Unit Overview and Guidance

- The exemplification has been taken from the NCETM online 'Resource Toolkit', with additions in order to ensure full coverage
 objectives. Many thanks go to the White Rose Maths hub for permission to include their resources
- The NCETM reasoning questions have also been incorporated into each unit and are identified in pale purple boxes underneath the group of the most relevant objectives.
 included for easy reference.
- Hyperlinks to NRich activities have also been added to this version. These are found by clicking on the blue buttons like this one \square at the bottom of relevant objective
 altered and this is primarily where an objective has been split between two units.
- Each unit is sub-divided into sections for ease of planning. Sub-categories in this unit are;

1. Presenting and interpreting data
2. Solving problems

	Yr 2	Yr 3	Yr 4
	The Big Ideas Data need to be collected with a question or purpose in mind. Tally charts are used to collect data over time (cars passing the school, birds on the bird table).	The Big Ideas Data needs to be collected with a question or purpose in mind. Tally charts are used to collect data over time (cars passing the school, birds on the bird table). They can also be used to keep track of counting.	The Big Ideas In mathematics the focus is on numerical data. These can be discrete or continuous. Discrete data are counted and have fixed values, for example the number of children who chose red as their favourite colour (this has to be a whole number and cannot be anything in between). Continuous data are measured, for example at what time did each child finish the race? (Theoretically this could be any time: 67.3 seconds, 67.33 seconds or 67.333 seconds, depending on the degree of accuracy that is applied.) Continuous data are best represented with a line graph where every point on the line has a potential value.
	Teaching for Mastery Year 2	Teaching for Mastery Year 3	Teaching for Mastery Year 4

STATISTICS (STC - 3 weeks)

North Yorkshire County Council in Collaboration with Archimedes Mathematics Hub-2

STATISTICS (STC - 3 weeks)

solve one-step and two-step questions such as 'How many more?' and 'How many fewer?' using information presented in scaled bar charts and pictograms and tables

Collect, represent and interpret data in order to answer a question that is relevant to them, for example:

- What new addition to the school play equipment would you like?
- Which class race shall we choose for sports day?

They decide on the information they need to collect and collect it efficiently. They collate the information on a tally chart or frequency table, then use this to make simple frequency diagrams such as bar charts, using ICT where appropriate. They discuss the outcomes, responding to questions such as:

- Which items had fewer than five votes?
- Would the table be the same if we asked Year 6?
- How might the table change if everyone had two votes?

Children present their conclusions to others, identifying key points that should be included. They make suggestions as to how this data could be used; for example, they may decide that they need to investigate the price of different equipment or discuss what they need to do to prepare for their chosen race.

True or false? (Looking at a bar chart)

"Twice as many people like strawberry than lime".
Is this true or false?

Convince me.

Make up your own 'true/false' statement about the bar chart.

What's the same, what's different?

Pupils identify similarities and differences between different representations and explain them to each other

Create a question

Pupils ask (and answer) questions about different statistica representations using key vocabulary relevant to the objectives.
solve comparison, sum and difference problems using information presented in bar charts, pictograms, tables and other graphs

Comparison, sum and difference

Undertake one or more of three enquiries:
What vehicles are very likely to pass the school gate between 10:00 am and 11:00 am? Why? What vehicles would definitely not pass by? Why not? What vehicles would be possible but not very likely? Why? What if it were a different time of day? What if the weather were different?
Does practice improve estimation skills? Children estimate the lengths of five given lines and record the estimate, measured length and difference. They repeat the activity with five more lines to see whether their estimation skills have improved after feedback.
What would children in our class most like to change in the school? Children carry out a survey after preliminary research to whittle down the number of options to a sensible number, e.g. no more than five.
Children identify a hypothesis and decide what data to collect to investigate their hypothesis. They collect the data they need and decide on a suitable representation. In groups, they consider different possibilities for their representation and explain why they have made their choice.
In the first enquiry, children use tallies and bar charts. In the second, they use tables and bar charts to compare the two sets of measurements. In the third, they use a range of tables and charts to show their results, including Venn and Carroll diagrams They use ICT where appropriate.
\square
True or false? (Looking at a graph showing
how the class sunflower is growing over time) "Our sunflowe grew the fastest in July".
Is this true or false?

Convince me.

Make up your own 'true/false' statement about the graph.

What's the same, what's different?

Pupils identify similarities and differences between different representations and explain them to each other

Create a question

Pupils ask (and answer) questions about different statistical representations using key vocabulary relevant to the objectives.

