to use exchange rates for foreign
	travel are also important life skills students will learn. The skills of data analysis are
	taught to enable students to make sense of vast amounts of data available in the
	modern world around them. Sixth Form students are able to extend this knowledge
	through the study of Statistics and modelling.
How is cultural capital	Cultural Capital : We aim to embed cultural capital which is essential knowledge that
interwoven into the Maths	pupils need to be educated citizens – studying the best that has been thought and said
curriculum?	and helping to engender an appreciation of human creativity and achievement through
	Maths. This includes using maths in a wider context such as architecture, politics,
	finance and understanding its role in the media.