

C3 Quantitative Chemistry

Can you?	<u>©</u>	<u></u>	(3)
3.1.1 Conservation of mass and balanced chemical equations			
Recall that the law of conservation of mass states that no atoms are lost or made during a chemical reaction so the mass of the products equals the mass of the reactants.			
Interpret symbol equations representing chemical reactions.			
3.1.2 Relative formula mass			
Calculate the relative formula mass of a compound.			
Recall that in a balanced chemical equation, the sum of the relative formula masses of the reactants in the quantities shown equals the sum of the relative formula masses of the products in the quantities shown.			
3.1.3 Mass changes when a reactant or product is a gas			
Give examples of reactions that appear to involve a change in mass.			
Explain why some reactions appear to involve a change in mass.			
3.1.4 Chemical measurements			
Explain what is meant by measurement uncertainty.			
Represent the distribution of results and estimate uncertainty.			
Use the range of a set of measures about the mean as a measure of uncertainty.			
3.2.1 Moles (HT only)			
Recall that chemical amounts are measured in moles. The symbol for the unit mole is mol.			
Recall that the number of atoms, molecules or ions in a mole of a given substance is the Avogadro constant. The value of the Avogadro constant is 6.02×10^{23} per mole.			
Recall that the mass of one mole of a substance in grams is equal to its relative formula mass.			
Use the relative formula mass of a substance to calculate the number of moles in a given mass of that substance and vice versa.			
3.2.2 Amounts of substances in equations (HT only)			
Interpret chemical equations in terms of moles.			
Calculate the masses of substances shown in a balanced symbol equation.			
Calculate the masses of reactants and products from the balanced symbol equation and the mass of a given reactant or product.			
3.2.3 Using moles to balance equations (HT only)			
Recall that the balancing numbers in a symbol equation can be calculated from the masses of reactants and products by converting the masses in grams to amounts in moles and converting the numbers of moles to simple whole number ratios.			

C3 Quantitative Chemistry

Can you?	<u>©</u>	<u></u>	8
Balance an equation given the masses of reactants and products.			
3.2.4 Limiting reactants (HT only)			
State what it means if a reactant is the limiting reactant.			
State what it means if a reactant is in excess.			
Explain the effect of a limiting quantity of a reactant on the amount of products it is possible to obtain in terms of amounts in moles or masses in grams.			
3.2.5 Concentration of solutions			
Recall that the concentration of a solution can be measured in mass per given volume of solution, eg grams per dm^3 (g/dm ³).			
Calculate the mass of solute in a given volume of solution of known concentration in terms of mass per given volume of solution.			
Explain how the mass of a solute and the volume of a solution is related to the concentration of the solution. (HT only)			

Topic 3 - Quantitative chemistry

Atoms are rearranged during chemical reactions, and are not lost or gained. Chemical reactions can be represented using equations.

The changes in chemical reactions can be modelled using equations. In general, you write:

Reactants → Products

The reactants are shown on the left of the arrow, and the products are shown on the right of the arrow. Do not write an equals sign instead of an arrow. If there is more than one reactant or product, they are separated by a plus sign.

Word equations

A word equation shows the names of each substance involved in a reaction, and must not include any chemical symbols or formulae. For example:

In this reaction, copper and oxygen are the reactants, and copper oxide is the product.

Chemical reactions are often written as symbol equations, where instead of the word the substance is given is chemical formula (e.g. water = H_2O). Symbol equations give chemists more detail about the reactions which they can use in other calculations (which you will see later...)

Conservation of mass

The law of conservation of mass states the mass of the reactants must equal the mass of the products in a chemical reaction as no atoms are lost or gained.

Some reactions may appear to involve a change in mass but this can usually be explained because a reactant or product is a gas and its mass has not been taken into account.

For example: when marble chips react with acid the mass of the reaction appears to decrease as carbon dioxide gas is given off during the reaction and escapes into the atmosphere. If the gas was collected and measured with the mass of the rest of the product it would be equal to the mass of the starting reactants.

Another example of where mass seems to change is when the mass appears to increase. This is due to one of the reactants being a gas (usually oxygen in the air) which reacts with something else. The products appears to get heavier as atoms of the gas (which would not have been measured) combine with the other reactant.

Balancing equations

Due to the conservation of mass in a chemical reaction, this also means that the number of atoms on the reactants side of the arrow (left hand side) must equal the number of atoms on the products side of the arrow (right hand side).

To represent chemical reactions accurately, it may be necessary to balance the equations to make sure the number of atoms on each side of the arrow are the same.

To balance chemical equations you need to:

- Check if the number of each atom on either side is the same, you're all good, and the equation is balanced.
- BUT, if the number of each atom on either side is NOT the same, you need to use big numbers in front of each element or compound to even them out.
- Every time you add a big number, you multiply the whole compound by that number, and so you adjust the numbers of atoms accordingly.
- Repeat until you have the same number of every atom on the left hand side as on the right hand side.

Relative formula mass

The relative formula mass (Mr) of a compound is the sum of the relative atomic masses of the atoms in the numbers shown in the formula. e.g. NaCl = 23 + 35.5 = 58.5

In a balanced chemical equation, the sum of the relative formula masses of the reactants in the quantities shown equals the sum of the relative formula masses of the products in the quantities shown.

Percentage Composition

Percentage composition is just a way to describe what proportions of the different elements there are in a compound.

If you have the formula of a compound, you should be able to work out the percentage by mass of an element in it.

Writing formulae

1.	A mo	lecule of boron fluoride contains	3 fluorine (F) a	toms and 1 boron (B) atom.	
	What	is the formula of boron fluoride?			
	Tick c	one box.			
		B ₃ F BF ₃ F3B	F ₃	В	[1 mark]
2.	Lead	(IV) oxide is made up of Pb4+ and C	D ²⁻ ions.		
	Write	the formula for lead(IV) oxide.			
					[1 mark]
3.	Dete	rmine the number of hydrogen at	oms in each o	f the following.	
	а	NH ₃			
	b	2H ₂ O			
	(c)	CH₃ I			[3 marks]
		$\begin{array}{c} CH_3 \\ \\ CH_3 - C - CH_2 CH_3 \\ \\ CI \end{array}$			
\			On the color of the of		
4.		dent reacts calcium carbonate wit			
Practical	The p	products of the reaction are calciu			
Synoptic	a	Suggest how they could collect a carbon dioxide made.	and measure t	he volume of	
			•		[1 mark]
	b	Draw one line from the name of	each substand	ce to its formula.	[3 marks]
		Substance		Formula	
		Calcium carbonate		CO ₂	
		Calcium chloride		CaCl ₂	
		Carbon dioxide		CaCO ₃	
				5	

Conservation of mass and balanced chemical equations

1. Draw a ring around the correct answer to complete each sentence.

The law of conservation of mass states that no atoms are

gained

lost

rearranged

or made

during a

physical change.

chemical reaction.

reversible change.

This means that the mass of the products is

less than

equal to

more than

the mass of the reactants.

[3 marks]

2. A student carries out a reaction: $A + B \rightarrow C$.

Maths

They use 2.3 g of A and 1.2 g of B.

Calculate the expected mass of C.

[2 marks]

A student is asked to balance the symbol equation for the reaction of hydrogen and oxygen to make water.

$$H_2 + O_2 \rightarrow H_2O$$

This is their answer.

$$H_2 + O_2 \rightarrow H_2O_2$$

Explain why this is incorrect.

Write the correct answer.

Remember

When you balance an equation you cannot change the small (subscript) numbers. This changes the substance. For example, O_2 is oxygen, O_3 is the toxic gas ozone.

However, you can change the number of atoms of each substance by adding a number in front of the formula. E.g. 20₂ contains 4 oxygen atoms.

[2 marks]

Mass changes when a reactant or product is a gas

1.	Whe	n magnesium is burnt a white powder called magnes	ium oxide is formed.	
	The b	palanced symbol equation for the reaction is:		
	2Mg	$+O_2 \rightarrow 2MgO$		
Maths	A stu	dent burns 3 g of magnesium. The mass of the magn	esium oxide produced	is 4.2 g.
	Calcu	ılate the increase in mass		
-				
			g	g [1 mark]
2.	A cla	ss carries out an experiment.		
Practical	•	heat copper carbonate to form		Copper oxide
		er oxide and carbon dioxide.	Milky	limewater —
	Figu	re 1 shows the equipment they used.	indica	ated carbon de is present
	а	What kind of reaction is this? Copper carbonate	Figure 1	
		Tick one box.	rigure i	
		Combustion Oxidation		
		Neutralisation Thermal decomposition	1	[1 mark]
Maths	Ь	They use 4.6 g of copper carbonate.		
Worked Example		The mass of the limewater increases by 0.8 g.		
**************************************		Calculate the mass of copper oxide produced.		[2 marks]
		Because of the law of conservation of mass we mass of products must be the same as the rea		
		One product is carbon dioxide. This went into t mass of carbon dioxide produced was 0.8 g.	he limewater so the	
		Therefore, the mass of the copper oxide can be	calculated by:	
		4.6 g - 0.8 g		
		= 3.8 g	Marks gained:	[2 marks]

Maths C They repeat the experiment a further 4 times. Their measurements for the decrease in mass of the copper carbonate in grams were: 0.8, 0.5, 0.9, 0.4, 0.6 i Calculate the range in measurements [1 mark] 0.9 - 0.4 = 0.5 (g) Marks gained: [1 mark] ii Calculate the percentage uncertainty. Use the formula: percentage uncertainty = (range/mean) × 100 Give your answer to 1 decimal place. Rememb To calculate formula mass, M, of an oxygen molecule, O ₂ ? Tick one box. 2 16 24 32 [1 mark] Draw one line from each molecule diagram to its relative formula mass. Molecule diagram Formula mass Molecule diagram Formula mass Molecule diagram Formula mass Add up the masses (A) the formula formula mass. Molecule diagram Formula mass					
copper carbonate in grams were: 0.8, 0.5, 0.9, 0.4, 0.6 i Calculate the range in measurements [1 mark] 0.9 - 0.4 = 0.5 (g) Marks gained: [1 mark] ii Calculate the percentage uncertainty. Use the formula: percentage uncertainty = (range/mean) × 100 Give your answer to 1 decimal place. Rememb To calculate formula mass, M _c of an oxygen molecule, O ₂ ? Tick one box. 2	Maths	c They repeat the	experiment a further 4 time	es.	
i Calculate the range in measurements [1 mark] 0.9 - 0.4 = 0.5 (g) Marks gained: [1 mark] ii Calculate the percentage uncertainty. Use the formula: percentage uncertainty = (range/mean) × 100 Give your answer to 1 decimal place. Rememb To calculate formula mass, M _c of an oxygen molecule, O ₂ ? Tick one box. 2	- Angles and an analysis of the second			iss of the	
i Calculate the range in measurements [1 mark] O.9 - O.4 = O.5 (g) Marks gained: [1 mark] ii Calculate the percentage uncertainty. Use the formula: percentage uncertainty = (range/mean) × 100 Give your answer to 1 decimal place. Relative formula mass, M _r of an oxygen molecule, O ₂ ? Tick one box. 2		0.8, 0.5, 0.9, 0.4, 0	1.6		
ii Calculate the percentage uncertainty. Use the formula: percentage uncertainty = (range/mean) × 100 Give your answer to 1 decimal place. Relative formula mass, M _r of an oxygen molecule, O ₂ ? Tick one box. 2	Worked Example	i Calculate the	range in measurements	[1 mark]	
ii Calculate the percentage uncertainty. Use the formula: percentage uncertainty = (range/mean) × 100 Give your answer to 1 decimal place. Relative formula mass, M _e of an oxygen molecule, O ₂ ? Tick one box. 2		0.9 - 0.4			
Use the formula: percentage uncertainty = (range/mean) × 100 Give your answer to 1 decimal place. Relative formula mass, M, of an oxygen molecule, O ₂ ? Tick one box. 2		= 0.5 (g)	Marks gained:	[1 mark]	
Tick one box. Draw one line from each molecule diagram to its relative formula mass. Molecule diagram Formula mass		ii Calculate the	percentage uncertainty.		
Tick one box. Draw one line from each molecule diagram to its relative formula mass. Molecule diagram Formula mass		Use the form	ula: percentage uncertai	nty = (range/n	nean) × 100
1. What is the relative formula mass, M, of an oxygen molecule, O ₂ ? Tick one box. 2		Give your answ	wer to 1 decimal place.		
1. What is the relative formula mass, M, of an oxygen molecule, O ₂ ? Tick one box. 2					
1. What is the relative formula mass, M, of an oxygen molecule, O ₂ ? Tick one box. 2					
1. What is the relative formula mass, M, of an oxygen molecule, O ₂ ? Tick one box. 2					
1. What is the relative formula mass, M _r , of an oxygen molecule, O ₂ ? Tick one box. 2		10 G g th . 10			
Tick one box. 2	Kela	ave iermu.	la mass—	HSM	W24
Tick one box. 2					
Tick one box. 2					and Schooling trades spilled and spilled spill
2 16 24 32 [1 mark] formula madd up the masses (A, the formula mass. Molecule diagram Formula mass Molecule diagram Formula mass At the formula mass exam quest copy of the mass exam quest copy of	1.	What is the relative form	ıula mass, M _{r,} of an oxygen ı	molecule, O ₂ ?	Rememb
2		Tick one box.			
Draw one line from each molecule diagram to its relative formula mass. Molecule diagram Formula mass Add Add Bline from each molecule diagram to its relative formula mass Exam quest copy of the second of the formula mass Exam quest copy of the second of the formula mass Add Toology of the second of the formula mass Exam quest copy of the second of the sec		2 16	24	32 [1 mark]	
formula mass. Molecule diagram Formula mass are exam quest copy of the second of th	2	Draw and line from each	ch malacula diagram to its	rolativo	
Zn O 81	2.		in molecule diagram to its	Telative	
Zn		Molecule diagram	Formula mass		STREET, STREET
000 81					copy of the
000 81		Zn	2 44		
		000	81		
®O S O® 18		® S O ®	18		

98

Maths

Range = the highest measurement – the lowest measurement

_ %

Remember

the formula.

To calculate the relative formula mass, or M_r you add up the relative atomic masses (A_j) of the atoms in

If these are not given in the exam question, use your copy of the periodic table.

[4 marks]

[3 marks]

Moles (HT only)

Chemical amounts are measured in moles. The symbol for the unit mole is mol.

The mass of one mole of a substance in grams is equal to its relative formula mass. One mole of a substance contains the same number of the stated particles, atoms, molecules or ions as one mole of any other substance.

E.g. the mass of 1 mole of carbon = 12g as the atomic mass of carbon is 12.

The number of atoms, molecules or ions in a mole of a given substance is the Avogadro constant. The value of the Avogadro constant is 6.02×10^{23} per mole. For example that in one mole of carbon (C) the number of atoms is the same as the number of molecules in one mole of carbon dioxide (CO₂).

Moles of a substance can be calculated using the formula:

Amounts of substances in equations (HT only)

The masses of reactants and products can be calculated from balanced symbol equations. Chemical equations can be interpreted in terms of moles.

For example:

$$Mg + 2HCl \rightarrow MgCl_2 + H_2$$

This shows that one mole of magnesium reacts with two moles of hydrochloric acid to produce one mole of magnesium chloride and one mole of hydrogen gas.

If we have too much of a reactant it will be wasted, if we have too little of a reactant not all of the other reactant will react. We can use reacting mass calculations to work out the amount of reactant needed or product produced.

Worked Example

If we have a solution containing 100g of sodium hydroxide, how much chlorine gas should we pass through the solution to make bleach?

$$2NaOH + Cl_2 \rightarrow NaOCI + NaCI + H_2O$$

Step 1:	Work out the mass of one mole of each substance in the question.	NaOH: n = m / Mr n = 100 / (23+16+1) n = 100 / 40 = 2.5 mol
Step 2:	Find the molar ratio from the balanced	NaOH: Cl ₂
Step 2.	symbol equation.	2 mol : 1 mol
Step 3	Use the molar ratio to calculate the actual number of moles needed.	2.5 mol : 1.25 mol
Step 4:	Use the moles to calculate the mass of	m = n x Mr
		m = 1.25 x (35.5 x 2)
	the reactant needed.	m = 1.25 x 71 = 88.75g

^{*}Helpful hint* Decimal places and significant figures:

If the question asks for a specific number of decimal places or significant figures, make sure your answer matches what they ask for (you will lose a mark if you don't do this!)

If the question does not give you a specific number of decimal places or significant figures and your answer has lots of numbers before/after the decimal place; a good rule to follow is:

- If there are numbers in the question, give you answer to the same number of significant figures/decimal places they are in.
- If there are no numbers given in the question and no instruction on how many decimal places/significant figures to give your answer to 2 decimal places.

3.	A student carries out a precipitation reaction.	
Maths	potassium iodide + lead(II) nitrate \rightarrow lead(II) iodide + potassi	um nitrate
	2KI + $Pb(NO_3)_2$ \rightarrow Pbl_2 + 2KNO	3
	Use the symbol equation to prove that the relative formula marrelative formula mass of the products.	ass of reactants is equal to the
	(A _r K = 39; I = 127; Pb = 207; N = 14; O = 16)	
		[6 marks]
Mol	25	0 3 5 6 6 8 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
1.	What is the mass of 2 moles of sodium?	
Higher Tier only	Tick one box.	
Maths	2 g 22 g 23 g 46 g	[1 mark]
2.	How many moles are in 60 g of calcium?	Remember
Higher	Tick one box.	You can calculate mass of a substance by using the formula:
Tier only	1 1.5 3 4.5 [1 mark]	Mass = moles \times relative atomic (A _r) or formula mass (M.)
3.	Calculate the mass in grams of:	This can be rearranged to work
Higher Tier only	a 4 moles of carbon:	out the number of moles: Moles = mass / relative atomic
	[1 mark]	(A _r) or formula mass (M _r)
Worked Example	b 5 moles of oxygen (O ₂): [4 marks]	
	The A_r for one oxygen atom is 16.	
	There are 2 oxygen atoms in each oxygen molecule	

So the M_r of oxygen is $16 \times 2 = 32$

	$Mass = moles \times M_r$	[2 marks]
	Mass of $0_2 = 5 \times 32$	[1 mark]
	Mass of $O_2 = 160 g$	[1 mark]
	Marks gained:	[4 marks]
	Calculate the number of moles in 283.5 g of hydrogen bromide (HBr)	[2 marks]
4.	There are 6.02×10^{23} atoms, molecules or ions in a mole of a given substance.	
Higher Tier only	How many molecules are in 1 mole of water?	[1 mark]
ATT	ounts of substances in equations	9 I S S S S S S S S S S S
1.	200 g of calcium carbonate is heated to produce calcium oxide and carbon dioxide	de.
Higher Tier only	The balanced symbol equation for this reaction is:	
Maths	$CaCO_3 \rightarrow CaO + CO_2$	
	a Calculate the number of moles of calcium carbonate.	

Calculate the maximum mass of calcium oxide made.

[2 marks]

[2 marks]

_____ moles

__ kg

Maths