Castle Newnham School

Primary Calculation Policy

Governors' Committee:	Curriculum Delivery \& Design Board
Adopted by the Governing Body on:	28 February 2023
Signed: (Chair of Committee)	Mhin
Signed: (Headteacher)	March 2025
Proposed date of review:	

A. RATIONALE

This calculation policy is designed to support the children's learning by equipping them with appropriate mental and written calculation strategies.

The emphasis of this policy is to ensure the children are able to use concrete methods, before moving onto the pictorial and abstract. Although the guidance outlines the year group expectations, it is important to remember that the children's mathematical skills develop at different rates. Using this guidance, all children will use a combination of practical, mental and written activities throughout all year groups. This approach is also emphasised through our development of the Teaching for Mastery approach in Primary which aims to teach all children to become masters of maths through developing their understanding, increasing their fluency and ability to tackle reasoning and problem solving questions.
B. AIM

National Curriculum Aims

The National Curriculum for mathematics aims to ensure that all pupils:

- become fluent in the fundamentals of mathematics, including through varied and frequent practice with increasingly complex problems over time, so that pupils develop conceptual understanding and the ability to recall and apply knowledge rapidly and accurately.
- reason mathematically by following a line of enquiry, conjecturing relationships and generalisations, and developing an argument, justification or proof using mathematical language
- can solve problems by applying their mathematics to a variety of routine and non-routine problems with increasing sophistication, including breaking down problems into a series of simpler steps and persevering in seeking solutions.

This Policy is designed to equip children with the skills they need to achieve the National Curriculum aims.

C. PRINCIPLES

How to use the policy:

- Use the policy as the basis of your planning but ensure there is personalised learning
- Always use Assessment for Learning to identify suitable next steps in calculation for groups of children and scaffold as appropriate.
- If, at any time, children are making significant errors, return to the previous stage in calculation • Always use suitable resources, models and images to support children's understanding of calculation and place value, as appropriate
- Encourage children to make sensible choices about the methods they use when solving problems

D. PROCESSES - PRIMARY

National Curriculum Aims

The National Curriculum for mathematics aims to ensure that all pupils:

- become fluent in the fundamentals of mathematics, including through varied and frequent practice with increasingly complex problems over time, so that pupils develop conceptual understanding and the ability to recall and apply knowledge rapidly and accurately.
- reason mathematically by following a line of enquiry, conjecturing relationships and generalisations, and developing an argument, justification or proof using mathematical language
- can solve problems by applying their mathematics to a variety of routine and non-routine problems with increasing sophistication, including breaking down problems into a series of simpler steps and persevering in seeking solutions.
This Policy is designed to equip children with the skills they need to achieve the National Curriculum aims.

Mathematical language

The 2014 National Curriculum is explicit in articulating the importance of pupils using the correct mathematical language as a central part of their learning. The non-statutory guidance highlights the requirement for pupils to extend their language around certain concepts. It is therefore essential that teaching using the strategies outlined in this policy is accompanied by the use of appropriate mathematical vocabulary. New vocabulary should be introduced in a suitable context (for example, with relevant real objects, apparatus, pictures or diagrams) and explained carefully. High expectations of the mathematical language used are essential, with teachers only accepting what is correct.

For example:

\boldsymbol{l}	\mathbf{x}
ones	units
Is equal to	Equals/the answer is
Zero	O (said oh)
Exchanging	Borrowing

Using correct mathematical language is crucial for thinking, learning and communicating mathematically. We need to encourage children to explain what they are doing and why they are doing it. We must offer them opportunities to use mathematical language frequently, for example by participating in paired activities, group discussions and games as well as other dialogues. The productive use of spoken language in mathematics allows children to evaluate their learning, support others' suggestions, challenge ideas, develop an argument or prove their answer, reason or justify and ask questions. Therefore, it is important to encourage children not just to learn and remember the correct vocabulary, but also to use these words regularly to communicate mathematically. This will play a vital role in enabling children to develop their mathematical thinking. Using mathematical vocabulary can help all children to make links across areas of mathematics, across the curriculum as a whole and also within real-life situations. Teachers need to plan the introduction of new words into lessons and provide opportunities for children to rehearse and use them on a regular basis so that they begin to remember both the words themselves and their meanings. It is also essential that other adults working with children use mathematical vocabulary accurately and consistently.

Calculation Policy Progression and Guidance throughout the year groups

| EYFS | Year 1 | Year 2 | Year 3 | Year 4 | Year 5 | Year 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

	Recognising and making equal groups. Doubling. Counting in multiples using cubes, Numicon and other objects. Counting in twos, fives and tens both aloud and with objects.	Recognising and making equal groups. Doubling. Counting in multiples using cubes, Numicon and other objects.	Arraysshowing commutativ e multiplicatio n.	Arrays 2 digit $\times 1$ digit using base 10. Introduce column multiplicatio n.	Column multiplicatio nintroduced with place value counters. (2 and 3 digit numbers multiplied by 1 digit.)	Column multiplicatio n . Abstract but might need a repeat of Year 4first (up to 4 digit numbers multiplied by one or two digits).	Column multiplicatio n . Abstract methods (multi digit up to 4 digits by a 2 digit number.)
	Sharing objects into groups. Division as grouping e.g. I have 12 sweets and put them in groups of 3, how many groups?	Sharing objects into groups. Division as grouping e.g. I have 12 sweets and put them in groups of 3, how many groups? Use cubes and draw round 3 cubes at a time.	Division as grouping. Division within arrays- linking to multiplicatio n . Repeated subtraction.	Division with a remainder- using lollipop sticks, times tables facts and repeated subtraction. 2 digits divided by 1 digit using base 10 or place value counters. Introduce short division.	Division with a remainder. Short division (up to 3 digits by 1 digitconcrete and pictorial).	Short division. (Up to 4 digits by a 1 digit number including remainders.)	Short division. Long division with place value counters (up to 4 digits by a 2 digit number). Children should exchange into the tenths and hundredths column too.

Calculation Policy: Addition

Key Language: sum, total, parts and wholes, plus, add, altogether, more, 'is equal to' 'is the same as'.

Concrete	Pictorial	Abstract
Combining two parts to make a whole (use other resources too e.g. eggs, shells, teddy bears, cars).	Children to represent the cubes using dots or crosses. They could put each part on a part whole model too.	$4+3=7$ Four is a part, 3 is a part and the whole is seven.
Counting on using number lines using cubes or Numicon.	A bar model which encourages the children to count on, rather than count all.	The abstract number line: What is 2 more than 4 ? What is the sum of 2 and 4 ? What is the total of 4 and 2 ? $4+2$

Regrouping to make 10; using ten frames and counters/cubes or using Numicon. $\begin{array}{l\|l\|l\|} \begin{array}{l\|l\|} 6+5 \\ \hline Q & 0 \end{array} \\ \hline \end{array}$	Children to draw the ten frame and counters/cubes.	Children to develop an understanding of equality e.g. $\begin{aligned} & 6+\square=11 \\ & 6+5=5+\square \\ & 6+5=\square+4 \end{aligned}$
TO + O using base 10 . Continue to develop understanding of partitioning and place value. $41+8$	Children to represent the base 10 e.g. lines for tens and dot/crosses for ones.	$41+8$ $\begin{aligned} & 1+8=9 \\ & 40+9=49 \end{aligned}$ $\begin{array}{r} 41 \\ +\quad 8 \\ \hline 49 \end{array}$
TO + TO using base 10. Continue to develop understanding of partitioning and place value. $36+25$	Chidren to represent the base 10 in a place value chart.	Looking for ways to make 10.

Subtraction

Key language: take away, less than, the difference, subtract, minus, fewer, decrease

Multiplication

Key Language: double, times, multiplied by, the product of, groups of, lots of, equal groups.

Concrete	Pictorial	Abstract
Repeated grouping/repeated addition $\begin{aligned} & 3 \times 4 \\ & 4+4+4 \end{aligned}$ There are 3 equal groups, with 4 in each group.	Children to represent the practical resources in a picture and use a bar model.	$\begin{aligned} & 3 \times 4=12 \\ & 4+4+4=12 \end{aligned}$
Number lines to show repeated groups3×4 Cuisenaire rods can be used too.	Represent this pictorially alongside a number line e.g:	Abstract number line showing three jumps of four. $3 \times 4=12$

Use arrays to illustrate commutativity counters and other objects can also be used. $2 \times 5=5 \times 2$		Children to represent the arrays pictorially.		Children to be able to use an array to write a range of calculations eg.
		$\begin{aligned} & 00 \\ & 00 \\ & 00 \\ & 00 \\ & 00 \end{aligned}$	$\begin{aligned} & 00000 \\ & 00000 \end{aligned}$	$\begin{aligned} & 10=2 \times 5 \\ & 5 \times 2=10 \\ & 2+2+2+2+2=10 \\ & 10=5+5 \end{aligned}$
		Children to pictorially.	represent the concrete manipulatives Is	Children to be encouraged to show the steps they have taken. $\stackrel{4}{15}$ $10 \times 4=40$ $5 x \quad 4=20$ $40 \cdot 20=60$ A number line can also be used C-N
Formal column method with place value counters (base 10 can also be used.) 3×23		Children to represent the counters pictorially.		Children to record what it is they are doing to show understanding. $3 \times 23 \quad 3 \times 20=60$ $203 \quad 60+9=69$
10s	Is	00	000	
88	808	00	000	23
	000	00 6	$\begin{gathered} 000 \\ 9 \end{gathered}$	$\begin{array}{r} \times 3 \\ \hline 69 \end{array}$

Division

Key language: share, group, divide, divided by, half.

Concrete	Pictorial	Abstract
Sharing using a range of objects. $6 \div 2$	Represent the sharing pictorially.	$6+2=3$3 3 Children should also be encouraged to use their 2 times tables facts.
Repeated subtraction using Cuisenaire rods above a ruler. $6 \div 2$ 3 groups of 2	Children to represent repeated subtraction pictorially.	Abstract number line to represent the equal groups that have been subtracted.

E. MONITORING, ASSESSMENT \& EVALUATION

Monitoring, assessment and evaluation is an important process in ensuring that there is high quality teaching and learning at Castle Newnham School. The senior leadership team and the Maths subject lead will monitor the quality of teaching and learning. Monitoring includes: Scrutiny of plans and work, moderation of work, lesson observations, evaluation of data, talking to children, staff and parents.

Each child's progress is continually assessed and informs the teachers planning and teaching.
Throughout the Maths lesson, teachers assess the learning by:

- Using questioning
- Making observations
- Using both formal and informal assessment tasks
- Marking in line with the school policy
- Termly assessments
- Ongoing curriculum objective assessments

At the end of Year 2 and 6 the children sit standard assessment tasks (SATs). These are marked internally in Year 2 and externally in Year 6. The children will be assessed on their times tables knowledge in Year 4 through the Multiplication Check which is assessed externally.

The calculation policy will be continually reviewed by the Maths subject lead and SLT in line with the monitoring process.

