

Maths

Calculation Policy

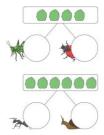
Division 2024

EYFS \rightarrow page 3

Year One \rightarrow page 3

Year Two → page 4

Year Three → page 6


Year Four → page 10

Year Five → page 13

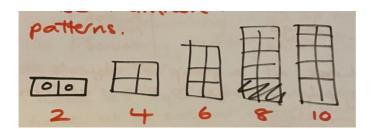
Year Six \rightarrow page 14

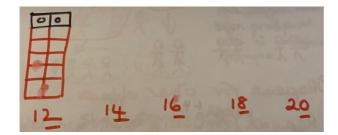
EYFS:

I can show how quantities can be distributed equally

Year One:

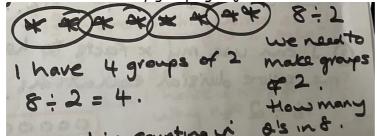
I can divide by sharing objects equally


Look at dividing being the repeated subtraction of 1 (sorting into groups)


Discuss equal groups (linking back to multiplication)

0-- I can skip count in 2s

Use Numicon to look at patterns.


Show by adding the ten tile, the pattern continues.

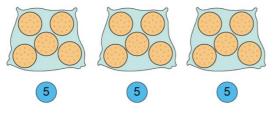
0 ☐ I can skip count in 2s on a numberline

0 ☐ I can divide by grouping objects in 2s

Link to skip counting from multiplication

- 0 ☐ I can skip count in 10s

 See previous methods
- I can skip count in 10s on a number line See previous methods
- I can divide by grouping objects in 10s


 Use previous method
- 0 → I can skip count in 5s

 See previous methods
- 0 → I can skip count in 5s on a number lineSee previous methods
- I can divide by grouping objects in 5s

 Use previous method

Year Two:

- 0- I understand what an equal group is
- 0 ─ I understand what an unequal group is
- 0-- I can divide by sharing objects equally
- I know divide by grouping the total into equal groups
 - 1. Objects (counters etc)

gure 14: 3 bags of 5 biscuits alongside three 5-value counters

Language focus

"The 15 represents the total number of biscuits."

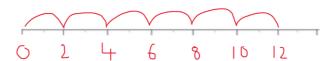

"The 5 represents the number of biscuits in each bag."

"The 3 represents the number of bags."

"15 divided into groups of 5 is equal to 3."

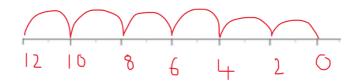
2. Images

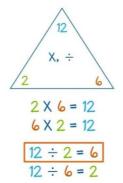
$$6 \div 3 = 2$$


3. Arrays

$$6 \div 3 = 2$$

0-- I can use skip counting when dividing


1. Number line (Forwards)


12 is divided into groups of 2. There are 6 equal groups.

2. Number line (Backwards)

12 ÷ 2 = 6

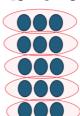
- 0 I can recall multiplication facts for 2, 5 and 10
- 1 can use multiplication facts to solve division questions
 - 1. Objects
 - 2. Arrays 3 x 5 = 15 15 ÷ 3 = 5
 - 3. Fact families

4. Creating links

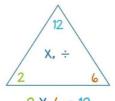
I know $\frac{8}{5} \times 2 = 16$ So, I know $16 \div 2 = \frac{8}{5}$

Year Three:

1 can use multiplication facts to solve division questions (2, 5 and 10)


0-x I can recall division facts for 3, 6, 4 and 8

I can use multiplication facts to solve division questions (3, 6, 4 and 8)


- 1. Objects
- 2. Arrays

$$3 \times 5 = 15$$

3. Fact families

4. Creating links

I know
$$8 \times 2 = 16$$

So, I know
$$16 \div 2 = 8$$

Quotitive division Partitive division I need 14 ping-pong balls. There are 2 £14 is shared between 2 children. How ping-pong balls in a pack. How many much money does each child get? packs do I need? 2 2 2 2 2 2 2 2 7 Figure 27: using an array and bar model to show that 14 divided into groups of 2 is Figure 28: using an array and bar model to show that 14 shared between 2 is equal to 7 equal to 7 Language focus Language focus "7 times 2 is 14, so 14 divided by 2 "7 times 2 is 14, so 14 divided by 2 "14 divided into groups of 2 is equal "£14 shared between 2 is equal to £7 to 7." each." I need 7 packs of ping-pong balls. Each child gets £7.

- 1 know division is the inverse of multiplication
- I can understand that division cannot be done in any order
- □ I can apply known facts to scaled problems

1.
$$6 \div 3 = 2$$

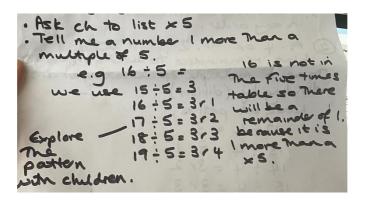
 $60 \div 3 = 20$

2. Missing box questions

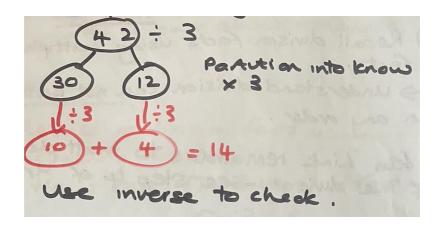
- 0- I understand what an equal group is
- 0- I understand what an unequal group is
- I know that a remainder is more than a multiple of what you are dividing by
 - 1. Arrays

2. Patterns

Look at patterns:

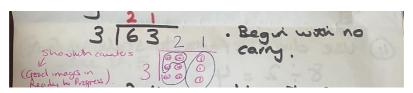

$$12 \div 4 = 3$$

$$13 \div 4 = 3 r 1$$


$$14 \div 4 = 3 r 2$$

$$15 \div 4 = 3 r 3$$

Can I have a remainder of 4? Why not?

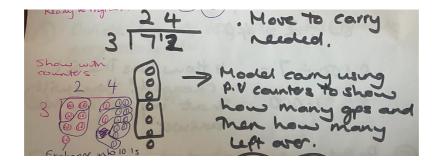


- □-- I can link halving to dividing by 2
- I can use partitioning to aid division

0 ☐ I can divide a 2 digit number by a 1 digit number without carrying

84	÷	4	=	21	4) 8 4
dividend	÷	divisor	=	quotient	quotient divisor)dividend

Short division with place-value counters	Short division					
2 1 4 10 10 1 8 tens \div 4 = 2 tens 10 10 1 1 4 ones \div 4 = 1 one	10s 1s 2 1 4 8 4					
Figure 29: dividing 84 by 4 using short division with place-value counters	Figure 30: dividing 84 by 4 using short division with place-value headings					


Language focus

"8 tens divided by 4 is equal to 2 tens: write 2 in the tens column."

"4 ones divided by 4 is equal to 1 one: write 1 in the ones column."

https://www.ncetm.org.uk/classroom-resources/exemplification-of-ready-to-progress-criteria/ - good resources and teaching tools on here

1 can divide a 2 digit number by a 1 digit number with carrying

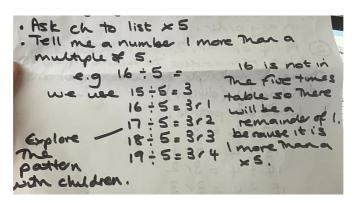
Year Four:

I can use multiplication facts to solve division questions (3, 6, 4 and 8)
 I can use multiplication facts to solve division questions (7, 9, 11 and 12)
 I know division is the inverse of multiplication
 I can understand that division cannot be done in any order
 I know that a remainder is more than a multiple of what you are dividing by

1. Arrays

2. Patterns

Look at patterns:

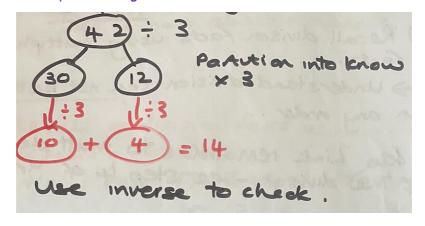

 $12 \div 4 = 3$

 $13 \div 4 = 3 r 1$

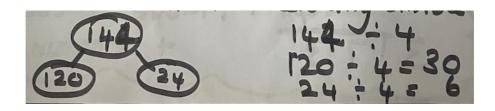
 $14 \div 4 = 3 r 2$

 $15 \div 4 = 3 r 3$

Can I have a remainder of 4? Why not?



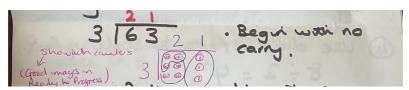
- I can link remainders to multiples of the divisor
- I can understand the effect of dividing by 0 and 1
- I can apply known facts to scaled problems


3.
$$6 \div 3 = 2$$

 $60 \div 3 = 20$

I can use division facts to scale up facts

I can use partitioning to aid division

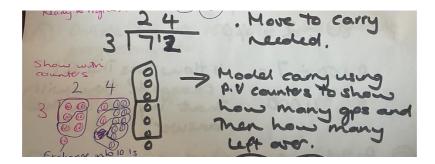

I can partition numbers into known multiples of the divisor

0 I can divide a 2 digit number by a 1 digit number without carrying

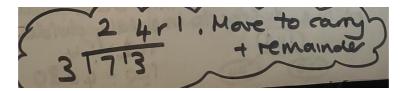
84
$$\div$$
 4 = 21 $\frac{2 \cdot 1}{4 \cdot 8 \cdot 4}$

dividend \div divisor = quotient $\frac{\text{quotient}}{\text{divisor})\text{dividend}}$

Short division with place-value counters	Short division					
2 1 4 10 10 1 1 8 tens \div 4 = 2 tens 10 10 1 1 4 ones \div 4 = 1 one	10s 1s 2 1 4 8 4					
Figure 29: dividing 84 by 4 using short division with place-value counters	Figure 30: dividing 84 by 4 using short division with place-value headings					

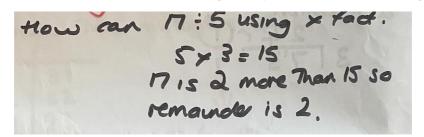

Language focus

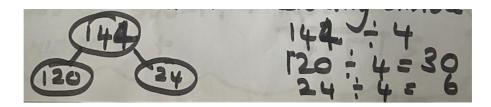
"8 tens divided by 4 is equal to 2 tens: write 2 in the tens column."


"4 ones divided by 4 is equal to 1 one: write 1 in the ones column."

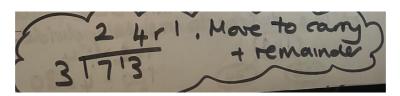
https://www.ncetm.org.uk/classroom-resources/exemplification-of-ready-to-progress-criteria/ - good resources and teaching tools on here

1 can divide a 2 digit number by a 1 digit number with carrying


I can divide a 2 digit number by a 1 digit number using remainders


Year Five:

- 0-x I can use multiplication facts to solve division questions (3, 6, 4 and 8)
- 0 I know division is the inverse of multiplication
- 1 can understand that division cannot be done in any order
- I know that a remainder is more than a multiple of what you are dividing by


I can recall division facts using multiplication facts including remainders

1 can partition numbers into known multiples of the divisor

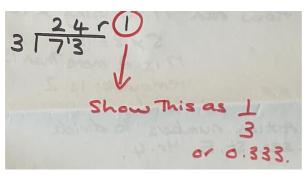
- I can use partitioning to aid division including remainders
- 0- I can divide a 2 digit number by a 1 digit number using remainders

- I can divide a 3 digit number by 1 digit number without remainders
- I can divide a 3 digit number by 1 digit number with remainders

= 3 ones

12 ones÷4

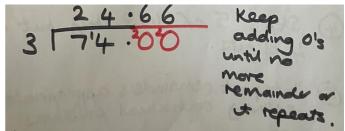
- I can divide a 4 digit number by 1 digit number without remainders
- I can divide a 4 digit number by 1 digit number with remainders


Year Six:

- I know that a remainder is more than a multiple of what you are dividing
- 1 can recall division facts using multiplication facts including remainders
- I can recall division facts using multiplication facts including remainders for increasingly larger numbers
- □ I can divide a 3 digit number by 1 digit number without remainders
- 1 can divide a 3 digit number by 1 digit number with remainders
 - - 21 tens÷4 = 5 tens remainder 1 ten

 1 ten = 10 ones

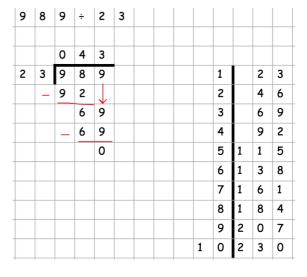
 plus 2 more ones = 12 ones


 12 ones÷4 = 3 ones
- 1 can divide a 4 digit number by 1 digit number without remainders
- 1 can divide a 4 digit number by 1 digit number with remainders
- 0 ☐ I can interpret remainders as a fraction

0—z I can interpret remainders as a decimal

$$142 \div 4 = 35.5$$
r2
$$0 \ 3 \ 5.5 \ ^{2/4 = 1/2 = 0.5}$$

$$4) \ 1 \ ^{1}4 \ ^{2}2 \cdot ^{2}0$$


I can use division to determine unfamiliar fractions as a decimal

$$\frac{1}{8} = 1 \div 8$$

$$\frac{0 \cdot 1}{1 \cdot 10^{2} \cdot 0^{4} \cdot 0}$$

$$\frac{1}{8} = 0.125$$

- $^{0\!\!-\!\!-\!\!\!-\!\!\!-\!\!\!-}$ I can use rounding to interpret the remainder where appropriate in a contextual problem
- I can use long division to divide a 3 digit number by a 2 digit number without remainders
 - 1. Write the multiples of 23
 - 2. Divide the hundreds \rightarrow 9 ÷ 23 = 0
 - 3. Look at the hundreds and tens together \rightarrow 98 ÷ 23 = 4
 - 4. Take away the multiple of $23 \rightarrow 98 92 = 6$
 - 5. Pull down the ones $(9) \rightarrow 69$
 - 6. Divide \rightarrow 69 ÷ 23 = 3
 - 7. Write down remainders (important for when there is a remainder here)

I can use long division to divide a 3 digit number by a 2 digit number with remainders

4	3	7	÷	3	1	=							
		0	1	4	r	3							
3	1	4	3	7					1		3	1	
	_	3	1						2		6	2	
		1	2	7					3		9	3	
	_	1	2	4					4	1	2	4	
		0	0	3					5	1	5	5	
									6	1	8	6	
									7	2	1	7	
									8	2	4	8	
									9	2	7	9	
								1	0	3	1	0	

- I can use long division to divide a 4 digit number by a 2 digit number without remainders
- I can use long division to divide a 4 digit number by a 2 digit number with remainders
- I can apply knowledge of remainders as a fraction or decimal to long division
- I can solve contextual problems and display the remainder appropriately