Unit Overview and Guidance

- The exemplification has been taken from the NCETM online 'Resource Toolkit', with additions in order to ensure full coverage
 objectives. Many thanks go to the White Rose Maths hub for permission to include their resources
- The NCETM reasoning questions have also been incorporated into each unit and are identified in pale purple boxes underneath the group of the most relevant objectives.
 included for easy reference.
- Hyperlinks to NRich activities have also been added to this version. These are found by clicking on the blue buttons like this one \square at the bottom of relevant objective.
 altered and this is primarily where an objective has been split between two units.
- Each unit is sub-divided into sections for ease of planning. Sub-categories in this unit are;

1. Recognising and Finding Fractions
2. Decimals
3. Finding and Using Equivalence
4. Calculating with Fractions, Decimals and Percentages
5. Solving Problems

	Yr 2	Yr 3	Yr 4
	The Big Ideas Fractions involve a relationship between a whole and parts of a whole. Ensure children express this relationship when talking about fractions. For example, 'If the bag of 12 sweets is the whole, then 4 sweets are one third of the whole.' Partitioning or 'fair share' problems when each share is less than one gives rise to fractions. Measuring where the unit is longer than the item being measured gives rise to fractions.	The Big Ideas Fractions are equal parts of a whole. Equal parts of shapes do not need to be congruent but need to be equal in area. Decimal fractions are linked to other fractions. The number line is a useful representation that helps children to think about fractions as numbers.	The Big Ideas Fractions arise from solving problems, where the answer lies between two whole numbers. Fractions express a relationship between a whole and equal parts of a whole. Children should recognise this and speak in full sentences when answering a question involving fractions. For example, in response to the question What fraction of the chocolate bar is shaded? the pupil might say Two sevenths of the whole chocolate bar is shaded. Equivalency in relation to fractions is important. Fractions that look very different in their symbolic notation can mean the same thing.
	Teaching for Mastery Year 2	Teaching for Mastery Year 3	Teaching for Mastery Year 4

Orth Yorkshire County Council in Collaboration with Archimedes Mathematics Hub

NUMBER: Fractions, Decimals and Percentages (NFD-7 weeks)

NUMBER: Fractions, Decimals and Percentages (NFD - 7 weeks)

		recognise, find, name and write fractions $1 / 3,1 / 4,2 / 4$ and $3 / 4$ of a length, shape, set of objects or quantity Equal parts Recognise a half Recognise a quarter Recognise a third Unit fractions Non-unit fractions Count in fractions	recognise and use fractions as numbers: unit fractions and nonunit fractions with small denominators Count in tenths Fractions on a number line Position fractions on a number line; eg. mark fractions such as $1 / 2,31 / 2$ and $23 / 10$ on a number line marked from zero to 5 . A fraction of each shape is shaded. Match each fraction to the correct place on the number line. One has been done for you. 1	(Year 3 objective) recognise and use fractions as numbers: unit fractions and non-unit fractions with small denominators Year 4 Fractions greater than 1 Year 4 Count in fractions
	O	write simple fractions for example, $1 / 2$ of $6=3$ Find a half Find a quarter Find a third Find three quarters	recognise, find and write fractions of a discrete set of objects: Fractions of an amount (1) Fractions of an amount (2) Fractions of an amount (3) Is there another way that you can describe the fraction? - One fifth of 60 kg - Two fifths of 50 litres	(Year 3 objective) recognise, find and write fractions of a discrete set of objects: Year 4 Fractions of a quantity Year 4 Calculate quantities
		What do you notice? $1 / 4$ of $4=1$ $1 / 4$ of $8=2$ $1 / 4$ of $12=3$ Continue the pattern What do you notice? True or false? Half of $20 \mathrm{~cm}=5 \mathrm{~cm}$ $3 / 4$ of $12 \mathrm{~cm}=9 \mathrm{~cm}$ Ordering Put these fractions in the correct order, starting with the smallest. $\begin{array}{lll}1 / 2 & 1 / 4 & 1 / 3\end{array}$	What comes next? 6/10, 7/10, 8/10,, 12/10, 11/10,,, True or false? $2 / 10$ of $20 \mathrm{~cm}=2 \mathrm{~cm} \quad 4 / 10$ of $40 \mathrm{~cm}=4 \mathrm{~cm} \quad 3 / 5$ of $20 \mathrm{~cm}=12 \mathrm{~cm}$ Give an example of a fraction that is less than a half. Now another example that no one else will think of. Explain how you know the fraction is less than a half(draw an image) Put in Order Ben put these fractions in order starting with the smallest. Are they in the correct order? One fifth, one seventh, one sixth What do you notice? $1 / 10 \text { of } 10=1 \quad 2 / 10 \text { of } 10=2 \quad 3 / 10 \text { of } 10=3$ Continue the pattern. What do you notice? What about $1 / 10$ of 20 ? Use this to work out $2 / 10$ of 20 , etc What do you notice? Find $2 / 5$ of 10 . Find $4 / 10$ of 10. What do you notice? Can you write any other similar statements?	What comes next? 83/100, 82/100, 81/100, \qquad 31/100, 41/100, 51/100,,, What do you notice? $\begin{array}{ll} 1 / 10 \text { of } 100=10 & 1 / 100 \text { of } 100=1 \\ 2 / 10 \text { of } 100=20 & 2 / 100 \text { of } 100=2 \end{array}$ How can you use this to work out 6/10 of 200? 6/100 of 200? True or false? $1 / 20$ of a metre $=20 \mathrm{~cm}$ $4 / 100$ of 2 metres $=40 \mathrm{~cm}$ Give an example of a fraction that is more than a half but less than a whole. Now another example that no one else will think of. Explain how you know the fraction is more than a half but less than a whole. (draw an image) What do you notice? Find $4 / 6$ of 24 and $2 / 3$ of 24 What do you notice? Can you write any other similar statements?

NUMBER: Fractions, Decimals and Percentages (NFD - 7 weeks)

NUMBER: Fractions, Decimals and Percentages (NFD-7 weeks)

recognise and show, using diagrams, families of common equivalent fractions

Equivalent fractions (1)

Equivalent fractions (2)

Recognise that five tenths ($5 / 10$) or one half of this diagram is shaded

Recognise that two eighths ($2 /$) or one quarter $(1 / 4)$ of the set of buttons is ringed

Recognise that one whole is equivalent to two halves, three thirds, four quarters..
For example, build a fraction 'wall' using a computer program and then estimate parts.
Recognise patterns in equivalent fractions -
$1 / 2=2 / 4=3 / 6=4 / 8=5 / 10$ and similar patterns for -
$1 / 3,1 / 4,1 / 5,1 / 6,1 / 10$
Here are five diagrams. Look at each one
Put a tick ($\boldsymbol{\square}$) on the diagram is exactly $1 / 2$ of it is shaded. Put a cross (X) if it us not.

NUMBER: Fractions, Decimals and Percentages (NFD-7 weeks)

			recognise that tenths arise from dividing an object into 10 equal parts and in dividing one-digit numbers or quantities by 10 Tenths as decimals Children should be able to: - Use decimal notation for tenths - Divide single digits or whole numbers by 10 - Explain how finding $1 / 10$ is the same as dividing by 10 Here is part of a number line. Write in the numbers missing from the two empty boxes.	recognise that hundredths arise when dividing an object by a hundred and dividing tenths by ten recognise and write decimal equivalents of any number of tenths or hundredths Tenths and hundredths Tenths as decimals Tenths on a place value grid Hundredths Hundredths as decimals Hundredths on a place value grid Make a whole Write decimals What does the digit 6 in 3.64 represent? The 4? What is the 4 worth in the number 7.45 ? The 5 ? Suggest a decimal fraction between 4.1 and 4.2 Know how many 10 pence pieces equal $£ 1$, how many 1 pence pieces equal $£ 1$, how many centimetres make a metre. Recognise 0.07 is equivalent to $7 / 100$ and 6.35 is equivalent to 6 $35 / 100$ etc Which of these decimals is equal to $19 / 100$? $\quad 1.9 \quad 10.19$ $0.19 \quad 19.1$ Write each of these as a decimal fraction: $27 / 100 \quad 3 / 100 \quad 2^{33} / 100$ Write the decimal fraction equivalent to: two tenths and five hundredths; twenty-nine hundredths; fifteen and nine hundredths. recognise and write decimal equivalents to $1 / 4 ; 1 / 2 ; 3 / 4$ Halves and quarters 0.5 is equivalent to $1 / 2,0.25$ is equivalent to $1 / 4,0.75$ is equivalent to $3 / 4,0.1$ is equivalent to $1 / 10$ Particularly in the context of money and measurement. Write the decimal fraction equivalent to: two tenths and five hundredths; twenty-nine hundredths; fifteen and nine hundredths

NUMBER: Fractions, Decimals and Percentages (NFD-7 weeks)

Finding and Using Equivalence		Odd one out. Which is the odd one out in this trio: $\begin{array}{lll}1 / 2 & 2 / 4 & 1 / 4\end{array}$ Why? What do you notice? Find $1 / 2$ of 8 , Find $2 / 4$ of 8 . What do you notice?	Odd one out. Which is the odd one out in each of these trios? Why?	Odd one out. Which is the odd one out in each of these trio? $\begin{array}{\|lccl\|} \hline 3 / 4 & 9 / 12 & 4 / 6 & \\ 9 / 12 & 10 / 15 & 2 / 3 \end{array}$ Why? Complete the pattern by filling in the blank cells in this table: Another and another Write a decimal numbers (to one decimal place) which lies between a half and three quarters? ... and another, ... and another, ... Ordering Put these numbers in the correct order, starting with the smallest. - $\begin{array}{lll}1 / 4 & 0.75 & 5 / 10\end{array}$ - $4 / 8 \quad 3 / 4 \quad 1 / 4$
Calculating with Fractions			add/subtract fractions with the same denominator within one whole (e.g. $5 / 7+1 / 7=6 / 7$) Making the whole Add fractions Subtract fractions For addition: and for subtraction: $1 / 3$ $1 / 6$ $1 / 6$	add and subtract fractions with the same denominator Add 2 or more fractions Subtract 2 fractions Subtract from whole amounts For example: $\begin{array}{llll} 1 / 2+1 / 2 & 1 / 4+3 / 4 & 3 / 8+5 / 8 & 3 / 5+4 / 5+1 / 5 \\ 6 / 7-4 / 7 & 9 / 10+4 / 10-3 / 10 & \end{array}$

NUMBER: Fractions, Decimals and Percentages (NFD-7 weeks)

