GAS VOLUMES 1
Volume $\left(\mathrm{dm}^{3}\right)=24 \times$ moles

The volume must be in dm^{3} (there are 1000 cm^{3} in $1 \mathrm{dm}^{3}$).

$$
\text { vol in } \mathrm{dm}^{3}=\frac{\text { vol in } \mathrm{cm}^{3}}{1000}
$$

Give all answers to 3 significant figures.

1 Find the volume of the following gases (measured at room temperature and pressure).
a 4.00 moles of oxygen $\left(\mathrm{O}_{2}\right)$
b 0.250 moles of methane $\left(\mathrm{CH}_{4}\right)$
c $\quad 15.0 \mathrm{~g}$ of argon (Ar)

```
volume = 4.00 x 24 = 96.0 dm
volume = 0.25 x 24 = 6.00 dm
moles Ar = 15 = 0.375 mol volume = 0.375 x 24 = 9.00 dm
moles CO2 = 0.220
d 0.220 g of carbon dioxide \(\left(\mathrm{CO}_{2}\right)\) moles \(\mathrm{CO}_{2}=\frac{0.220}{44}=0.00500 \mathrm{~mol}\) volume \(=0.00500 \times 24=0.120 \mathrm{dm}^{3}\)
```

2 Find the number of moles of the following gases (measured at room temperature and pressure).
a $48.0 \mathrm{dm}^{3}$ of carbon monoxide (CO) moles $\mathrm{CO}=\frac{48,0}{24}=2.00 \mathrm{~mol}$
b $1.20 \mathrm{dm}^{3}$ of hydrogen $\left(\mathrm{H}_{2}\right) \quad$ moles $\mathrm{H}_{2}=\frac{1.20}{24}=0.0500 \mathrm{~mol}$
c $360 \mathrm{~cm}^{3}$ of oxygen $\left(\mathrm{O}_{2}\right) \quad$ moles $\mathrm{O}_{2}=\frac{360}{24000}=0.01500 \mathrm{~mol}$

3 Find the mass of the following gases (measured at room temperature and pressure).
a $7.20 \mathrm{dm}^{3}$ of ammonia $\left(\mathrm{NH}_{3}\right)$

moles $\mathrm{NH}_{3}=\frac{7.20}{24}=0.300 \mathrm{~mol}$	mass $=17 \times 0.300=5.10 \mathrm{~g}$
moles $\mathrm{N}_{2}=\frac{480}{24000}=0.0200 \mathrm{~mol}$	mass $=28 \times 0.0200=0.560 \mathrm{~g}$
moles $\mathrm{O}_{2}=\frac{100}{24000}=0.00417 \mathrm{~mol}$	mass $=32 \times 0.00417=0.133 \mathrm{~g}$

c $100 \mathrm{~cm}^{3}$ of oxygen $\left(\mathrm{O}_{2}\right)$

$$
\text { moles } \mathrm{O}_{2}=\frac{100}{24000}=0.00417 \mathrm{~mol} \quad \text { mass }=32 \times 0.00417=0.133 \mathrm{~g}
$$

Find the volume of hydrogen gas (measured at room temperature and pressure) formed when 0.540 g of calcium reacts with hydrochloric acid.

$$
\mathrm{Ca}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{CaCl}_{2}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})
$$

```
moles Mg = 0.540
moles H2}=0.0135 mol
volume H2 H 24 x 0.0135 = 0.324 dm
```

5 Find the volume of carbon dioxide gas (measured at room temperature and pressure) formed when 1.50 g of calcium carbonate reacts with hydrochloric acid.

$$
\mathrm{CaCO}_{3}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{CaCl}_{2}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{CO}_{2}(\mathrm{~g})
$$

```
moles \(\mathrm{CaCO}_{3}=\frac{1.50}{100}=0.0150 \mathrm{~mol}\)
moles \(\mathrm{CO}_{2}=0.0150 \mathrm{~mol}\)
volume \(\mathrm{CO}_{2}=24 \times 0.0150=0.360 \mathrm{dm}^{3}\)
```

6 Find the volume of carbon dioxide gas (measured at room temperature and pressure) formed when 6.00 kg of ethane $\left(\mathrm{C}_{2} \mathrm{H}_{6}\right)$ burns in oxygen.

$$
2 \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})+7 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

```
moles \(\mathrm{C}_{2} \mathrm{H}_{6}=\underline{6000}=200 \mathrm{~mol}\)
        30
moles \(\mathrm{CO}_{2}=400 \mathrm{~mol}\)
volume \(\mathrm{CO}_{2}=24 \times 400=9600 \mathrm{dm}^{3}\)
```

| Area | Strength | To develop | Area | Strength | To develop | Area | Strength | To develop |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Done with care and thoroughness | | | Can work out moles from mass | | | | | |
| Shows suitable working | | | Can work out moles from gas volume | | | | | |
| Can work our gas volume from moles round too much | | | | | | | | |
| Can work out M_{r} | | | Can work out mass from moles | | | Give figs | | |

