

A Level Physics Transition Baseline Assessment

40 Marks – 40 Minutes

A single piece of graph paper is required for the completion of the assessment.

You may use a calculator.

Question Number	Topic	Score
1	Symbols and Prefixes	/3
2	Standard Form	/4
3	Re-arranging Equations	/3
4	Atomic Structure	/3
5	Recording Data	/3
6	Graphing	/4
7	Forces and Motion	/10
8	Electrical Circuits	/5
9	Waves	/5
		Total /40

Q1 Complete the following table:

Unit prefix	Meaning
k (kilo)	x 1000
	X 0.000001
M (mega)	
N (nano)	

[3]

Q2

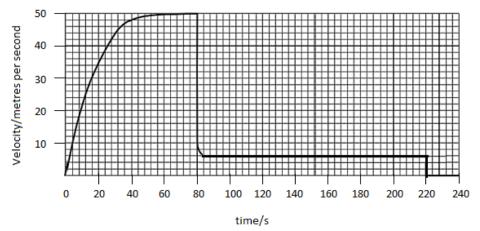
- a) Write the following numbers into standard form.
 - i. 0.012
 - ii. 120000
 - iii. 0.00000012

[3]

- b) Complete the following calculations and right your answers to an appropriate number of significant figures.
 - i. 2.1 X 0.15
 - ii. 0.345 ÷ 0.114

[4]

- Q3 Re-arrange the following equations to make R the subject of the equation.
 - a) Q = WERTY
 - b) $Q^2 = WR^2$
 - c) $Q = W RT^2$


[3]

Q4 N	am	e the 3 particles (from GCSE				
	a)	Which one of the above par	rticles is not found in tl			
k		Which of the above particle element?	es will be found in varyi		iclei of isotopes of th	ie same
 Q5	•••••				[1]	
	a)	Complete the following tab	le			
	Voltage ()		(A)			
	Voltage ()	Repeat 1	Repeat 2	Average		
		2	0.23	0.26	0.25	
		4	0.46	0.53		
		6	0.69	0.78	0.74	-
		8	0.92	1.04	0.98	_
		10	1.15	1.30	1.23]
Q6						[3]
		a) Use your piece of graph pline of best fit through your		f Current (x-axis) again	ist Voltage (y-axis) di	rawing a
						[4]
		b) Find the gradient of your	line of best fit			
						[3]

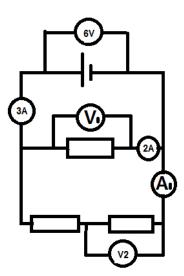
Q7 The graph below shows the journey of a skydiver after they have left the plane.

a) Explain the shape of the graph commenting on how and why the forces have changed.				

b) Calculate the distance travelled whilst at the second terminal velocity.

[2]

c) Calculate the **average** acceleration in the first 20 seconds.

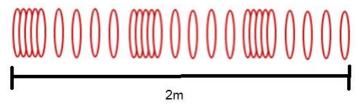

[2]

Q8

a) Draw a circuit diagram to show how the resistance of a filament bulb could be measured using an ammeter and a voltmeter.

[2]

b) Look at the circuit diagram below. All of the resistors are identical.



Write the missing values of current and potential difference:

- i. V1 =
- ii. V2 =
- iii. A1 =

Q9 The diagram below shows a diagram of 3 complete longitudinal wave oscillations on a slinky:

a)	State the wavelength of the wave shown
••	[1
b)	Label a complete wavelength on the diagram above with the correct symbol used for wavelength in GCSE and A Level Physics
	[1
c)	If the above wave had a frequency of 5Hz how long would it take an individual hoop to complete full oscillation?
	[1
d) Calc	ulate the speed of the wave
	$wavespeed = frequency \times wavelength$
	Wave speed = Unit[2