

Multiplication and division vocabulary

Term	Definition	Example
factor	a number that divides exactly into another number	factors of 12 = 1, 2, 3, 4, 6, 12
common factor	factors of two numbers that are the same	common factors of 8 and 12 = 1, 2, 4
prime number	a number with only 2 factors: 1 and itself	2, 3, 5, 7, 11, 13, 17, 19...
composite number	a number with more than two factors	12 (it has 6 factors)
prime factor	a factor that is prime	prime factors of 12 = 2, 3
multiple	a number in another number's times table	multiples of 9 = 9, 18, 27, 36...
common multiple	multiples of two numbers that are the same	common multiples of 4 and 6 = 12, 24...
square numbers	the result when a number has been multiplied by itself	25 ($5^2 = 5 \times 5$) 49 ($7^2 = 7 \times 7$)
cube numbers	the result when a number has been multiplied by itself 3 times	8 ($2^3 = 2 \times 2 \times 2$) 27 ($3^3 = 3 \times 3 \times 3$)

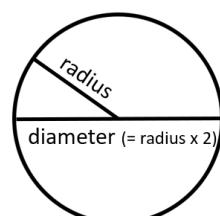
Fractions, decimals & percentages

$\frac{1}{100}$	0.01	1%	$\div 100$
$\frac{1}{20}$	0.05	5%	$\div 20$
$\frac{1}{10}$	0.1	10%	$\div 10$
$\frac{1}{5}$	0.2	20%	$\div 5$
$\frac{1}{4}$	0.25	25%	$\div 4$
$\frac{1}{2}$	0.5	50%	$\div 2$
$\frac{3}{4}$	0.75	75%	$\div 4, \times 3$
1	1	100%	$\div 1$

Angles

full turn	360°
half turn	180°
right angle	90°
acute angle	$< 90^\circ$
obtuse angle	$> 90^\circ$
reflex angle	$> 180^\circ$
angles on a straight line	180°
angles inside a triangle	180°
angles inside a quadrilateral	360°

Shape vocabulary


perimeter = measure around the edge (circumference = perimeter of a circle)

horizontal line

parallel lines

vertical line

perpendicular lines
(at right angles)

Roman numerals

1	I	100	C
5	V	500	D
10	X	1000	M
50	L		

YEAR 6 MATHS KNOWLEDGE ORGANISER

2D shapes

Name	No. of sides
quadrilateral	4
pentagon	5
hexagon	6
heptagon	7
octagon	8
nonagon	9
decagon	10

polygon = shape with straight sides
regular = all sides/angles the same
irregular = sides/angles not same

Types of triangle

Types of quadrilateral

AREA
is the amount of space inside a 2D shape
usually measured in cm^2 or m^2 .

Area of a triangle

$$= (\text{base} \times \text{height}) \div 2$$

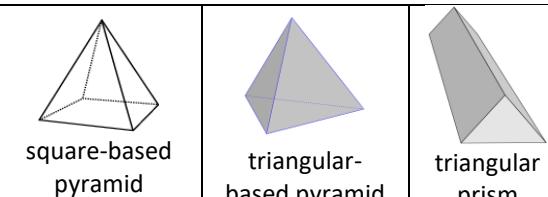
Area of a parallelogram

$$= \text{base} \times \text{height}$$

(Height = perpendicular height)

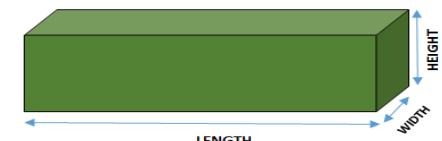
Measurement conversions

Month	Days
January	31
February	28 (29 in leap year)
March	31
April	30
May	31
June	30
July	31
August	31
September	30
October	31
November	30
December	31


1 year = 365 days (\approx 52 weeks)
Leap year = 366 days

1 centimetre	10mm
1 metre	100cm
1 kilometre	1,000 m
1 mile	1.6 km
1 kilometre	0.625 ($\frac{5}{8}$) mile
1 kilogram	1,000 grams
1 litre	1,000 millilitres

Co-ordinates


Read co-ordinates along the x axis (horizontal) first, then the y axis (vertical). E.g. (3, -4) = go right 3, down 4.

3D shapes

faces (the flat sides)	5	4	5
edges	8	6	9
vertices (the points where the edges meet)	5	4	6

Volume = the amount of space a 3D shape takes up, usually measured in cm^3 or m^3

Volume of a cuboid =
length x width x height

The mean

The mean is a type of average. To find the mean, add up all the numbers and divide by how many there are. E.g. the mean of 4, 5, 3, 4 is 4.
(Because $4 + 5 + 3 + 4 = 16$, and $16 \div 4 = 4$)