

The volume must be in dm³ (there are 1000 cm³ in 1 dm³). vol in dm³ = $\frac{\text{vol in cm}^3}{1000}$

Give all answers to 3 significant figures.

1 Find the volume of the following gases (measured at room temperature and pressure).

a 4.00 moles of ox	xygen (O ₂) volume = 4.00 x 24	= 96.0 dm^3	
b 0.250 moles of m	nethane (CH ₄) volume = 0.25×24	= 6.00 dm^3	
c 15.0 g of argon (<i>i</i>	(Ar) moles Ar = $\frac{15}{40}$ = 0.	375 mol volume =	$0.375 \times 24 = 9.00 \text{ dm}^3$
d 0.220 g of carbor	n dioxide (CO ₂) moles CO ₂ = $\frac{0.220}{44}$	= 0.00500 mol volume =	$0.00500 \text{ x } 24 = 0.120 \text{ dm}^3$

2 Find the number of moles of the following gases (measured at room temperature and pressure).

а	48.0 dm ³ of carbon monoxide (CO) moles CO = $\frac{48,0}{24}$ = 2.00 mol				
b	1.20 dm^3 of hydrogen (H ₂)	moles $H_2 = \frac{1.20}{24} = 0.0500$ mol			
с	360 cm^3 of oxygen (O ₂)	moles O ₂ = <u>360</u> = 0.01500 mol 24000			

3 Find the mass of the following gases (measured at room temperature and pressure).

а	7.20 dm^3 of ammonia (NH ₃)	moles $NH_3 = \frac{7.20}{24} = 0.300 \text{ mol}$	mass = 17 x 0.300 = 5.10 g
b	480 cm^3 of nitrogen (N ₂)	moles $N_2 = \frac{480}{24000} = 0.0200 \text{ mol}$	mass = 28 x 0.0200 = 0.560 g
С	100 cm^3 of oxygen (O ₂)	moles O ₂ = <u>100</u> = 0.00417 mol 24000	mass = 32 x 0.00417 = 0.133 g

4 Find the volume of hydrogen gas (measured at room temperature and pressure) formed when 0.540 g of calcium reacts with hydrochloric acid.

```
Ca(s) + 2HCl(aq) \rightarrow CaCl_2(aq) + H_2(g)
```

moles Mg = $\frac{0.540}{40}$ = 0.0135 mol moles H₂ = 0.0135 mol volume H₂ = 24 x 0.0135 = 0.324 dm³

5 Find the volume of carbon dioxide gas (measured at room temperature and pressure) formed when 1.50 g of calcium carbonate reacts with hydrochloric acid.

 $CaCO_3(s) + 2HCl(aq) \rightarrow CaCl_2(aq) + H_2O(I) + CO_2(g)$

moles $CaCO_3 = \frac{1.50}{100} = 0.0150 \text{ mol}$ moles $CO_2 = 0.0150 \text{ mol}$

volume $CO_2 = 24 \times 0.0150 = 0.360 \text{ dm}^3$

6 Find the volume of carbon dioxide gas (measured at room temperature and pressure) formed when 6.00 kg of ethane (C₂H₆) burns in oxygen.

 $2C_2H_6(g) + 7O_2(g) \rightarrow 4CO_2(g) + 6H_2O(I)$

moles $C_2H_6 = \frac{6000}{30} = 200 \text{ mol}$

moles $CO_2 = 400$ mol

volume $CO_2 = 24 \times 400 = 9600 \text{ dm}^3$

Area	Strength	To develop	Area	Strength	To develop	Area	Strength	To develop
Done with care and thoroughness			Can work out moles from mass			Does not round too much		
Shows suitable working			Can work out moles from gas volume			Can use sig figs		
Can work our gas volume from moles			Can work out mass from moles			Gives units		
Can work out <i>M</i> _r			Use equation to find reacting moles					