

Maths

Calculation Policy Fractions

2024

 $EYFS \rightarrow page$

Year One \rightarrow page

Year Two → page

Year Three → page

Year Four → page

Year Five \rightarrow page

Year $Six \rightarrow page$

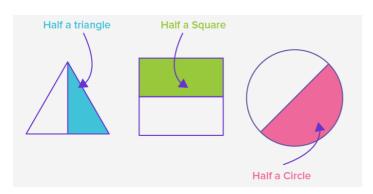
EYFS

0 ─ I can say numbers in words in a sequence

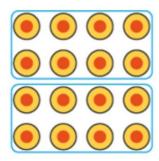
Year One

0→ I understand that fractions are equal parts of a whole

0 I know one half is one part of two equal parts of a whole


0- I know if the parts aren't equal, then it isn't a half

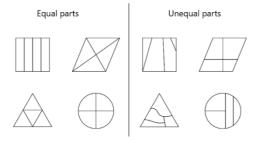
0- I can write the symbol for one half


Add in Image 1

0 ☐ I can find one half of an object(pizza, cake, box, table etc)

$0 \longrightarrow$ I can find one half of a shape

0— \mathbf{I} Can find one half of a quantity using concrete resources



Any concrete resources can be used.

☐ I can write simple fractions (one half)

$\frac{1}{2}$ of 6 = 3

- 0→ I know one quarter is one part of four equal parts of a whole
- 0- I know if the parts aren't equal, then it isn't a quarter

- 0- I can write the symbol for one quarter
- 0 → I can find one quarter of an object (pizza, cake, box, table etc)
- 0 ─ I can find one quarter of a shape
- 0 I can find one quarter of a quantity using concrete resources
- ☐ I can write simple fractions (one quarter)

$\frac{1}{2}$ of 6 = 3

Year Two

- 0- I know one third is one part of three equal parts of a whole
- 0→ I know if the parts aren't equal, then it isn't a third

- 0 ☐ I can write the symbol for one third
- I can find one third of an object (pizza, cake, box, table etc)
- 0 ☐ I can find one third of a shape
- 0 → I can find one third of a quantity using concrete resources
- 0 ☐ I can write simple fractions (one third)
- $\frac{1}{2}$ of 6 = 3
- 0-x I know the unit fraction one quarter is one part of four equal groups
- 0 I know two quarters is two parts of four equal groups
- 0 ─ I can write the symbol for two quarters
- I can find two quarters of an object, shape and quantity using concrete resources
- I can recognise the equivalence of one half and one quarter
- 0→ I know three quarters is three parts of four equal groups
- 0 ─ I can write the symbol for three quarters
- I can find three quarters of an object, shape and quantity using concrete resources

Year Three

Recap of tenths from place value unit

- I understand the meaning of the numerator and denominator
- 0- I know that the line in a fraction means divide
- 0- I understand that unit fractions are one part of the whole
- 0 I can order and compare unit fractions
- 0 I can place unit fractions on a numberline

- 0 ☐ I can find a unit fraction of an amount using division facts
- 1 understand that non-unit fractions are more than one part of the whole
- 0─ I can order and compare non-unit fractions with the same denominator
- I can place non-unit fractions with the same denominator on a numberline
- I can find non-unit fractions of an amount using division facts (small denominators \rightarrow 2,5,10,3,4)
- I can recognise that one whole is equivalent to two halves, three thirds and four quarters
- I can use my multiples to identify how many parts are in a given whole $3 \times 5 = 15$ so there are 15 fifths in 3 wholes.
- 0 → I can find equivalent fractions using a bar model
- I can find equivalent fractions using my knowledge of multiplication $e.g \rightarrow 2/5 = 4/10$
- 0- I add fractions with the same denominator within a whole
- 1 subtract fractions with the same denominator within a whole
- I can solve problems that involve all of the above

Year Four:

- 0-x I understand the meaning of the numerator and denominator
- 0-x I know that the line in a fraction means divide
- 0- I understand that unit fractions are one part of the whole
- 0-x I can find equivalent fractions using a bar model
- I can find equivalent fractions using my knowledge of multiplication.
- I know that equivalent fractions are equal to one another
- 0 ☐ I know common equivalent fractions
 - $e.g \rightarrow$ one half is equivalent to two quarters

I can find families of equivalent fractions I know that the line in a fraction means divide I can find a unit fraction of an amount using division facts I understand that non-unit fractions are more than one part of the whole I can find non-unit fractions of an amount using division facts (For all timetables) I add fractions with the same denominator within a whole I subtract fractions with the same denominator within a whole I add fractions with the same denominator within a whole I subtract fractions with the same denominator within a whole Recap of tenths and hundredths from place value unit I know the decimal equivalence to a fraction when the denominator is 10 I know the decimal equivalence to a fraction when the denominator is 100 I know half of 100 is 50 and can apply this to finding decimal equivalence of $\frac{1}{2}$ I know one quarter of 100 is 25 and can apply this to finding decimal equivalence of $\frac{1}{4}$ I know three quarters of 100 is 75 and can apply this to finding decimal equivalence of $\frac{3}{4}$ I can solve simple measure and money word problems using the above Recap of comparing and ordering tenths and hundredths from place value unit

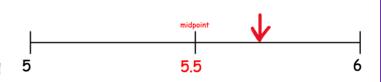
I can identify the whole before and after a number with one decimal place

I can find the midpoint between two whole numbers

1. Number line

Find the midpoint between 11 and 12.

What's the difference between 11 and 12? 1


What would halfway be? $1 \div 2 = \frac{1}{2} = 0.5$

So, 0.5 more than 11 is 11.5

 Γ I can place a number with one decimal place on a number line using the midpoint as a guide

- 1. Draw a number line
- 2. Find the whole before and after
- 3. Find the midpoint
- 4. Estimate where it would be

○ I can round numbers with one decimal place to the nearest whole

- 1. Number line method:
 - a. Draw number line
 - Add the whole before and after
 - c. Find the midpoint
 - d. Place your number
 - e. Which whole is it closest to?

Round 3.4 to the nearest whole.

2. Rule:

a. Underline the digit in the place value column you are rounding to (in this case, the ones because whole means no decimal places)

Round 3.4 to the nearest whole.

	3	4	→	Ro	und c	lown	beca	use i	t is 4	
	3									

b. Circle the digit in the place value column to the right (in this case, the tenths)

- c. If the circled digit is 0, 1, 2, 3 or 4, round down to the previous multiple of 10 → the underline digit stays the same and everything to the right becomes a 0 HOWEVER, WHEN ROUNDING TO THE NEAREST WHOLE, WE DON'T PUT 05 AFTER THE ONES AS THE NUMBER WOULD NO LONGER BE WHOLE.
- d. If the circled digit is 5, 6, 7, 8 or 9, round up to the next multiple of 10 → the underlined digit goes up by one and everything to the right becomes 0 HOWEVER, WHEN ROUNDING TO THE NEAREST WHOLE, WE DON'T PUT 0S AFTER THE ONES AS THE NUMBER WOULD NO LONGER BE WHOLE.

Year Five:

- ○─ I can find equivalent fractions using my knowledge of multiplication
- I can compare and order fractions whose denominators are all multiples of the same number
- I can compare and order fractions whose denominators are all factors of the same number
- 0 I know that a proper fraction is less than 1
- 0- I know that fractions can be greater than 1
- I know that an improper fraction has a larger numerator than denominator and represents where there are more parts than needed to make a whole
- I know that a mixed number represents a whole number and a fraction
- I can convert between an improper fraction and a mixed number using my knowledge of multiples of the denominator
- □ I compare mixed numbers and improper fractions
- I can add and subtract fractions with the same denominator (inlauding improper fractions and mixed numbers)
- I can add and subtract fractions whose denominators are multiples of the same number (inlcuding improper fractions and mixed numbers)
- ☐ I can add and subtract fractions whose denominators are factors of the same number (inlcuding improper fractions and mixed numbers)

- I know to convert my answer from an improper fraction to a mixed number when adding and subtracting fractions
- 0─x I can multiply proper fractions by a whole number
- I can multiply mixed numbers by a whole number (converting the mixed number to an improper fraction)
- 0-x I know the decimal equivalence to a fraction when the denominator is 10
- I know the decimal equivalence to a fraction when the denominator is 100
- 0-x I know the decimal equivalence to a fraction when the denominator is 1,000

Recap of comparing and ordering decimals up to 3 d.p. from place value unit

- □ I can solve simple measure and money word problems using the above
- - 1 Number line

Find the midpoint between 11 and 12.

What's the difference between 11 and 12? 1

What would halfway be? $1 \div 2 = \frac{1}{2} = 0.5$

So, 0.5 more than 11 is 11.5

0 → I can find the midpoint between two hundredths


Use same method as previous

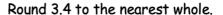
 \circ I can place a number with one decimal place on a number line between two wholes using the midpoint

See previous year group

I can place a number with two and three decimal places on a number line between two wholes using the midpoint

- 1. Draw a number line
- 2. Find the whole before and after
- 3. Find the midpoint
- 4. Estimate where it would he

I can place a number with two and three decimal places on a number line between two tenths using the midpoint


Use same method as previous

0-1 I can place a number with three decimal places on a number line between two hundredths using the midpoint

Use same method as previous

- I can round numbers with one decimal places to the nearest whole

 See previous year group
- 1 can round numbers with two and three decimal places to the nearest whole
 - 1. Number line method:
 - a. Draw number line
 - Add the whole before and after
 - c. Find the midpoint
 - d. Place your number
 - e. Which whole is it closest to?

- 2. Rule:
 - a. Underline the digit in the place value column you are rounding to (in this case, the ones because whole means no decimal places)

Round 3.4 to the nearest whole.

	3	4	→	Ro	und c	lown	beca	use i	t is 4	
	3									

b. Circle the digit in the place value column to the right (in this case, the tenths)

- c. If the circled digit is 0, 1, 2, 3 or 4, round down to the previous multiple of 10 → the underline digit stays the same and everything to the right becomes a 0 HOWEVER, WHEN ROUNDNIG TO THE NEAREST WHOLE, WE DON'T PUT 0S AFTER THE ONES AS THE NUMBER WOULD NO LONGER BE WHOLE.
- d. If the circled digit is 5, 6, 7, 8 or 9, round up to the next multiple of 10 → the underlined digit goes up by one and everything to the right becomes 0 HOWEVER, WHEN ROUNDNIG TO THE NEAREST WHOLE, WE DON'T PUT 0S AFTER THE ONES AS THE NUMBER WOULD NO LONGER BE WHOLE.
- 1 can round numbers with two and three decimal places to 1 decimal place
 - 1. Number line method:
 - a. Draw number line
 - b. Add the tenthbefore and after
 - c. Find the midpoint
 - d. Place your number
 - e. Which tenth is it closest to?

Round 3.467 to the nearest 1dp.

2. Rule:

 a. Underline the digit in the place value column you are rounding to (in this case, the tenths because 1dp means 1 digit after the decimal point)

Round 3.467 to the nearest whole.

3.5		3	, 4	6	7	R	ound	up b	ecaus	e it i	s 6
3 5											
		3	5								

- b. Circle the digit in the place value column to the right (in this case, the hundredths)
- c. If the circled digit is 0, 1, 2, 3 or 4, round down to the previous multiple of 10 → the underline digit stays the same and everything to the right becomes a 0 HOWEVER, WHEN ROUNDING TO THE DECIMAL PLACES, WE DON'T PUT OS AFTER THE COLUMN WE ARE ROUNDING TO AS THE ANSWER WOULD NO LONGER BE 1 DECIMAL PLACE (1 DIGIT AFTER THE DECIMAL POINT)
- d. If the circled digit is 5, 6, 7, 8 or 9, round up to the next multiple of 10 → the underlined digit goes up by one and everything to the right becomes 0 HOWEVER, WHEN ROUNDING TO THE DECIMAL PLACES, WE DON'T PUT 0S AFTER THE COLUMN WE

ARE ROUNDING TO AS THE ANSWER WOULD NO LONGER BE 1 DECIMAL PLACE (1 DIGIT AFTER THE DECIMAL POINT)

I can round numbers with three decimal places to 2 decimal places

Use same method as previous

1 can solve simple measure and money word problems using the above

Year Six:

- I can compare and order fractions whose denominators are all multiples of the same number
- I can compare and order fractions whose denominators are all factors of the same number
- 0 ─ I can compare and order mixed numbers and improper fractions
- 1 can find equivalent fractions using my knowledge of multiplication
- 0 I can simplify fractions using common multiples
- I can add and subtract fractions with the same denominator (inlauding improper fractions and mixed numbers)
- 0 ☐ I can add and subtract fractions whose denominators are multiples of the same number (inlcuding improper fractions and mixed numbers)
- I can add and subtract fractions whose denominators are factors of the same number (inlcuding improper fractions and mixed numbers)
- I can add and subtract fractions with different denominators (inlcuding improper fractions and mixed numbers)
- I know to convert my answer from an improper fraction to a mixed number when adding and subtracting fractions
- ○─ I know to simplify my answer when multiplying two proper fractions
- 0- I can divide proper fractions by whole numbers

0	I can work out decimal fraction equiavlents using short division