Kruskal's Algorithm

Example 1

The following network has 9 vertices. The numbers represent the weights of the edges.

(a) Use Kruskal's algorithm, showing the order in which you select the edges, to find the minimum spanning tree for the network.
(b) State the weight of your minimum spanning tree.
(c) Draw your minimum spanning tree.

SOLUTION

Kruskal's Algorithm

Example 1
The following network has 9 vertices. The numbers represent the weights of the edges.

(a) Use Kruskal's algorithm, showing the order in which you select the edges, to find the minimum spanning tree for the network.
(b) State the weight of your minimum spanning tree.
(c) Draw your minimum spanning tree.
(a) we start with the smallest weight $A B=8$ (mark off as you go along)
then IH $=9$ (next smallest)
then $C D=10$
then $E F=11$
then $B E=13$
then $B C=14$
then $D I=20$ (we do not select AF since these are already connected through B and E. his would create a "cycle" which we do finally $H l_{1}=22$ not want) all vertices are connected
(b) Add ip the selected weights $=107$

Now try these

Question 1.

The following diagram shows the lengths, in miles, of roads connecting ten towns.

Use Kruskal's algorithm, showing the order in which you select the edges, to find the minimum spanning tree for the network. Draw your minimum spanning tree and state its length.

Question 2.

The following diagram shows a network of roads connecting eight towns. The number on each arc represents the distance, in miles, between two towns.

Use Kruskal's algorithm to find the minimum spanning tree for the eight towns. State the length of your minimum spanning tree.

SohuTIONS

Now try these

Question 1.

The following diagram shows the lengths, in miles, of roads connecting ten towns.

$e_{F}=1$
$B D=2$
$D C=3$
$E G=3$
$H J=4$
$A D=5$
$I J=S$
$H G=6$
$C F=\frac{7}{36}$
Use Kruskal's algorithm, showing the order in which you select the edges, to find the minimum spanning tree for the network. Draw your minimum spanning tree and state its length.

Question 2.

The following diagram shows a network of roads connecting eight towns. The number on each arc represents the distance, in miles, between two towns.

Use Kruskal's algorithm to find the minimum spanning tree for the eignt towns. State the sength of your minimum spanning tree.
$D \rightarrow S=11$
$S \rightarrow N=12$
$S \rightarrow M=15$
$R \rightarrow Y=22$
$Y \rightarrow L=24$
$R \rightarrow m=3!$
$P \rightarrow D=56$

