

R

1 Match the cards to show what each letter represents in the general equation of a straight line.

у

The *y*-intercept of the line

m

The horizontal coordinate of a given point on the line

 \boldsymbol{x}

The vertical coordinate of a given point on the line

c

The gradient of the line

Here are the equations of eight lines.

A
$$y = 5x - 2$$

C
$$y = -7x - 2$$

E
$$y = 12 - \frac{3}{2}x$$

G
$$5x + 7 = y$$

B
$$y = 3x - 9$$

D
$$y = \frac{-3x}{2} + 2$$

$$\mathbf{F} y = 5 + 3x$$

H 19 –
$$7x = y$$

a) What is the gradient of each line?

b) Identify the four pairs of parallel lines.

How did you identify them?

Write the equations of three lines parallel to y = 9x + 1

Compare answers with a partner. How many different answers are there?

4 Here are the equations of eight lines.

A
$$y = 3x + 7$$

C
$$y = \frac{1}{2}x - 2$$

E
$$5x - 2 = y$$

G
$$y = 7 - 4x$$

B
$$\frac{3x}{4} + \frac{9}{2} = y$$

D
$$y = 4.5 - x$$

$$\mathbf{F} \frac{19}{5} - 17x = y$$

H
$$y = 11x + 3.8$$

a) What is the *y*-intercept of each line?

G
$$c =$$

b) There are four pairs of lines that intercept the *y*-axis at the same point. Identify these lines and the point at which they intercept the *y* axis.

Lines ____ and ___ both intercept the y-axis at the point (,).

Lines ____ and ___ both intercept the y-axis at the point (,).

Lines ____ and ___ both intercept the y-axis at the point (,).

Lines ____ and ____ both intercept the *y*-axis at the point (_____, ____).

Line P is given by the equation y = 23x + 19.2

Write the equations of three lines that intercept the y-axis at the same point as line P.

Compare answers with a partner. How many different answers are there?

6 Write the values of m and c for each line.

a)
$$y = 15x + 7$$

$$m =$$

b)
$$y = 15x - 7$$

c)
$$y = 7 - 15x$$

Complete the table.

The first row has been done for you.

Equation	Gradient	Coordinates of y -intercept
y = mx + c	m	(0, c)
y = 5x + 7		
y = 3x - 17		
y = 2 - 11x		
$\frac{15}{3}x + \frac{1}{4} = y$		
y = x		
3 + 5 - x = y		
y = 3x +		(0, 9)
$y = \boxed{ x + 2.5}$	-5	

Whitney is identifying the gradient and y-intercept of a straight line.

$$y = 13 - 2x$$

$$m = 13 \qquad c = 2$$

a) Write two things wrong with Whitney's workings.

1. _____

2.

b) Write the correct gradient and y-intercept of the straight line.

 $m = \boxed{ \qquad \qquad c = \boxed{ }}$

Line Q is given by the equation y = 1 + 9x. Line R is given by the equation $y = 9x + \frac{7}{7}$

Dexter says, "Lines Q and R are parallel because they have the same gradient."

Do you agree with Dexter? ______

Explain your answer.

- Three lines, L_1 , L_2 and L_3 , are drawn on a coordinate grid.
 - a) L_1 has a gradient of $\frac{5}{4}$ and intercepts the y-axis at the point (0, -1). What is the equation of L_1 ?
 - **b)** L_2 is parallel to L_1 and intercepts the y-axis at the point $(0, \frac{2}{3})$. What is the equation of L_2 ?
 - c) L_3 has a gradient of $-\frac{5}{7}$ and intercepts the y-axis at the same point as L_2 What is the equation of L_3 ?

