

M. Cornwell / K. Beaumont 2019

M. Cornwell / K. Beaumont 2019

602 - 594	Explore parts and whole on bar model, then use number line or mental method to count up.
600 2	594
-594	600
600 - 594 + 2.	602

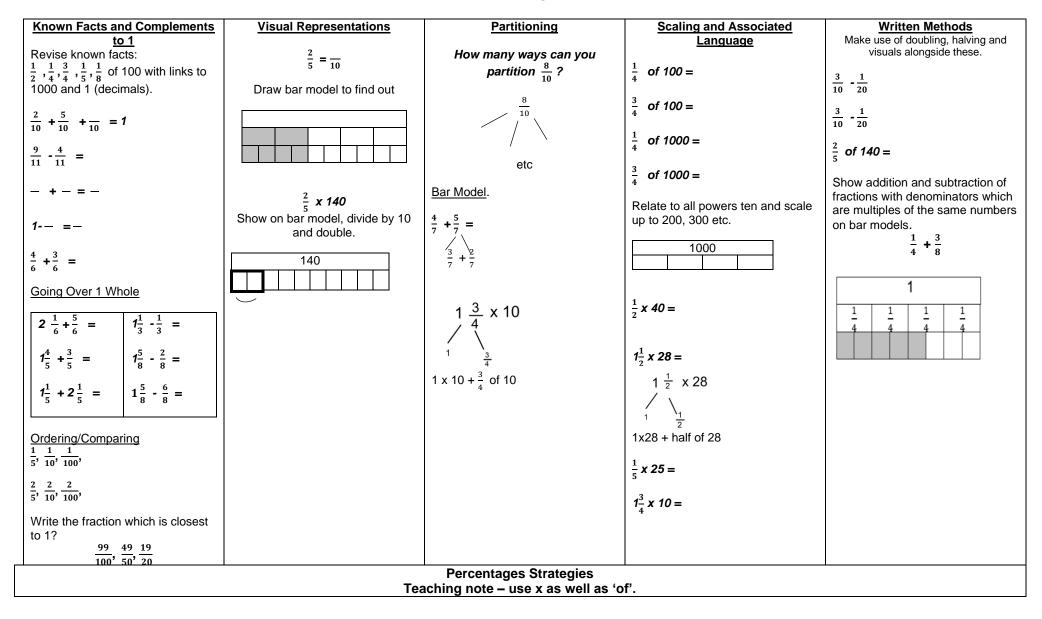
M. Cornwell / K. Beaumont 2019

M. Cornwell / K. Beaumont 2019

(i d 7 F (i x F X E E	$\frac{OR}{2} 33 \times 2 \times 2 \times 2$ (associative law) – doubling, doubling, doubling again 71 x 8 Find 71 x 4 and double it (show relationship between k4 and x8 on bar model). Find x 20 by doubling x10 X 5 by halving x 10. Explore Relationships E.g. x4, x8/x6, x12/x3, x 6 E.g. 6 x 6		
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		
	14 x 3 = x 6 etc. (See Scaling for halving examples - cover halves of multiples of 10, 100, 1000 etc.)		

Division Strategies

M. Cornwell / K. Beaumont 2019



Place Value and Known Facts	Halving/Halving Again	Partitioning	Scaling and Associated Language	Associative Law	Written Methods
326 ÷ 1 838 ÷ 1 505 ÷ 1 99 ÷ 11 120 ÷ 12 Unitising Use of unitising language 180 ÷ 3 (18 tens ÷ 3= 6 tens). Use tens counters to <u>share</u>). 270 ÷ 3 72 ÷ 9 720 ÷ 9 5400 ÷ 9 Grouping/Sharing Make decision about whether to share or group. 60 ÷ 15 = (by grouping) $100 \div 25$ 200 ÷ 25	Divide by 4 by halving and halving again: $96 \div 4 =$ $96 \div 2 \div 2$ (half and half again). 328 164 164 82 82 82 82 82	91 ÷ 7 = 70 21 70 ÷ 7 = 10 21 ÷ 7 = 3 95 ÷ 5 96 ÷ 8 96 ÷ 4 483 ÷ 3 = $1,210 \div 11 =$ 1100 110 Compensation 95 ÷ 5 = 100 ÷ 5 = 20 - (1x5), so 19 lots of 5 in 95.	Divide by 10 or 100 etc, Make 10 times smaller/10 times as small. $60 \div 10$ $486 \div 10$ Divide by 100 by dividing by 10 and 10 again. Show on place value chart (once covered decimals) $58 \div 10$ $58 \div 100$ $0.9 \div 10$ Include links to fractions/decimals 0.5×28 (Half x 28 or half of 28). 1.5×28 . 1 0.5 $1 \times 28 + half of 28$	Divide by 5 by dividing by 10 and doubling. Divide by 8 by dividing by 4 and halving. Divide by 6 by diving by 3 and halving. Divide by 20 by dividing by 10 and halving Show on number lines, arrays and bar models. 545 ÷ 5 Show on bar model, divide by 10 and double.	486 ÷ 3 288 ÷ 8 581 ÷ 7 Use alongside partitioning methods to develop conceptual understanding.

Fraction Strategies

M. Cornwell / K. Beaumont 2019

M. Cornwell / K. Beaumont 2019

Known facts/Scaling	Visual representations	Partitioning	Compensation/adjustment
Know 25%, 50%,75% are equivalent to $\frac{1}{4}$, $\frac{1}{2}$, $\frac{3}{4}$. Know 25%, 50%,75% of 100,1000 and 1 (decimal equivalents). Use of halving and halving again strategy. Link to 10,000, 100,000 etc.	20% of 1800 Show on bar model, divide by 10 and double.	Find 25%, 50% and 75% of whole numbers (using knowledge for halving/quartering by halving and halving again etc). E.g. 75% x 500 250 250 125 125 125 125 Use of 10% to find percentages which are multiples of 10. Use of 10% and doubling to find 20%, 40%, 80% through use of 10% and doubling or through finding $\frac{1}{5}$, $\frac{2}{5}$, $\frac{4}{5}$.	90% of 200 Find 10% and subtract. 40% of 460. Find 50% then take away 10%. 60% x 900, find half and then 10%.

M. Cornwell / K. Beaumont 2019

michelle_cornwell@hotmail.com

9

