

Hazards

- A hazard is something that can cause harm.
- Chemicals are labelled with hazard symbols to warn people of potential dangers.
- Some common hazard symbols are:

Risk WS

- A **risk** is the chance that a hazard will actually cause harm.
- Risks can be reduced by taking **precautions**. E.g. wearing eye protection to prevent chemicals splashing in your eyes or tying long hair back to prevent it catching fire in a Bunsen flame.

Acids

- Common substances at home that contain acids include: citric acid, vinegar, fizzy drinks and car battery acid.
- Acids have a sour taste.
- Most concentrated acids are **corrosive**. If they are added to water they become more **dilute**. Dilute acids are less hazardous. Many dilute acids are **irritant**.

Alkalis

- Common substances at home that contain alkalis include: toothpaste, drain cleaner, oven cleaner.
- Many alkalis are metal hydroxide solutions.
- An alkali can be described as a soluble base. A base is any substance, soluble or insoluble, that neutralises an acid forming a salt and water.

Indicators

- Indicators change colour and can be used to detect acids, alkalis and neutral solutions.
- Litmus is a common indicator.

Solution	Colour of litmus
acid	red
neutral	purple
alkali	blue

pH scale

- A numbered scale from 1 to 14.
- Acids have a pH less than 7. The lower the pH, the more acidic the substance is. The lower the pH, the more hazardous the acid is.
- Neutral solutions have pH 7.
- Alkalis have a pH more than 7. The higher the pH, the more alkaline the substance is. The higher the pH, the more hazardous the alkali is.

str	rong ac	cid	weak acid		id	neutral	weak alkali		strong alkali				
1	2	3	4	5	6	7	8	9	10	11	12	13	14
stomac acid	stomach vinegar acid		fizzy drinks		skin	pure water	indigestion powder		ion washing powder			ven leaner	
	lemo	on juice			milk		toothpa	aste					

Neutralisation

• This is a reaction between an acid and an alkali.

acid + alkali → salt + water

• It is also a reaction between an acid and a base.

acid + base \rightarrow salt + water

Word equation

- This summarises a reaction by writing the names of the substances you start with and the names of the new substances that are made.
- **Reactants** are the substances you start with and are written on the left side of the word equation.
- **Products** are the new substances that are made and are written on the right side of the word equation.
- There is an arrow between the reactants and products. The arrow means 'react to form'. Do not write an equals sign, =.
- For example

hydrochloric acid + sodium hydroxide \rightarrow sodium chloride + water

Hydrochloric acid and sodium hydroxide are the reactants.

Sodium chloride and water are the products.

Notice the arrow between the reactants and the products.

Salts

- Salts are made when an acid reacts with an alkali or a base.
- Salts names are made of two words.
- The first part of the name of the salt is the same as the metal in the alkali or base.
- The second part of the name of the salt comes from the acid.

Acid	Second part of the name of the salt	Example
hydrochloric acid	chloride	Zinc chloride is made from zinc oxide and hydrochloric acid
nitric acid	nitrate	Magnesium nitrate is made from magnesium oxide and nitric acid
sulfuric acid	sulfate	Copper sulfate is made from copper oxide and sulfuric acid

Neutralisation in everyday life

- Antacids are indigestion remedies. People take these medicines if they have indigestion caused by too much acid in the stomach. The antacid contains a base that neutralises the extra acid.
- Soil can become too acidic for some crops to grow. Farmers spread lime (a base) on the soil to neutralise the acid.
- Toothpaste contains a mild alkali to neutralise the acid in our mouths.
- Alkalis are used to neutralise the acidic gases coming out of power stations.
- Sulfuric acid reacts with iron oxide in rust and removes it from the surface of an object.