## AQA (Trilogy) Combined Science GCSE Student Progress Sheet

## Name:

## Target:

## Unit 6.3 - Particle Model of Matter

### 6.3.1. Changes of State and the Particle Model

### 6.3.1.1. Density of Materials



| a | I can recall and apply the following equation: <br> density, = mass / volume <br> $\mathrm{P}=\mathrm{m} / \mathrm{V}$ <br> density, P, in kilograms per metre cubed, $\mathrm{kg} / \mathrm{m}^{3}$ <br> mass, m, in kilograms, kg <br> volume, V , in metres cubed, $\mathrm{m}^{3}$ |  |  |
| :--- | :--- | :--- | :--- |
| b | I know that the particle model can be used to explain: <br> - the different states of matter <br> - differences in density. | I can recognise / draw simple diagrams to model the difference between solids, liquids and <br> gases. |  |
| c | I can explain the differences in density between the different states of matter in terms of the <br> arrangement of atoms or molecules. |  |  |
| d |  |  |  |

### 6.3.1.2. Changes of State

| a | I can describe how, when substances change state (melt, freeze, boil, evaporate, condense or <br> sublimate), mass is conserved. |  |  |
| :---: | :--- | :--- | :--- |
| $b$ | I know that changes of state are physical changes which differ from chemical changes because <br> the material recovers its original properties if the change is reversed. |  |  |

### 6.3.2. Internal Energy and Energy Transfers

### 6.3.2.1. Internal Energy

| a | I know that energy is stored inside a system by the particles (atoms and molecules) that make <br> up the system. This is called internal energy. |  |  |
| :---: | :--- | :--- | :--- |
| b | I know that internal energy is the total kinetic energy and potential energy of all the particles <br> (atoms and molecules) that make up a system. |  |  |
| c | I know that heating changes the energy stored within the system by increasing the energy <br> of the particles that make up the system. This either raises the temperature of the system or <br> produces a change of state. |  |  |

### 6.3.2.2. Temperature Changes in a System and Specific Heat Capacity

| $a$ | I know that if the temperature of the system increases, the increase in temperature depends on <br> the mass of the substance heated, the type of material and the energy input to the system. |  |  |
| :--- | :--- | :--- | :--- |
| $b$ | I can apply the following equation (it will be provided on the physics equation sheet): <br> change in thermal energy = mass $\times$ specific heat capacity $\times$ temperature change <br> $\Delta \mathrm{E}=\mathrm{m} \mathrm{c} \Delta \varnothing$ <br> change in thermal energy, $\Delta \mathrm{E}$, in joules, J <br> mass, m, in kilograms, kg <br> specific heat capacity, c, in joules per kilogram per degree Celsius, $\mathrm{J} / \mathrm{kg}{ }^{\circ} \mathrm{C}$ <br> temperature change, $\Delta \varnothing$, in degrees Celsius, ${ }^{\circ} \mathrm{C}$. |  |  |
| c | I know that, the specific heat capacity of a substance is the amount of energy required to raise <br> the temperature of one kilogram of the substance by one degree Celsius. |  |  |

### 6.3.2.3. Changes of Heat and Specific Latent Heat

| $a$ | I know that the energy needed for a substance to change state is called latent heat. |  |  |
| :--- | :--- | :--- | :--- |
| b | I know that the specific latent heat of a substance is the amount of energy required to change <br> the state of one kilogram of the substance with no change in temperature. |  |  |
| c | I know that when a change of state occurs, the energy supplied changes the energy stored <br> (internal energy) but not the temperature. |  |  |
| d | I can apply the following equation (it will be provided on the physics equation sheet): <br> energy for a change of state = mass x specific latent heat <br> E m L <br> energy, E, in joules, J <br> mass, m, in kilograms, kg <br> specific latent heat, L, in joules per kilogram, J/kg |  |  |
| $e$ | I know that the specific latent heat of fusion is the change of state from solid to liquid. |  |  |
| $f$ | I know that the specific latent heat of vaporisation is the change of state from liquid to vapour. |  |  |

### 6.3.3. Particle Model and Pressure

### 6.3.3.1. Particle Motion in Gases

| a | I know that the molecules of a gas are in constant random motion. |  |  |
| :---: | :--- | :--- | :--- |
| b | I know that the temperature of the gas is related to the average kinetic energy of the molecules. |  |  |
| c | I know that changing the temperature of a gas, held at constant volume, changes the pressure <br> exerted by the gas. |  |  |
| d | I can explain how the motion of the molecules in a gas is related to both its temperature and its <br> pressure. |  |  |
| e | I can explain qualitatively the relationship between the temperature of a gas and its pressure at <br> constant volume. |  |  |

