Unit Overview and Guidance

- The exemplification has been taken from the NCETM online 'Resource Toolkit', with additions in order to ensure full coverage
 objectives. Many thanks go to the White Rose Maths hub for permission to include their resources
- The NCETM reasoning questions have also been incorporated into each unit and are identified in pale purple boxes underneath the group of the most relevant objectives.
 included for easy reference.
- Hyperlinks to NRich activities have also been added to this version. These are found by clicking on the blue buttons like this one 1 at the bottom of relevant objective
- Some additional content has been added in order to support mixed-aged planning. Any additional content is in italics. Occasionally strikethrough has been used to identify when an objective has been altered and this is primarily where an objective has been split between two units.
- Each unit is sub-divided into sections for ease of planning. Sub-categories in this unit are;

1. Algebra

	Yr 3	Yr 4	Yr 5	Yr 6
	The Big Ideas	The Big Ideas	The Big Ideas	The Big Ideas A linear sequence of numbers is where the difference between the values of neighbouring terms is constant. The relationship can be generated in two ways: the sequence-generating rule can be recursive, i.e. one number in the sequence is generated from the preceding number (e.g. by adding 3 to the preceding number), or ordinal, i.e. the position of the number in the sequence generates the number (e.g. by multiplying the position by 3 , and then subtracting 2). Sometimes sequence generating rules that seem different can generate the same sequence: the ordinal rule 'one more than each of the even numbers, starting with 2 ' generates the same sequence as the recursive rule 'start at 1 and add on 2, then another 2, then another 2, and so on'. Sequences can arise from naturally occurring patterns in mathematics and it is exciting for pupils to discover and generalise these. For example adding successive odd numbers will generate a sequence of square numbers. Letters or symbols are used to represent unknown numbers in a symbol sentence (i.e. an equation) or instruction. Usually, but not necessarily, in any one symbol sentence (equation) or instruction, different letters or different symbols represent different unknown numbers. A value is said to solve a symbol sentence (or an equation) if substituting the value into the sentence (equation) satisfies it, i.e. results in a true statement. For example, we can say that 4 solves the symbol sentence (equation) $9-=+1$ (or $9-x=x+1$) because it is a true statement that $9-4=4+1$. We say that 4 satisfies the symbol sentence (equation) $9-=+1$ (or $9-x=x+1$).
	Teaching for Mastery Year 3	Teaching for Mastery Year 4	Teaching for Mastery Year 5	Teaching for Mastery Year 6

North Yorkshire
County Council

ALGEBRA (ALG - 1 week)

ALGEBRA (ALG - 1 week)

