

CHS Computing and Technology 2022/2023 AQA GCSE Design and Technology (8552)

GCSE Design and Technology Exam Paper 1	Non-exam assessment (NEA)
Written exam: 2 hours 100 marks - 50% of GCSE	Non-exam assessment (NEA): 30–35 hours approx. 100 marks - 50% of GCSE
Core technical principles	Practical application of:
Specialist technical principles	Core technical principles
Designing and making principles	Specialist technical principles
In addition:	 Designing and making principles
• at least 15% of the exam will assess maths.	 Substantial design and make task.
• at least 10% of the exam will assess science.	Assessment criteria:
	 Identifying and investigating design possibilities
Questions:	 Producing a design brief and specification
Section A – Core technical principles (20 marks) A mixture of multiple choice and short	Generating design ideas
answer questions assessing a breadth of technical knowledge and understanding.	 Developing design ideas
Section B – Specialist technical principles (30 marks) Several short answer questions (2–5	Realising design ideas
marks) and one extended response to assess a more in-depth knowledge of technical principles.	Analysing & evaluating
Section C – Designing and making principles (50 marks) A mixture of short answer and	Contextual challenges to be released annually by AQA on 1 June in the year prior to the
extended response questions	submission of the NEA.
	Students will produce a prototype and a portfolio of evidence, Work will be marked by
	teachers and moderated by AQA

Year 10 (Design and Technology)

Year 10	AUTUMN		SPRING		SUMMER	
	Materials & Their Working Properties	Forces and Stresses and Production	The Work of Others	New & Emerging Technologies	Design, Modelling and Prototyping	NEA – identification and investigating design possibilities
Declarative What should they know?	 Students should know the different types of material properties and the correct terms used to describe these. Paper and boards Students should know the primary source of materials for producing paper and boards. Students should be able to recognise and characterise different types of paper and boards. Students should understand how the physical and working properties of a range of paper and board products affect their performance. Natural and manufactured timbers Students should know the primary sources of materials for products affect their performance. 	 Forces and stresses on materials and objects Students should be able to recognise and characterise tension, compression, bending, torsion and shear forces and stresses. Students should understand the impact of different forces and stresses on materials. Mechanical devices Students should be able to recognise and identify a range of movements. Student should understand the functions of mechanical devices to produce linear, rotary, reciprocating and oscillating movements. Students should understand how mechanisms can be used to change magnitude and direction of force, including levers, linkages and rotary systems. Students should be able to understand the impact of resource consumption on the planet: o finite o non-finite o disposal of waste Students should be able to take into consideration the 	 The work of others Students should know how to investigate, analyses and evaluate the work of others. Students should understand how investigating the work of other designers and design companies can inform designing. Design strategies Students should be able to use a range of design strategies to help produce imaginative and creative design ideas. Students should understand how to explore and develop design ideas. Explore and develop their own ideas using an iterative process including: sketching evaluation of their work to improve outcomes. Communication of design ideas Students should know how to develop, communicate, record and justify design ideas using a range of appropriate techniques such as: freehand sketching, isometric and perspective 	 New and emerging technologies Students should know that it is important to consider scenarios from different perspectives and considering: planned obsolescence. design for maintenance ethics the environment Energy generation Students should understand how power is generated from fossil and nuclear fuels. Students should understand how power is generated from renewable energy sources such as: wind, solar, tidal, hydroelectric and biomass. Students should be aware of the arguments for and against the selection of fossil fuels, renewable energy and nuclear power. Energy storage Students should be able to identify mechanical power and understand how it is stored. Students should understand pneumatics and hydraulics as examples of kinetic pumped storage systems. Students should understand pneumatics and hydraulics as examples of kinetic pumped storage systems. 	 Communication of design ideas and prototype development Students should understand how to develop, communicate, record and justify design ideas. Students should be aware of a range of techniques to support clear communication of design ideas. Students should know how to design and develop prototypes in response to client wants and needs. Students should be able to critically evaluate prototypes and suggest modifications. Design strategies Students should be able to use a range of design strategies to help produce imaginative and creative design ideas. Students should understand how to explore and develop design ideas. Students should understand how to explore and develop design ideas. Students should know how to develop, communicate, record and justify design ideas using a range of appropriate techniques such as: o freehand sketching, isometric and perspective 	 Students will be completing their NEA Tasks in GCSE Design and Technology. Their contexts will be released by the exam board on the 1st June and released to students at the start of the summer term. Students should complete Section A and B by the summer break: Identify, investigate and outline design possibilities. This will be evidences through: Identifying & investigating design possibilities Producing a design brief & specification Student should know to identify design possibilities from a given context. Students should know a variety of analytical skills that can be applied to a given context. Students should know how to conduct primary and secondary research relating to a given context. Students should know how select relevant work from other

Metals and alloys	ecological and social	o 2D and 3D drawings	alkaline and rechargeable	o 2D and 3D drawings	to assist with design
 Students should know the 	footprint of materials.	 annotated drawings that 	batteries.	 annotated drawings that 	development and research.
primary sources of materials		explain detailed		explain detailed	development and research.
for producing metals and	Environment	development or the	Electronic systems processing	development or the	Students should know how to
alloys.	 Students should know the 	conceptual stages of	 Students should understand 	conceptual stages of	be concise with research and
 Students should be able to 	positive and negative	designing	the difference between	designing	how to relate this to their
recognise and characterise	impacts new products have	 exploded diagrams to 	analogue and digital signals.	 exploded diagrams to 	contexts.
different types of metals and	on the environment:	show constructional	Students should understand	show constructional	contexts.
alloys.	o continuous improvement	detail or assembly.	how microcontrollers are	detail or assembly.	Investigation, primary and
 Students should understand 	 efficient working 	 working drawings: 3rd 	programmed as counters,	 working drawings: 3rd 	secondary data
how the physical and	o pollution	angle orthographic, using	timers and for decision	angle orthographic, using	 Students should understand
working properties of a	 global warming. 	conventions, dimensions	making to provide	conventions, dimensions	primary and secondary data
range of metals and alloys		and drawn to scale	functionality to products and	and drawn to scale	can be collected to assist the
affect their performance.	Ecological issues in the design		processes.	 computer based tools. 	understanding of client and
	and manufacture of products	Production techniques and	 Students should understand 	 modelling: working 	user needs.
Polymers	 Students should know the 	systems	the use of buzzers, speakers	directly with materials	 Students should know how
 Students should know the 	impact of:	 Students should know: the 	and lamps to provide	and	to write a design brief and
primary sources of materials	 Deforestation, mining, 	contemporary and potential	functionality to products and	o components, e.g., card	produce a manufacturing
for producing polymers.	drilling and farming.	future use of:	process.	modelling, producing a	specification.
 Students should be able to 	 Mileage of product from 	o automation		toile when designing	 Students should understand
recognise and characterise	raw material source,	 computer aided design 	Mechanical devices	garments.	how the environment. and
different types of polymers.	manufacture,	(CAD)	 Students should be able to 		social and economic
 Students understand the 	distribution, user	o computer aided	recognise and identify a	Selection of materials and	challenge influence designing
physical and working	location and final	manufacture (CAM)	range of movements.	components	and making.
properties for arrange of	disposal.	 flexible manufacturing 	 Student should understand 	Students should be able to	2
thermosetting and	 That carbon is produced 	systems (FMS)	the functions of mechanical	select and use materials and	
thermoforming polymers.	during the manufacture	 just in time (JIT) lean manufacturing. 	devices to produce linear,	components appropriate to a specific task.	
	of products.	 lean manufacturing. 	rotary, reciprocating and	 Students should understand 	
Textiles	The 6 R's	Modern materials	oscillating movements.	 Students should understand how functionality, availability 	
Students should know the	 Students should know the 6 	 Students should be able to 	Students should understand	and cost affect the selection	
primary source of materials	 Students should know the b R method for consideration 	 students should be able to recognise a range of modern 	how mechanisms can be	of materials and	
for producing textiles.	when designing and making	materials.	used to change magnitude	components.	
 Students should be able to 	products (Reduce, Refuse,	 Students should be able to 	and direction of force, including levers, linkages and	 Students should know the 	
recognise and characterise	Re-Use, Repair, Recycle and	describe developments made	rotary systems.	different types of material	
different types of textiles.	Rethink).	through invention of new or	iotary systems.	properties and the correct	
 Students should understand how the physical and 		improved processes involving	Production techniques and	terms used to describe	
how the physical and working properties of a	Social issues in the design and	modern materials.	systems	these.	
range pf textiles affect their	manufacture of products	 Students should be able to 	CAD/CAM		
performance.	 Students should know the 	explain how modern	 Students should be able to 	Students must be able to apply	
performance.	safe working conditions,	materials can be used to	understand the	the following mathematical	
Forces and stresses on	reducing	alter functionality.	contemporary and potential	skills.	
materials and objects	oceanic/atmospheric		future use of:	Arithmetic and numerical	
 Students should be able to 	pollution and reducing the	Smart materials	o automation	computation	
recognise and characterise	detrimental (negative)	 Students should be able 	 computer aided design 	 Recognise and use 	
tension, compression,	impact on others.	recognise a range of smart	(CAD)	expressions in	
bending, torsion and shear		materials.	o computer aided	o decimal and standard	
forces and stresses.	Scales of production		manufacture (CAM)	form.	
		1		1	

	U	•				Y	
- Church	ents should understand	Students should know how	 Students should understand 	 flexible manufacturing 	 Use ratios, fractions and 		1
				0	,		
	mpact of different forces	products are produced in	how the functional	systems (FMS)	percentages.		
and s	tresses on materials.	different volumes.	properties of a range of		 Calculate surface area 		
	6 II.	• The reasons why different	smart materials can be		and volume.		
-	ng functionality	manufacturing methods are	changed by external stimuli.		Handling data		
	ents should understand	used for different production			 Presentation of data, 		
how	materials may be	volumes:	Composite materials and		diagrams, bar charts and		
	nced to resist and work	 prototype 	technical Textiles		histograms.		
with	forces and stresses to	o batch	 Students should understand 		Graphs		
impro	ove functionality.	o mass	how material properties can		 Plot, draw and interpret 		
		o continuous.	be enhanced by combining		appropriate graphs.		
For one	or two of three		two or more materials.		 Translate information 		
materia	l areas above students	The use of production aids	 Students should recognise a 		between graphical and		
should		 Students should know how 	range of composite materials		numeric form.		
• Know	how primary sources	to use	and technical textiles.		 Geometry and trigonometry 		
are co	onverted into products.	measurement/reference	 Students should understand 		 Use angular measures in 		
• Unde	erstand ecological issues	points, templates, jigs and	how fibres can manipulated		degrees.		
in the	e manufacture and	patterns where suitable.	to create technical textiles.		 Visualise and represent 		
recvo	ling of the material.				2D and 3D forms		
,	different properties of	Tolerances and allowances	People		including two		
	naterial make them	Students should understand	 Students should know how 		dimensional		
	ble for use in	the use of tolerances to	technology push/market pull		representations of 3D		
	nercial products.	ensure accuracy is	affects choice.		objects.		
	erstand the commercial	considered when making a	 Changing job roles due to the 		o Calculate areas of		
	forms, types and sizes	product.	emergence of new ways of		triangles and rectangles,		
	aterials in order to	Students should understand	working driven by		surface areas and		
	late quantities.	how a range of materials are	technological change.		volumes of cubes.		
		formed to designated	technological change.		volumes of cubes.		
	erstand wasting and	tolerances.	Culture				
mate	ding techniques for the	 Students should understand 	 Students should know how 				
		 Students should understand why tolerances are applied 					
	vare of school-based		changes in fashion and trends in relation to new and				
	ng, forming and process	during making activities.					
	niques tools and	Quality control	emergent technologies.				
	oment.	Quality control	Respecting people of				
	erstand how the	Students should know the	different faiths and beliefs.				
	erties of the material	application and use of quality					
	t their use in	control to include	Society				
	mercial appliances.	measurable and quantitative	 Students should know wow 				
	vare of commercial	systems used during	products are designed and				
	essing techniques.	manufacture	made to avoid.				
	erstand the use of		 having a negative impact on 				
	alist quality control		others:				
meth	iods.		 design for disabled 				
• Unde	erstand how the		o elderly				
appli	cation of surface		 different religious 				
treat	ments and finishes can		groups.				
modi	fy the functional and						

	aesthetic properties of the material.					
Procedural	Student should be able to apply their theoretical knowledge to	Students should be able to use math and science knowledge to	Students should be able to describe the main features of	Students should be able to describe the main stages that	Students should be able to write a design	Students should be able to
M/h at a h a wild the aw ha	complete examination style	answer questions related to	iterative design, user centred	make up an electronic system.	specification for a product or	apply their knowledge and
What should they be	questions.	design and technology.	design and systems approach to	make up an electronic system.	system.	understanding to a given
able to do?	questions.	design and teenhology.	designing.	Students should be able to	system.	context/scenario.
	Students should be able to	Students should be able to	uesigning.	select and use appropriate	Students should be able to	
	discuss the potential effects of	explain how designing and	Students should be able to	input, process and output	modify a design brief because	Students should be able to
	new designs on culture and	making is affected by ecological,	explain the advantages and	components in a circuit and	of user feedback.	successful identify and explore
	society.	environmental and social issues.	disadvantages to different	product.	of user recuback.	design possibilities linked to a
	society.	environmental and social issues.	design strategies.	product.	Students should be able to	contextual challenge.
	Students should be able to	Students should be able to	design strategies.	Students should be able to	produce a manufacturing	
	describe the characterises.	discuss the benefits of Fairtrade	Students should be able to	describe the four types of	specification for a product or	Students should be able to
	properties and commonly used	for producers and consumers.	analyse and evaluate the work	motion.	system.	generate client and user
	for the following material areas:	for producers and consumers.	of at least two different	motion.	system.	profiles relevant to a contextual
	Paper and board, metals and	Students should be able to	designers and companies.	Students should be able to	Students should be able to	challenge.
	alloys, polymers, Textiles,	explain the benefits of	uesigners and companies.	describe the basic principles of	explain the meanings of the	
	Timber, and manufactured	Computer base design and	Students should be able to use	a lever and the different classes	properties of materials.	Students should be able to
	boards.	manufacture tools.	the work of past and present	of levers.	properties of materials.	research and analyse work by
	boards.	manufacture tools.	designers to aid their own	or levers.	Students should be able to	other designers and companies
	Students should be able to	Students should be able to	designing.	Students should be able to	describe the typical properties	in relation to their context.
	describe the stock forms for the	describe how computer-based	designing.	describe how linkages, cams,	of different types of materials.	
	following material areas: Paper	tools can be used to share and	Students should be able to	gears and pulleys transfer	of uniferent types of materials.	Students should be able to
	and board, metals and alloys,	present ideas and technical	describe the main methods of	motion.	Students should be able to	identify economic and social
	polymers, Textiles, Timber, and	information.	conducting research and	motion.	describe a range of examples of	impacts of products and
	manufactured boards.	information.	investigation.	Students should be able to	how product designs can be	materials in relation to
	manufactureu boarus.	Students should be able to	investigation.	explain how these mechanical	modified to improve the	research.
	Students should be able to	describe the characteristics and	Students should be able to	devices are used to change the	performance of a product.	
	explain how the following	give examples of different	explain the difference between	magnitude and direction of	performance of a product.	
	materials areas are converted	scales of manufacture.	primary and secondary data.	forces.	Students must be able to apply	
	into workable forms: Paper and	scales of manufacture.	primary and secondary data.	Torces.	the following mathematical	
	board, metals and alloys,	Students should be able to	Student should be able to	Students should be able to	skills.	
					 Arithmetic and numerical 	
	polymers, Textiles, Timber and manufactured boards.	explain why the equipment used changes with the scale of	describe the use of ergonomic and anthropometric data and	describe how energy is stored		
		manufacture.	use this data effectively in	and generated.	computation	
	Students should be able to		designing.	Students should be able to	 Recognise and use 	
	explain why standard	Students should be able to use	uesigiiiig.	explain he advantages and	expressions in o decimal and standard	
	components are used.	reference points in	Students should be able to	disadvantages of using	 decimal and standard form. 	
	components are used.	measurements.	describe the main stages in	renewable energy sources to		
	Students should be able to	incasurements.	developing a design idea.	power products and systems.	 Use ratios, fractions and percentages. 	
	identify and select appropriate	Students should be able to	uevelopilig a design idea.	power products and systems.	 percentages. Calculate surface area 	
	standard components for a	explain why production aids are	Students should be able to use	Students should be able to	and volume.	
	variety of different materials.	used.	card models, toiles and	describe the characterises of a		
	variety of unierent materials.	useu.	breadboards to create	variety of new materials.	Handling data	
	Students should be able to	Students should be able to	prototypes successfully and	variety of new materials.	 Presentation of data, 	
	explain the purpose of surface	explain the impact of new and	explain why.		diagrams, bar charts and	
	explain the purpose of sufface	explain the impact of new and	explaint why.		histograms.	
					Graphs	

	treatments and finishes for a	emerging technologies on	Students should be able to	Student should be able to	 Plot, draw and interpret 		
	range of materials.	industry and enterprise.	produces sketches in	explain what is meant by smart	appropriate graphs.		
			perspective, isometric,	and composite material.	 Translate information 		
	Students should be able to	Students should be able to	exploded and orthographic		between graphical and		
	describe and apply surface	discuss the potential effects of	styles.	Students should be able to list	numeric form.		
	treatments and finishing	the use of new and emerging		specific technical textiles,	 Geometry and trigonometry 		
	techniques to a range of	technologies on employment.	Students should be able to use	modern, smart and composite	 Use angular measures in 		
	materials.		annotation to enhance design	materials and their typical uses.	degrees.		
		Students should be able to	communication.		 Visualise and represent 		
	Students should be able to	explain the impact of CAD and		Students should be able to	2D and 3D forms		
	describe and consider a range	CAM on production.	Students should be able to	explain reasons why accuracy is	including two		
	of factors that can influence the		describe how mathematical	important in manufacture.	dimensional		
	choice of material for a product.	Students should be able to	modelling and computer-based		representations of 3D		
		Explain how production	tools are used to communicate	Student should be able to	objects.		
	Students should be able to	techniques and systems	design ideas.	explain the importance of	 Calculate areas of 		
	explain the important	improve manufacturing		quality control and types of	triangles and rectangles,		
	properties required for	efficiency.	Students should be able to	quality control and assurance.	surface areas and		
	commercial products.		physically model ideas.		volumes of cubes.		
		Students should be able to		Students should be able to			
	Students should be able to	explain the impact of new and	Students should be able to	explain tolerance and use it			
	explain why reinforcement is	emerging technologies on	explain the considerations that	effectively.			
	used in products.	sustainability.	are considered when designing	,			
			prototypes				
	Student should be able to						
	describe and reinforce different						
	materials to enhance their						
	properties.						
Disciplinary	Toughness	 Forces and Stresses 	Just in time	Automation	Product analysis	Questionnaire	
Disciplinary	Component	Mechanical Systems	• Kaizen	Batch production	Prototype	 Investigation 	
Literacy	Properties	Bending	Lean manufacturing	Bespoke	Quality control	 Primary data 	
LILEIACY	Ferrous	Compression	Market pull	Biopolymers	Tolerance	 Secondary data 	
(Tier 3 Vocab)	 nonferrous 	Shear	 Technology push 	• CAD	Models	Research	
	Polymer	Tension	Nanomaterials	• CAM	Manufacture	 Analysis 	
	 Thermosetting 	Torsion	Society	Carbon footprint	Variance	 Focus group 	
	Thermoplastic	Gears	Culture	Carbon offsetting	Adaptation	 Product analysis 	
	Monomer	 Magnitude 	Biomass	Emerging Technologies	Development	Evaluation	
	Ore	 Movement 	Biofuel	Finite	3D Communication	Summary	
	 Veneer 	 Oscillating, Linear, 	Composite	Fairtrade	 Inclusive design 	Client profile	
	Wasting	 Oscillating, Elitear, Reciprocating, Rotary 	e-textiles	 Input 	 Modification 	Ergonomics	
	Abrading	 Pivot 	 hydroelectric 	Output		Anthropometrics	
	 Abrading Absorbency 	 Pivot Pullev 	Kinetic	 Output Process 		- Anthropometrics	
		 Ecological Footprint 					
	Density	0 1	Nuclear	Microcontroller			
	• Fusibility	Social Footprint	Renewable	Influence			
	Electrical conductivity	• The 6 R's	Fibre optics	Brand			
	 Thermal conductivity 	 Scales of Production 	Innovation				
	 Strength 	 Production Aids 	 Pneumatics 			1	

	Hardness	• Jig/Former				
	 Toughness 	 Commercial processes 				
	Malleability	Surface Treatment				
	Ductility	Consumer				
	Elasticity	 End of life disposal 				
		Fossil fuels				
		Fracking				
		Planned obsolescence				
Assessment	Key Assessed Piece:	Key Assessed Piece:	Key Assessed Piece:	Key Assessed Piece:	Key Assessed Piece:	As coursework (NEA) is an
Assessment	End of topic assessment.	Extended writing assesses	The work of others	Design Assessment	Extended writing assessment	ongoing process, feedback and
	Students will be assessed on	students' knowledge and	presentation, students will be	Students will be assessed on	Evaluation of practical	assessment will be continuous
	knowledge of materials, their	understanding of sustainability	assessed on their knowledge of	design and drawing techniques	techniques including	throughout the half term.
	working properties, selection of	issued in the context of D&T.	designers and their influence,	applied to a range of drawing	modifications	
	materials, stock forms and		quality of presentation, and	techniques applied to their	Students will be assessed on	NEA section A review and
	processing.	Key Assessed Piece:	presenting skill.	learning (isometric, perspective	suitability of their design, and	feedback.
		End of topic assessment		and orthographic).	justification for development	
	Key Assessed Piece:	Students will be assessed on	Key Assessment Piece:		works.	Key Assessment Piece:
	Students will be assessed on	their knowledge and	Progress Test - Students will be	Key Assessed Piece:		Year 10 Summer Exams
	their practical application skills	understanding of	assessed on their knowledge	End of topic assessment.	Key Assessed Piece:	Progress Test - Students will be
	relating to the manufacturing of	manufacturing processes,	and understanding of:	Students will be assessed on	Students will be assessed on	assessed on their knowledge
	a product using a range of	forces and stresses, scales of	 Materials & their working 	their knowledge and	Math GCSE questions	and understanding of the full
	materials.	production.	properties	understanding or new and	demonstrating and correctly	Design & Technology course.
			 Forces and Stresses 	emerging technologies, energy	using Math and Science skills	Students will sit a full exam
			Production	generation and energy storage	relevant to the D&T course.	paper worth 100 marks.
			The Work of Others	and electronic systems.		