

Calculation Policy / Teaching for Maths Mastery – Addition and Subtraction

This policy has been largely adapted from the White Rose Maths Hub Calculation Policy with further materials added.

It is a working document and will be revised and amended as necessary.

	Maths Working Wall – DISPLAY IT!					
Concrete	Use a real-life representation of the concept which children can see, tough and feel.	1000 100 10 1				
Pictorial	Show a pictorial representation of the concept.	the whole 5 3 2 1 a part a part				
Abstract	Show the mathematical representation of the concept. Using numerals helps to support learning moving from concrete and pictorial.	$6 \times 2 = 12$ $2 \times 6 = 12$ $12 \div 2 = 6$ $12 \div 6 = 2$ Factors of 12 are: 1, 2, 3, 4, 6 and 12				
Vocabulary	Use vocabulary related to the concept. This will be adapted when moving onto new areas of learning within mathematics.	Multiply, times, repeated addition, array, divide, group, multiples, factors.				

USE IT!

Foundation	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Real-life objects	Real-life objects	Real-life objects	Real-life objects	Real-life objects	Real-life objects	Real-life objects
0 – 9 digit cards	0 – 9 digit cards	0 – 9 digit cards	0 – 9 digit cards	0 – 9 digit cards	0 – 9 digit cards	0 – 9 digit cards
Number track to 10	Number line to 20	Number line to 100	Number line to 100	Number line including	Number line including	Number line including
				negative numbers	negative numbers	negative numbers
Numbered counting stick	Counting stick	Counting stick				
Tens frame	Tens frame	Tens frame				
	Place value charts –	Place value charts to a	Place value charts to			
	Tens and ones	Hundreds, tens and	Thousands, hundreds,	Ten thousands,	million and three	10 million and three
		ones	tens and ones	thousands, hundreds,	decimal places	decimal places
				tens, ones and tenths		
Interlocking cubes -	Interlocking cubes -	Dienes	Dienes	Dienes	Dienes	Dienes
Use one colour to	Use one colour to					
represent one amount	represent one amount					
			Place value counters	Place value counters	Place value counters	Place value counters
	Place value arrow	Place value arrow				
	cards – tens and ones	cards – tens and ones	cards – H, T, O	cards – Th, H, T, O	cards	cards
Part-part-whole mat	Part-part-whole mat	Part-part-whole mat	Part-part-whole	Part-part-whole	Part-part-whole	Part-part-whole
			model	model	model	model
Bar model with real-	Bar model with real	Bar model with	Bar model with	Bar model with	Bar model with	Bar model with
life objects	life objects/pictorial	counters /Dienes	numbers	numbers	numbers	numbers
	objects/representative	progressing to				
	objects eg. counters	numbers				
Bead strings – ten	Bead strings - twenty	Bead strings - hundred	Bead strings - hundred			
Numicon shapes	Numicon shapes	Numicon shapes	Numicon shapes	Numicon shapes	Numicon shapes	Numicon shapes
			Cuisenaire rods	Cuisenaire rods	Cuisenaire rods	Cuisenaire rods
Double sided counters	Double sided counters	Double sided counters	Double sided counters	Double sided counters	Double sided counters	Double sided counters
Multilink – use one	Multilink – use one	Multilink – use one	Multilink – use one	Multilink – use one	Multilink – use one	Multilink – use one
colour to model an	colour to model an	colour to model an	colour to model an	colour to model an	colour to model an	colour to model an
amount	amount	amount	amount	amount	amount	amount

Progression in the use of manipulatives to support learning.

Progress in the teaching of counting in Foundation Stage. Kinder Corner – 15 minute maths and Maths Mysteries Whole class teaching Maths Labs in continuous provision

Expected – Number

Children count reliably with numbers from 1-20, place them in order and say which is 1 more/less than a given number. Using quantities and objects, they add and subtract two single-digit numbers and count on or back to find the answer. They solve problems, including doubling, halving and sharing.

Pre-counting

The key focus in pre-counting is an understanding of the concepts more, less and the same and an appreciation of how these are related. Children at this stage develop these concepts by comparison and no counting is involved.

Ordering

Count by reciting the number names in order forwards and backwards from any starting point.

One to one correspondence

One number word has to be matched to each and every object. Lack of coordination is a source of potential error - it helps if children move the objects as they count, use large rhythmic movements, or clap as they

Cardinality (Knowing the final number counted is the total number of objects)

Count out a number of objects from a larger collection. Know the number they stop counting at will give the total number of objects.

Pre-counting ideas

Provide children with opportunities to sort groups of objects explicitly using the language of more and less.

Which group of apples has the most? Which aroup of apples has the least?

Ordering ideas

Provide children with opportunities to count orally on a daily basis. Rote count so that children are able to understand number order and can hear the rhythm and pattern. Use a drum or clap to keep the beat.

One to one correspondence ideas

Play counting games together moving along a track, play games involving amounts such as knocking down skittles.

Use traditional countina songs throughout the day ensuring children have the visual/kinaesthetic resources eq. 5 little ducks, 10 green bottles

Cardinal counting ideas

How many bananas are in my fruit bowl? Allow children to physically handle the

Provide children with objects to point to and move as they count and say the numbers.

Exceeding - Number

Children estimate a number of objects and check quantities by counting up to 20. They solve practical problems that involve combining groups of 2, 5 or 10 or sharing into equal groups.

Subitising (recognise small numbers without counting them)

Children need to recognise small amounts without counting them eg. dot patterns on dice, dots on tens frames, dominoes and playing cards as well as small groups of randomly arranged shapes stuck on

Abstraction

You can count anything - visible objects, hidden objects, imaginary objects, sounds etc. Children find it harder to count things they cannot move (because the objects are fixed), touch (they are at a distance), see, that move around. Children also find it difficult to count a mix of different objects, or similar objects of very different sizes.

Conservation of number - MASTERY!

Ultimately children need to realise that when objects are rearranged the number of them stays the same.

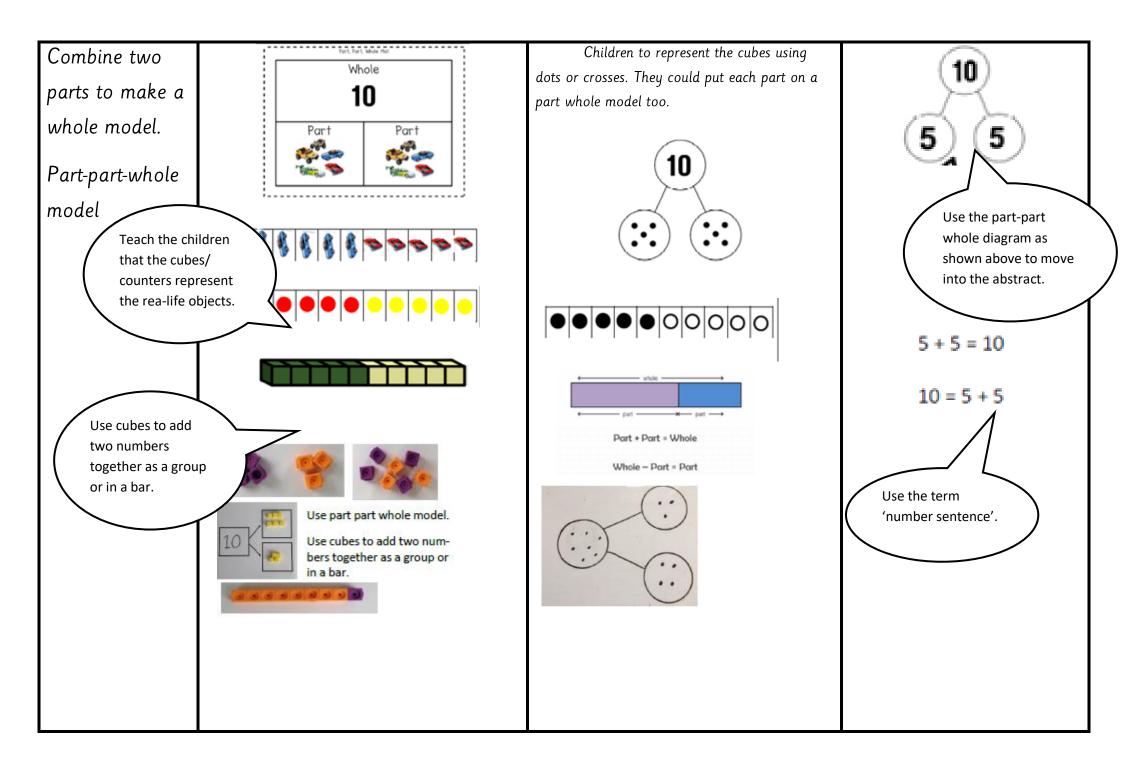
Subitising ideas

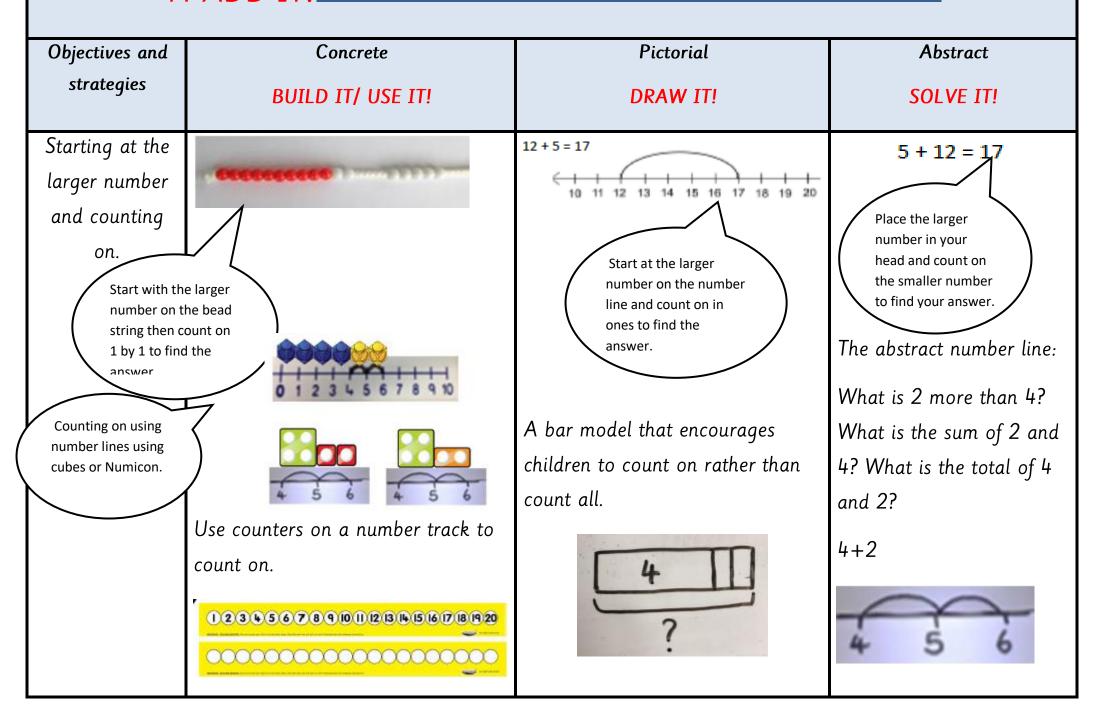
Provide children with opportunities to count by recognising amounts.

Abstraction ideas

How many pigs are in this picture?

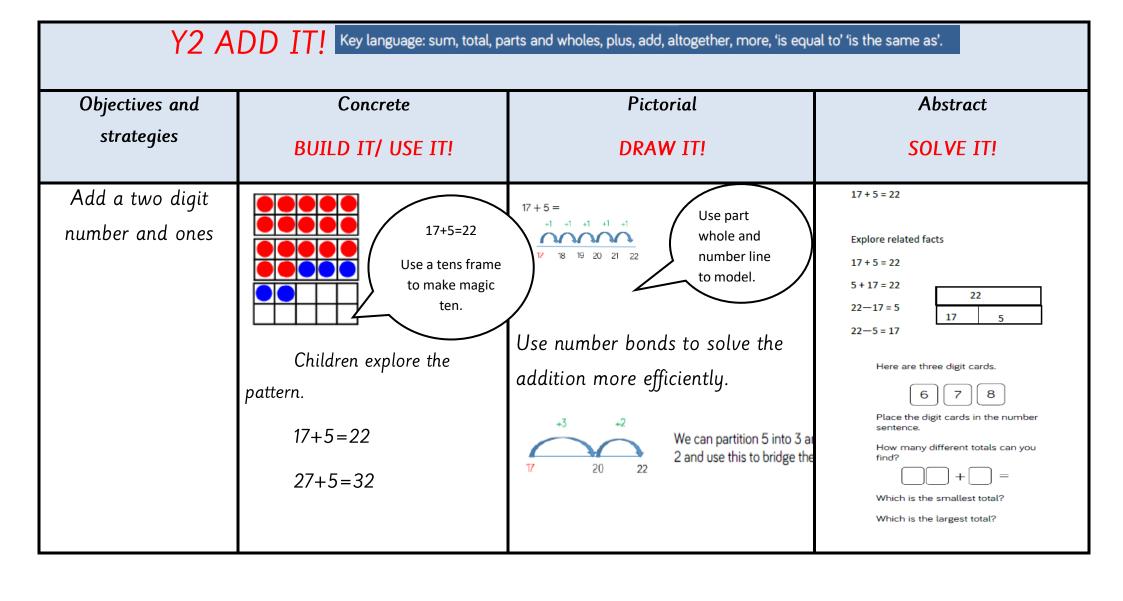
Provide children with a variety of objects




Conservation of Number

F2/ Y1 ADD IT! Key language: sum, total, parts and wholes, plus, add, altogether, more, 'is equal to' 'is the same as'.				
Objectives and	Concrete	Pictorial	Abstract	
strategies	BUILD IT/ USE IT!	DRAW IT!	SOLVE IT!	

Y1 ADD IT! Key language: sum, total, parts and wholes, plus, add, altogether, more, 'is equal to' 'is the same as'.


Y1 ADD IT! Key language: sum, total, parts and wholes, plus, add, altogether, more, 'is equal to' 'is the same as'.

Objectives and	d	Concrete	Pictorial	Abstract
strategies		BUILD IT/ USE IT!	DRAW IT!	SOLVE IT!
Regrouping to m	nake	Using tens frames and counters/	Children draw the tens frame.	Children develop an
10.		cubes or using Numicon.		understanding of equality.
This is an essential ski column addition later.	,	6+5	3 + 9 =	$6 + \Box = 11$ $6 + 5 = 5 + \Box$ $6 + 5 = \Box + 4$
Start with the largest number and use the smaller number to make 10. Use ten frames.	\		Use pictures of a number line. Regroup or partition the smaller number using the partpart whole model to make 10. $9+5=14$	7+4 = 11 If I am at seven, how many more do I need to make 10? How many more do I add on now?

Y1 ADD IT! Key language: sum, total, parts and wholes, plus, add, altogether, more, 'is equal to' 'is the same as'. Objectives and Concrete **Pictorial Abstract** strategies **BUILD IT/ USE IT! DRAW IT! SOLVE IT!** Represent and use Put 13 in your head, count back 4. What number are number bonds and 2 more than 5 you at? Use your fingers to related subtraction facts within 20. help. Children will need regular practice counting backwards. Use a variety of practical equipment to support this concept.

Y2 ADD IT! Key language: sum, total, parts and wholes, plus, add, altogether, more, 'is equal to' 'is the same as'.

Objectives and **Pictorial Abstract** Concrete strategies **BUILD IT/ USE IT! DRAW IT! SOLVE IT!** Adding three single 4+7+6 = 17digits. Put 4 and 6 together to make 10. Add on Combine the two Encourage children numbers that make 10 Add together three groups of objects. Draw a to use known facts. and then add on the picture to recombine the groups to make 10. remainder. Always, sometimes, never odd + odd + odd = oddFollowing on from making 10, make 10 with 2 of the digits (if possible) then add Use one digit numbers to test if this is true. E.g. on the third digit. 3 + 5 + 7 =Regroup and draw representation Which numbers would you add together first in the following number sentences? Why would you add those 3+5+7=8 + 2 + 6 =4 + 3 + 4 =Is there always an easier order to add three one digit numbers?

Y2 ADD IT! Key language: sum, total, parts and wholes, plus, add, altogether, more, 'is equal to' 'is the same as'.

Objectives	Concrete	Pictorial	Abstract
and strategies	BUILD IT/ USE IT!	DRAW IT!	SOLVE IT!
Adding		Use representations for base 10.	20 + 30 = 50
multiples of			70 = 50 + 20
ten	Model using dienes and bead		40 + □ = 60
	strings.	3 tens + 5 tens = tens 30 + 50 =	Circles represent 20 Triangles represent 10 Squares represent 50 What is the value of each row and column?

Y2 ADD IT! Key language: sum, total, parts and wholes, plus, add, altogether, more, 'is equal to' 'is the same as'.

Objectives and strategies	Concrete BUILD IT/ USE IT!	Pictorial DRAW IT!	Abstract SOLVE IT!
Add a two digit number and tens	25 + 10 = 35 Use deines. Explore that the ones digit does not change. Tens Ones III : IIII : Use place value charts and concrete materials to answer calculations.	Draw tens and ones. IMAGE NEEDED Number line 27 + 30 +10 +10 +10 27 37 47 57	27 + 10 = 37 27 + 20 = 47 27 + = 57

ADD IT! Key language: sum, total, parts and wholes, plus, add, altogether, more, 'is equal to' 'is the same as'.

Objectives and	Concrete	Pictorial	Abstract
strategies	BUILD IT/ USE IT!	DRAW IT!	SOLVE IT!
Add two 2 digit	// // // // // // // // // // // // //	Draw tens	25 + 47
numbers		23+54 = and ones.	20 + 5
	Model using dienes, place value		5+ 7 =12
	counters and numicon.	Use number line and bridge ten using	60 + 12 = 72
		part whole if necessary.	
		420 45 Or +20 +3 +2	What digits could go in the boxes?
	+ :-	47 67 72 47 67 70 72	2 + 5 = 87

Y2 ADD IT! Key language: sum, total, parts and wholes, plus, add, altogether, more, 'is equal to' is the same as'.

Objectives and	Concrete	Pictorial	Abstract
strategies	BUILD IT/ USE IT!	DRAW IT!	SOLVE IT!
Use known number facts Part part whole	Children explore ways of making numbers within 20.	20	
Using known facts	+	Children draw representations : + : = :: + =	3+4 = 7 Leads to $30+40=70$ Complete the part whole models below: 10 6 40
Bar model	3 + 4 = 7	7 + 3 = 10	23 25 ? 23 + 25 = 48

Y3 ADD IT! Key language: sum, total, parts and wholes, plus, add, altogether, more, 'is equal to' 'is the same as'.

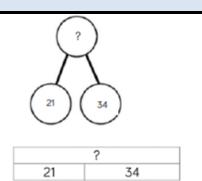
Objectives and **Pictorial Abstract** Concrete strategies **BUILD IT/ USE IT! SOLVE IT!** DRAW IT! Column addition -Model using dienes or numicon. After practically using base 10 and place Only select numbers which do value counters, children can draw the 0 not involve regrouping. no regrouping dienes or place value counters to help (friendly numbers) Add the ones first, then the tens, them solve addition calculations. then the hundreds. Add two 2 or 3 digit tens ones numbers. Add together 2 2 3 the ones first, then the tens hundreds tens ones //// 000 000 3 3 7 6 9 0000 21+42= Move onto using place value counters.

Y3 ADD IT! Key language: sum, total, parts and wholes, plus, add, altogether, more, 'is equal to' 'is the same as'.

Objectives and strategies	Concrete BUILD IT/ USE IT!	Pictorial DRAW IT!	Abstract SOLVE IT!
Column addition with regrouping. Make both numbers on the place value grid. Add up the ones and exchange 10 ones for 10 and so on.	Exchange ten ones for a ten. Model using numicon and place value counters. This can also be done with dienes to help children clearly see that 10 ones equals 1 ten and 10 tens equal 100. Continue using place value counters as children begin to work with decimals.	Children can draw a representation of the grid to further support their understanding, carrying the ten underneath the line.	Start by partitioning the numbers before formal column to show the exchange. $ \begin{array}{cccc} 20 & + & 5 \\ \underline{40} & + & 8 \\ 60 & + & 13 & = 73 \end{array} $ $ \begin{array}{ccccc} 536 \\ \underline{+85} \\ \underline{621} \\ 11 \end{array} $

Y4-6 ADD IT! Key language: sum, total, parts and wholes, plus, add, altogether, more, 'is equal to' is the same as'.

Objectives and	Concrete	Pictorial	Abstract
strategies	BUILD IT/ USE IT!	DRAW IT!	SOLVE IT!
Y4 add numbers	Children continue to use deines	Draw representations using a place value	Continue from previous work to
with up to 4 digits.	or place value counters to add,	grid.	carry hundreds as well as tens.
	exchanging ten ones for a ten and ten tens for a hundred and		3517
	ten hundreds for a thousand. Hundreds Tens Ones		+ 396
	Hundreds Tens Ones	7 1 5 1	Relate to money and measures.
	= 1000	•	

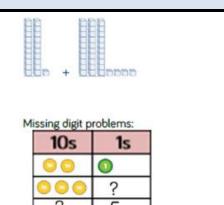

Y4-6 ADD IT! Key language: sum, total, parts and wholes, plus, add, altogether, more, 'is equal to' 'is the same as'.

Objectives and	Concrete	Pictorial	Abstract
strategies	BUILD IT/ USE IT!	DRAW IT!	SOLVE IT!
Y5 add numbers with more than 4 digits. Add decimals with 2 decimal places,	As year 4 tens ones tenths hundredths Introduce decimal place	2.37 + 81.79 tens ones tentes hundredtes 00 000 000 0000 00000 00000 00000 00000 0000	72.8 + 54.6 127.4 1 1
including money.	value counters and model exchanging for addition.	6	£23 59 +£7 55 €31.14

Y4-6 ADD IT! Key language: sum, total, parts and wholes, plus, add, altogether, more, 'is equal to' 'is the same as'.

Objectives and	Concrete	Pictorial	Abstract
strategies	BUILD IT/ USE IT!	DRAW IT!	SOLVE IT!
Y6 add several numbers of increasing complexity. Including adding money, measure and decimals with different decimal points.	As year 5	As year 5	8 1,05 9 3668 15,301 + 20,551 120,579 1111 9 0 8 0 for place holders. 5 9 · 7 70 + 1 · 3 00 93 · 5 1 1

Conceptual variation; different ways to ask children to solve 21+34

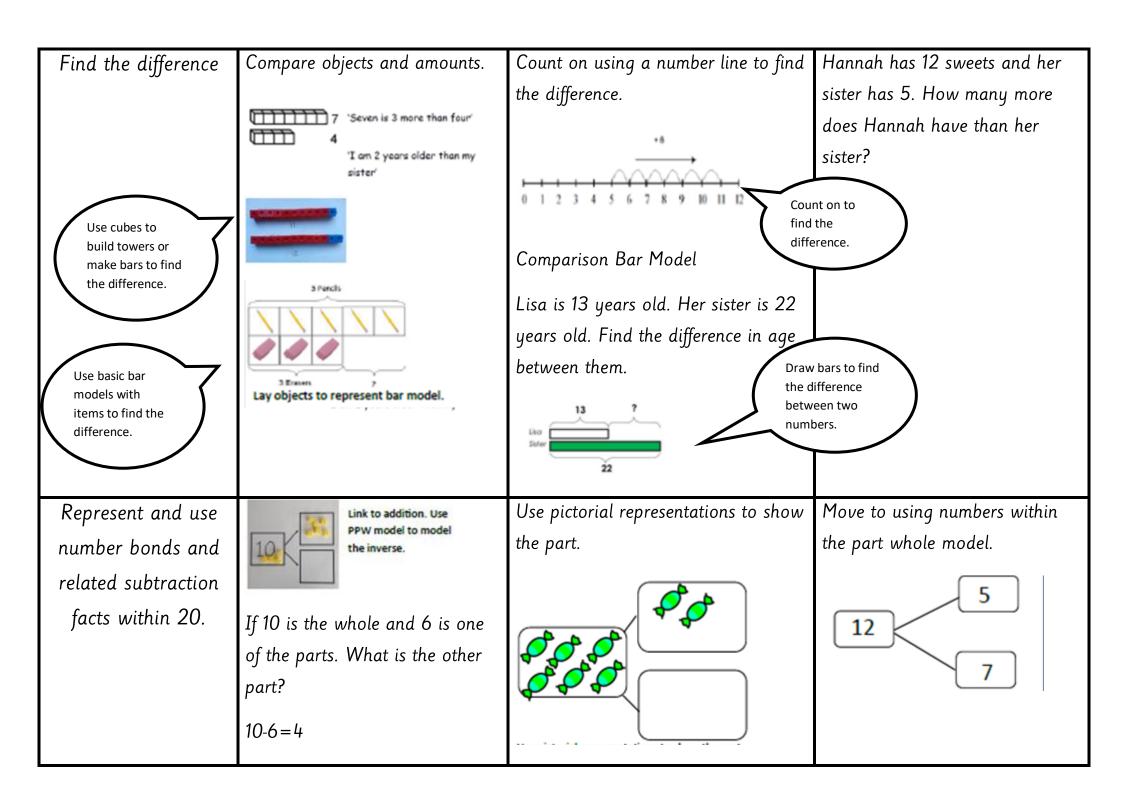


Word problems:

In year 3, there are 21 children and in year 4, there are 34 children. How many children in total?

21

+34



F2/ Y1	SUB [*]	TRAC	T IT!
--------	------------------	------	-------

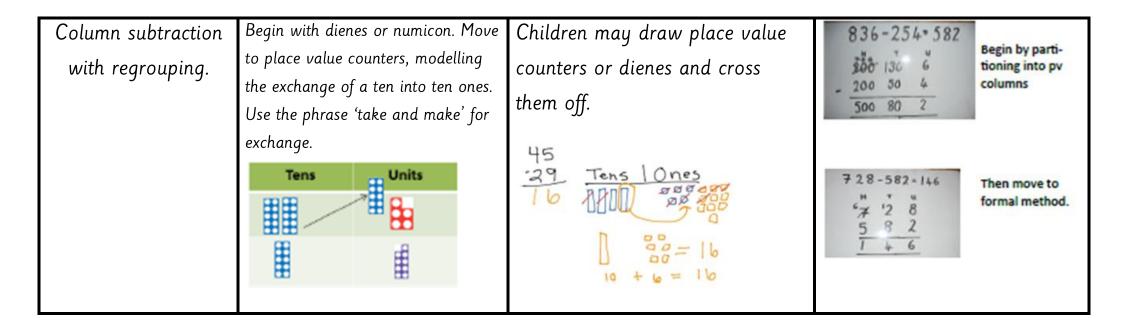
Objectives and strategies	Concrete BUILD IT/ USE IT!	Pictorial DRAW IT!	Abstract SOLVE IT!
Take away ones	Use real-life physical objects, counters, cubes etc. to show how objects can be taken away. 6-4=2 4-2=2 6-2=4	5-2=3 The state of the state o	4=6-2 $18-3=15$ $8-2=6$

Y1 SUBTRACT IT!

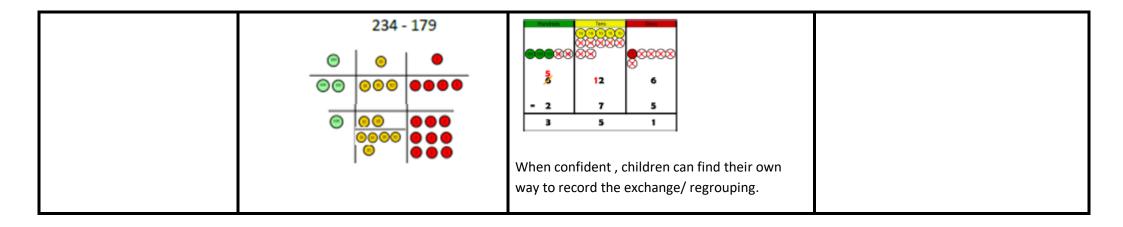
Objectives and	Concrete	Pictorial	Abstract		
strategies	BUILD IT/ USE IT!	DRAW IT!	SOLVE IT!		
Counting back	Move objects away from a	Count back in ones using a number line or number track. $5 - 3 = 2$	Put 13 in your head, count back 4. What number are you at?		
Use counters and move them away from the group whilst counting backwards.	group, counting backwards. Move the beads along the bead string as you count backwards.	9 10 11 12 13 14 15	Children will need regular practise counting backwards.		

Make 10	14-9=	13-7 =	16-8 =
	Make 14 on the ten frame. Take away to make ten, then take one more away so that you have taken 5.	Jump back 3 first, then another 4. Use ten as the stopping point.	How many do we take off first to get to 10? How many left to take off?
Bar Model		3333333 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	8 2
	5—2 = 3		10= 8+2
			10= 2+8
			10-2 = 8
			10-8= 2

Y2	51	IR	TRA	CT	IT!
1 2		וטנ			11:


Objectives and strategies	Concrete	Pictorial	Abstract
strutegies	BUILD IT/ USE IT!	DRAW IT!	SOLVE IT!
Regroup a ten into	Use a place value chart to	22 222	
ten ones.	show how to change a ten into	33 <i>>3></i>	20-4 = 16
	ten ones, use the term "take and	20 – 4 =	
	make."		
	11 3 3 "		
Partitioning to	34-13 = 21	Children draw representations of	43-21 = 22
subtract without	Use dienes to show	dienes and cross off.	
regrouping.	how to partition	п -	
"friendly numbers"	the number when subtracting without		
<i>y</i>	regrouping.		
	then down	43—21 = 22	
	//// <u></u>		

Make 10 strategy


34–28
Use a bead bar or bead strings to model counting to next ten and the rest.

Use a number line to count on to next ten and then the rest.

Y3 SUBTRACT IT!				
Objectives and	Concrete	Pictorial	Abstract	
strategies	BUILD IT/ USE IT!	DRAW IT!	SOLVE IT!	
Column subtraction	Use dienes or numicon to model.	Draw representations to support	47-24=23	
without regrouping. 'friendly numbers'	47-32	understanding.	Intermediate step may be needed to lead to clear subtraction understanding.	

Y4 SUBTRACT IT!				
Objectives and	Concrete	Pictorial	Abstract	
strategies	BUILD IT/ USE IT!	DRAW IT!	SOLVE IT!	
Subtracting tens	Model the process of	Children to draw place value	Use the phrase 'take and make' for	
and ones.	exchange using numicon, dienes	counters and show their	exchange.	
Subtract with up to 4 digits. Introduce decimal subtraction through the context of money.	and then move to place value counters.	exchange — see Y3	2 x 5 4 - 1 5 6 2 1 1 9 2	

Objectives and strategies	Concrete BUILD IT/ USE IT!	Pictorial DRAW IT!	Abstract SOLVE IT!
Year 5 Subtract with at least 4 digits, ncluding money and measures. Subtract with decimal values, including mixtures of integers and decimals and aligning the decimal.	As Year 4	Children to draw the place value counters and show their exchange. – See Y3/4	37086 - 2128 28,928 Use zeros for place holders. 3725 67965

Y6 SUBTRACT IT!				
Objectives and	Concrete	Pictorial	Abstract	
strategies	BUILD IT/ USE IT!	DRAW IT!	SOLVE IT!	
Year 6 — Subtract with increasingly			** 8 10,6 9 9 - 8 9,9 4 9 6 0,7 5 0	
large and more complex numbers.			1/10/5 · 1/4 / 1 9 kg - 36 · 08 0 kg 6 9 · 3 3 9 kg	