AQA GCSE Physics

Paper 1 Revision

> Topic 2: Electricity

Name:

Form: 11

Static Electricity

When two insulators are rubbed against each other (friction), electrons transfer from one object to the other, making both electrically charged.

The material that gains electrons becomes negatively charged and the material that loses electrons become positively charged.

Like charges repel.
Opposite charges attract.
Sparks can be seen between objects when they are discharging - i.e. becoming neutral.

Static electricity
 (Separate students only)

Electric field lines

Electric field lines should be equally spaced, leave the surface at 90°, arrows directed into a negative charge and away from a positive charge.

A charged object feels a force if placed into another charged objects electric field. The closer the two objects are to each other, the stronger the force.

Polythene

Likes repel

Opposites attract

C

Current

In metals, there are free electrons that are not attached to the positive ions. When the electrons flow, a current is produced.
Current is defined as the rate of flow of electric charge.

Charge $=$ Current x Time
(C)
(A)
(s)

Potential difference (the posh term for voltage) P.d is defined as the work done between two points per coulomb of charge that passes the points.

$$
\begin{aligned}
& \text { P.d = Work done/Charge } \\
& \begin{array}{lll}
\text { (V) } & \text { (J) }
\end{array}
\end{aligned}
$$

Other factors that affect resistance

The length of a wire was a required practical that you carried out. As the length of the wire increases the resistance increases because there are more ions so the rate of collisions increases. You could also investigate the thickness of a wire.

Resistance

Electrons need to push themselves past vibrating ions. The faster these ions vibrate (they vibrate faster when the temperature increases leading to an increase in their kinetic energy), the harder it is for electrons to do this. This means there is a higher resistance.

$$
\begin{align*}
& \text { Resistance }=\text { P.d / Current } \\
& \begin{array}{lll}
(\Omega) & (V) & (A)
\end{array} \tag{A}
\end{align*}
$$

As you add more resistors in series, the total resistance increases.

To work out the total resistance of a series circuit you add the resistances of each component together. $R_{T}=R_{1}+R_{2}+R_{3}$

You do not need to know how to calculate the total resistance in parallel but just know that the resistance of the circuit decreases when more resistors are added in parallel-a bit counter intuitive.

What would happen to the brightness of
bulbs in a circuit if you added more in parallel with each other?

I-V Graphs

You need to be aware of the following circuit that would need to be setup to find the I-V characteristic of a resistor, bulb and a diode.

The resistor is the component being tested in the circuit below, check you know what the symbols are for the other two possibilities.

The variable resistor is used to change the p.d. around the component.
urrent and potential difference graphs

Resistor/Wire

Filament Lamp

Ohm's law states that, for a resistor, the current that flows through it is directly proportional to the potential difference across the resistor, providing it is at constant temperature.

With the above in mind, explain why the resistance increases at higher potential sistance increases at filament lamp.
differences for the fila \qquad . differences for the filamentamp.

A diode only allows current to flow in one direction. LED's are replacing filament lamps as they can operate at lower currents.

The resistance in a thermistor increases as the temperature decreases. (High temp = red line low temp = blue line).

The resistance in a LDR decreases as the light intensity increases. (Bright light = red line low temp = blue line).
Resistors get hot as current flows through them.

Thermistors and LDRs

Thermistor

The resistance in a thermistor increases as the temperature decreases. (High temp = red line low temp = blue line).

The resistance in a LDR decreases as the light intensity increases.
(Bright light = red line low temp = blue line).
Resistors get hot as current flows through them.

Temperature (thermistor) or light intensity (LDR)

Resistance

Series and Parallel Circuits

Mains Electricity

AC/DC

Cells and batteries supply current that always passes in the same direction. This is known as a direct current (d.c).

An alternating current is one that is constantly changing direction. Mains electricity has a frequency of 50 Hz and is about 230 V

figure 1

Neutral (N)
This is the second wire to complete the circuit.

Cables

Some appliances only have two wires, they are missing the earth wire. This is because they have a plastic casing. The cables are said to be twocore cables. This is also known as double insulation.

Metal cased appliances tend to be earthed. through the device.

Why do some

This wire carries the high voltage and is connected to the fuse.

The fuse

A fuse contains a thin wire which heats up and melts if too much current is passed through it. The fuse is always placed in series with the live wire.

The frequency is given by the number of cycles per second frequency $=1$ /time for one cycle

Mains Electricity

The rate at which energy is transferred by an appliance is called the power.

$$
\text { Power }(W)=\frac{\text { Energy }(J)}{\text { Time }(s)}
$$

Power, potential different and current are related by the following equation:

Power (W) $=$ Current (A) \times Potential difference (V)
Energy, transferred, potential difference and charge are related by the equation:

Energy (J) $=$ Potential difference (V) \times Charge (C)

Prefixes

Remember to always check the units of the numbers given. If there is a prefix, you will need to convert the number into standard form first:

$$
M=1 \times 10^{6} \quad \mathrm{k}=1 \times 10^{3} \quad \mathrm{~m}=1 \times 10^{-3} \quad \mu=1 \times 10^{-6}
$$

Power, current and resistance are related by the following equation:

Power $=$ Current ${ }^{2} \times$ Resistance

What is the p.d of a

$$
\text { bulb where } 30 \mathrm{~J} \text { or }
$$

energy is
transferred per
coulomb of charge?

resistor is 5 A, a p.d of
is applied across it.
is its resistance? diode when 3 V is applied across it which enables 50 mA
to flow through it?

What is the resistance of a 60
What lightbulb that has a current
What is lightbulb that has a clowing through it?
of 0.3 mA low

Key equations

Equation	Symbols	Units
$Q=I t$	$\begin{aligned} & Q=\text { Charge } \\ & I=\text { Current } \\ & t=\text { Time } \end{aligned}$	$\begin{aligned} & Q=C \text { (coulombs) } \\ & I=A \text { (amps) } \\ & t=s \text { (seconds) } \\ & \hline \end{aligned}$
$\mathrm{V}=\mathrm{IR}$	$\begin{array}{\|l} \hline V=\text { Potential difference } \\ I=C u r r e n t \\ R=\text { Resistance } \\ \hline \end{array}$	$\begin{aligned} & \mathrm{V}=\mathrm{V} \text { (volts) } \\ & \mathrm{I}=A \text { (amps) } \\ & \mathrm{R}=\Omega \text { (ohms) } \end{aligned}$
$\mathrm{P}=\mathrm{VI}$	$\begin{aligned} & P=\text { Power } \\ & V=\text { Potential difference } \\ & I=\text { Current } \end{aligned}$	$\begin{aligned} & P=W \text { (watts) } \\ & V=V \text { (volts) } \\ & I=A \text { (amps) } \end{aligned}$
$\mathrm{P}=\mathrm{I}^{2} \mathrm{R}$	$\begin{aligned} & P=\text { Power } \\ & I=\text { Current } \\ & R=\text { Resistance } \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{P}=\mathrm{W} \text { (watts) } \\ & \mathrm{I}=A \text { (amps) } \\ & \mathrm{R}=\Omega \text { (ohms) } \end{aligned}$
$\mathrm{E}=\mathrm{P} \dagger$	$\begin{aligned} & \text { E = Energy } \\ & \text { P = Power } \\ & t=\text { Time } \end{aligned}$	$\begin{aligned} & E=J \text { (joules) } \\ & P=W \text { (watts) } \\ & t=s \text { (seconds) } \end{aligned}$
$\mathrm{E}=\mathrm{QV}$	$\begin{array}{\|l\|} \hline \mathrm{E}=\text { Energy } \\ \mathrm{Q}=\text { Charge } \\ \mathrm{V}=\text { Potential difference } \\ \hline \end{array}$	$\begin{aligned} & \mathrm{E}=\mathrm{J} \text { (joules) } \\ & \mathrm{Q}=C \text { (coulombs) } \\ & \mathrm{V}=\mathrm{V} \text { (volts) } \end{aligned}$

YOU HAVE TO MEMORISE THEM ALL!

