

AQA GCSE Physics

Paper 2 (H) Revision

Topic 7: Electromagnetism

Name:		
Form: 11		

AQA GCSE Physics Paper 2 Revision Topic 7: Electromagnetism

Specification point	Notes 🗸	0	8	Questions?
What can we say about the force between two magnets?				
What do we mean by magnetic field lines?				
What do we use electromagnets for?				
How can we change the size of the force on a current-carrying wire in a magnetic field?				
How can we reverse the direction of the force on a current-carrying wire in a magnetic field?				
How do we use the motor effect to make objects move?				
What do we mean by electromagnetic induction?				
How can we use a magnet to induce a potential difference across the ends of a conductor?				
How can we induce a potential difference if we use an electromagnet instead of a magnet?				
Why do transformers only work with ac?				
What is the core of a transformer made from?				
How does a switch mode transformer differ from an ordinary transformer?				
Why are transformers used in the National Grid?				
How does the ratio of the primary pd to the secondary pd depend on the number of turns on each coil?				
What is the difference between a step-up and a step-down transformer?				
What can we say about a transformer which is 100% efficient?				

Three ways to **increase** the strength of the electromagnet:

- Increase the current
- Increase the number of turns of wire
- Use an iron core

What does the Earth's magnetic field look like?

AQA GCSE Physics Paper 2 Revision Topic 7: Electromagnetism

EM Induction

Three ways to **increase** the size of the induced potential difference:

- Increase the strength of the magnet
- Increase the number of turns of wire in the coil
- Move the magnet at a higher frequency

Can you use your knowledge of Fleming's Left Hand Rule to explain how the AC generator functions?

On the Data Sheet

Not on the Data Sheet

 $\frac{V_P}{V_S} = \frac{n_P}{n_S} \qquad \begin{array}{l} \mathsf{V_p} \rightarrow \mathsf{PD} \text{ across primary coil, in Volts (V)} \\ \mathsf{V_s} \rightarrow \mathsf{PD} \text{ across secondary coil, in volts (V)} \\ \mathsf{n_p} \rightarrow \mathsf{turns on primary coil, no unit} \\ \mathsf{n_s} \rightarrow \mathsf{turns on secondary coil, no unit} \end{array}$

 $V_P I_P = V_S I_S I_s \xrightarrow{V_p \Rightarrow PD across primary coil, in Volts (V)}{V_s \Rightarrow PD across secondary coil, in volts (V)}$ $V_p I_P = V_S I_S I_s \xrightarrow{I_p \Rightarrow current through primary coil, in Amps (A)}{I_s \Rightarrow current through secondary coil, in Amps (A)}$

 $F \rightarrow Force of magnetic field B \rightarrow Magnetic field B \rightarrow Magnet$

F → Force on conductor perpendicular to magnetic field, in Newtons (N) B → Magnetic field strength, in Teslas (T) I → Current through conductor, in Amps (A) L→ Length of conductor, in metres (m)

