

	AQA TRILOGY Physics (8464) from 2016 Topics T6.5. Forces			
Торіс	Student Checklist	R	Α	G
	Identify and describe scalar quantities and vector quantities			
	Identify and give examples of forces as contact or non-contact forces			
	Describe the interaction between two objects and the force produced on each as a			
s	vector			
ion	Describe weight and explain that its magnitude at a point depends on the gravitational			
act	field strength			
Iter	Calculate weight by recalling and using the equation: [<i>W</i> = <i>mg</i>]			
ir ir	Represent the weight of an object as acting at a single point which is referred to as the			
thei	object's 'centre of mass'			
1 pr	Calculate the resultant of two forces that act in a straight line			
s aı	HT ONLY: describe examples of the forces acting on an isolated object or system			<u> </u>
rce	HT ONLY: Use free body diagrams to qualitatively describe examples where several forces act on an object and explain how that leads to a single resultant force or no			
. Fo	force			
6.5.1 Forces and their interactions	HT ONLY: Use free body diagrams and accurate vector diagrams to scale, to resolve			
9	multiple forces and show magnitude and direction of the resultant			
	HT ONLY: Use vector diagrams to illustrate resolution of forces, equilibrium			
	situations and determine the resultant of two forces, to include both magnitude and			
	direction			
ы	Describe energy transfers involved when work is done and calculate the work done by			
dor gy	recalling and using the equation: [W = Fs]			
6.5.2 Work done and energy	Describe what a joule is and state what the joule is derived from			
d e ko	Convert between newton-metres and joules.			
5.2 an	Explain why work done against the frictional forces acting on an object causes a rise in			
.9	the temperature of the object			
	Describe examples of the forces involved in stretching, bending or compressing an			
	object			
	Explain why, to change the shape of an object (by stretching, bending or compressing),			
>	more than one force has to be applied – this is limited to stationary objects only			
d elasticity	Describe the difference between elastic deformation and inelastic deformation caused			
last	by stretching forces			
d e	Describe the extension of an elastic object below the limit of proportionality and			
	calculate it by recalling and applying the equation: [F = ke] Explain why a change in the shape of an object only happens when more than one			
ces	force is applied			
For	Describe and interpret data from an investigation to explain possible causes of a linear			
6.5.3 Forces an	and non-linear relationship between force and extension			
6.1	Calculate work done in stretching (or compressing) a spring (up to the limit of			
	proportionality) by applying, but not recalling, the equation: $[E_e = \frac{1}{2}ke^2]$			
	Required practical 18: investigate the relationship between force and extension for a			
	spring.			
	opining.	1		<u> </u>

Personalised Learning Checklists AQA Physics Paper 2

	Define distance and displacement and explain why they are scalar or vector quantities		Т
	Express a displacement in terms of both the magnitude and direction		+
	Explain that the speed at which a person can walk, run or cycle depends on a number of factors		╉
	and recall some typical speeds for walking, running, cycling		
	Make measurements of distance and time and then calculate speeds of objects in calculating		╈
	average speed for non-uniform motion		
	Explain why the speed of wind and of sound through air varies and calculate speed by recalling and		t
	applying the equation: [s = v t]		
	Explain the vector-scalar distinction as it applies to displacement, distance, velocity and speed		T
	HT ONLY: Explain qualitatively, with examples, that motion in a circle involves constant speed		
	but changing velocity		_
	Represent an object moving along a straight line using a distance-time graph, describing its motion		
	and calculating its speed from the graph's gradient		_
	Draw distance-time graphs from measurements and extract and interpret lines and slopes of distance-time graphs,		
	Describe an object which is slowing down as having a negative acceleration and estimate the		
	magnitude of everyday accelerations		
	Calculate the average acceleration of an object by recalling and applying the equation: $[a = \Delta v/t]$		
	Represent motion using velocity-time graphs, finding the acceleration from its gradient and		
	distance travelled from the area underneath		
Ę	HT ONLY: Interpret enclosed areas in velocity-time graphs to determine distance travelled (or		
4.5.4 Forces and motion	displacement)		_
Ĕ	HT ONLY: Measure, when appropriate, the area under a velocity– time graph by counting square		_
pu	Apply, but not recall, the equation: $[v^2 - u^2 = 2as]$		_
sa	Explain the motion of an object moving with a uniform velocity and identify that forces must be in		
rce	effect if its velocity is changing, by stating and applying Newton's First Law		+
6	Define and apply Newton's second law relating to the acceleration of an object		_
5.4	Recall and apply the equation: [F = ma]		_
4	HT ONLY: Describe what inertia is and give a definition		_
	Estimate the speed, accelerations and forces of large vehicles involved in everyday road transport		
	Required practical 19: investigate the effect of varying the force on the acceleration of an object of		
	constant mass, and the effect of varying the mass of an object on the acceleration		_
	Apply Newton's Third Law to examples of equilibrium situations		4
	Describe factors that can affect a driver's reaction time		
	Explain methods used to measure human reaction times and recall typical results		
	Interpret and evaluate measurements from simple methods to measure the different reaction		
	times of students		_
	Evaluate the effect of various factors on thinking distance based on given data		
	State typical reaction times and describe how reaction time (and therefore stopping distance) can		
	be affected by different factors		_
	Explain methods used to measure human reaction times and take, interpret and evaluate		
	measurements of the reaction times of students		_
	Explain how the braking distance of a vehicle can be affected by different factors, including implications for road safety.		
	implications for road safety Explain how a braking force applied to the wheel does work to reduce the vehicle's kinetic energy	\vdash	╉
	and increases the temperature of the brakes		
	Explain and apply the idea that a greater braking force causes a larger deceleration and explain		+
	how this might be dangerous for drivers		1
	HT ONLY: Estimate the forces involved in the deceleration of road vehicles		+

5.5 entum	HT ONLY: Calculate momentum by recalling and applying the equation: [p = mv]		
	HT ONLY: Explain and apply the idea that, in a closed system, the total momentum before an		
4 E	event is equal to the total momentum after the event		
δ	HT ONLY: Describe examples of momentum in a collision		
_			

	AQA TRILOGY Physics (8464) from 2016 Topics T6.6. Waves					
Topic	Student Checklist	R	Α	G		
	Describe waves as either transverse or longitudinal, defining these waves in terms of the direction of their oscillation and energy transfer and giving examples of each					
ds	Define waves as transfers of energy from one place to another, carrying information					
id soli	Define amplitude, wavelength, frequency, period and wave speed and Identify them where appropriate on diagrams					
uids ar	State examples of methods of measuring wave speeds in different media and Identify the suitability of apparatus of measuring frequency and wavelength					
6.6.1 Waves in air, fluids and solids	Calculate wave speed, frequency or wavelength by applying, but not recalling, the equation: $[v = f \lambda]$ and calculate wave period by recalling and applying the equation: $[T = 1/f]$					
ves	Identify amplitude and wavelength from given diagrams					
Wa	Describe a method to measure the speed of sound waves in air					
5.1	Describe a method to measure the speed of ripples on a water surface					
6.(Required practical 20: make observations to identify the suitability of apparatus to measure the frequency, wavelength and speed of waves in a ripple tank and waves in a solid					

	Describe what electromagnetic waves are and explain how they are grouped	
	List the groups of electromagnetic waves in order of wavelength	
	Explain that because our eyes only detect a limited range of electromagnetic waves,	
	they can only detect visible light	
	HT ONLY: Explain how different wavelengths of electromagnetic radiation are	
	reflected, refracted, absorbed or transmitted differently by different substances and	
Ne	types of surface	
e N	Illustrate the refraction of a wave at the boundary between two different media by	
tic	constructing ray diagrams	
gne	HT ONLY: Describe what refraction is due to and illustrate this using wave front	
Electromagnetic waves	diagrams	
troi	Required practical activity 10: investigate how the amount of infrared radiation	
ect	absorbed or radiated by a surface depends on the nature of that surface.	
	HT ONLY: Explain how radio waves can be produced by oscillations in electrical	
6.6.2	circuits, or absorbed by electrical circuits	
U	Explain that changes in atoms and the nuclei of atoms can result in electromagnetic	
	waves being generated or absorbed over a wide frequency range	
	State examples of the dangers of each group of electromagnetic radiation and discuss	
	the effects of radiation as depending on the type of radiation and the size of the dose	
	State examples of the uses of each group of electromagnetic radiation, explaining why	
	each type of electromagnetic wave is suitable for its applications	

AQ	AQA TRILOGY Physics (8464) from 2016 Topics T6.7. Magnetism and electromagnetism				
ΤΟΡΙϹ	Student Checklist	R	Α	G	
Permanent and ed magnetism, etic forces and fields	Describe the attraction and repulsion between unlike and like poles of permanent magnets and explain the difference between permanent and induced magnets				
ermanent d magneti dic forces fields	Draw the magnetic field pattern of a bar magnet, showing how field strength and direction are indicated and change from one point to another				
6.7.1 Perm induced m magnetic fie	Explain how the behaviour of a magnetic compass is related to evidence that the core of the Earth must be magnetic				
ع ≞. ق	Describe how to plot the magnetic field pattern of a magnet using a compass				
t	State examples of how the magnetic effect of a current can be demonstrated and explain how a solenoid arrangement can increase the magnetic effect of the current				
r effec	Draw the magnetic field pattern for a straight wire carrying a current and for a solenoid (showing the direction of the field)				
The motor effect	PHY ONLY: Interpret diagrams of electromagnetic devices in order to explain how they work				
2	HT ONLY: State and use Fleming's left-hand rule and explain what the size of the induced force depends on				
6.7	HT ONLY: Calculate the force on a conductor carrying a current at right angles to a magnetic field by applying, but not recalling, the equation: [<i>F</i> = <i>BIL</i>]				
	HT ONLY: Explain how rotation is caused in an electric motor				