

An education where imagination, curiosity and resilience enable us to ignite our learning.

A shared belief that optimism, empathy and responsibility are the foundations for a respectful, safe and inclusive community.

Individuals who are ready to learn, practise being reflective, and are motivated to become champions.

Studying Computer Science will help develop problem-solving, critical thinking and analytical skills. Computer Science is found in nearly all jobs and careers.
Studying Computing will provide students with a versatile foundation for many different careers and allows students to develop interchangeable and
transferable skills inside and outside of IT. Our students are now living in a digital age where more of their lives become intertwined with digital technologies.
It is important that students understand this technology and are able to use it effectively. In Computer Science, students will develop knowledge and
understanding of key computing topics that will prepare them for their future studies in Computing. They will:
Key Stage 4:
1. Develop their capability, creativity and knowledge in computer science, digital media, and information technology.
2. Develop and apply their analytic, problem-solving, design, and computational thinking skills.
3. Understand how changes in technology affect safety, including new ways to protect their online privacy and identity, and how to report a range of

concerns.

The GCSE course has a mixture of theory topics (Paper 1 – Computer Systems) and practical programming skills (Paper 2 – Computational Thinking,
Algorithms and Programming). Within the course students must be given the opportunity to undertake a programming task or tasks during their course of
study. In year 10 students will study a mixture of the content from both papers to help them develop the appropriate knowledge and skills. For paper 1
they will be examining the systems architecture, memory, storage, and system software which allow them to gain an understanding of how computers
work. Also in Year 10 they will explore algorithms and programming skills to help develop their knowledge and understanding of a high-level programming
language.

Year 10 Computer Science
1.1 Systems architecture – students will learn about the components of the CPU and their purpose during the FDE cycle.
1.2 Memory and storage – students will learn about the difference between memory and storage and how data is stored in a computer system.
1.5 System software – students will learn about the functions and features of the different system software and their role in the computer system.
2.1 Algorithms- students will learn about the principles of computational thinking and be able to design, create and refine algorithms for a specific
purpose. They will also learn about the different types of searching and sorting algorithms.
2.2 Programming fundamentals – students will develop a range of programming techniques and skills using a high-level programming language.
2.4 – Boolean logic- students will learn about the different types of logic operators and be able to apply these to solve problems

1.1.1 Architecture of the

CPU

• The purpose of the

CPU

• Common CPU

components and their

function

• Von Neumann

architecture

1.1.2 CPU performance

• How common

characteristics of

CPUs affect their

performance.

1.1.3 Embedded systems

• The purpose and

characteristics of

embedded systems

2.1.2 Designing, creating

and refining algorithms.

• Identify common

errors.

• Trace tables

2.1.3 Searching and

sorting algorithms.

• Standard searching

algorithms.

• Standard sorting

algorithms.

1.2.1 Primary storage

(Memory)

• The need for primary

storage

• The difference

between RAM and

ROM

1.2.2 Secondary

storage

• The advantages and
disadvantages of
different storage
devices and storage
media relating to
these characteristics:

• Capacity

• Speed

• Portability

• Durability

• Reliability

• Cost
1.2.3 Units

• The units of data
storage.

• How data needs to be
converted into a
binary format to be

1.2.4 Data storage
Sound

• How sound can be
sampled and stored in
digital form

• The effect of sample
rate, duration, and bit
depth on:

• The playback quality

• The size of a sound
file

1.2.5 Compression

• The need for
compression

• Types of compression:

• Lossy

• Lossless
2.2.1 Programming
fundamentals

• The use of variables,
constants, operators,
inputs, outputs and

2.2.2 Data types

• The use of data types:

• Integer

• Real

• Boolean

• Character and string

• Casting

2.2.3 Additional

programming techniques

• The use of basic string

manipulation

• The use of basic file

handling operations

• The use of records to

store data

• The use of SQL to

search for data.

• The use of arrays (or

equivalent) when

2.2.3 Additional

programming techniques

• Random number

generation

2.4.1 Boolean logic

• Simple logic diagrams
using the operators
AND, OR

• and NOT

• Truth tables

• Combining Boolean
operators using AND,
OR and

• NOT

• Applying logical
operators in truth
tables to solve

• Problems
1.5.1 Operating systems

• Examples of

embedded systems

2.1.1 Computational

thinking

• Principles of

computational

thinking:

• Abstraction

• Decomposition

• Algorithmic thinking

2.1.2 Designing, creating

and refining algorithms.

• Identify the inputs,

processes, and

outputs for a

problem.

• Structure diagrams

• Create, interpret,

correct, complete,

and refine algorithms

using:

• Pseudocode

• Flowcharts

• Reference

language/high-level

programming

language

• Identify common

errors.

• The purpose of ROM

in a computer system

• The purpose of RAM

in a computer system

• Virtual memory

1.2.2 Secondary storage

• The need for

secondary storage

• Common types of

storage.

• Suitable storage

devices and storage

media for a given

application

processed by a
computer

• Data capacity and
calculation of data
capacity
requirements

1.2.4 Data storage
Numbers

• How to convert
positive denary whole
numbers to binary
numbers

• How to add two
binary integers
together and explain
overflow errors which
may occur.

• How to convert
positive denary whole
numbers into 2-digit
hexadecimal numbers
and vice versa

• How to convert
binary integers to
their hexadecimal
equivalents and vice
versa

• Binary shifts
Characters

• The use of binary
codes to represent
characters.

• The term ‘character
set’

• The relationship
between the number
of bits per character
in a character set, and
the number of
characters which can
be represented.

Images

• How an image is
represented as a

assignments

• The use of the three
basic programming
constructs used to

• control the flow of a
program:

• Sequence

• Selection

• Iteration (count- and
condition-controlled
loops)

• The common
arithmetic operators

• The common Boolean
operators AND, OR
and NOT

solving problems,

including both one-

dimensional (1D) and

two-dimensional

arrays (2D)

• How to use sub

programs (functions

and procedures) to

produce structured

code

• The purpose and
functionality of
operating systems:

• User interface

• Memory
management and
multitasking

• Peripheral
management and
drivers

• User management

• File management
1.5.2 Utility software

• The purpose and
functionality of utility
software

• Utility system
software:

• Encryption software

• Defragmentation

• Data compression

series of pixels,
represented in binary

• Metadata

• The effect of colour
depth and resolution
on:

• The quality of the
image

• The size of an image
file

• Identifying

• Describing

• Explaining

• Abstraction

• Decomposition

• Designing Algorithms

• Creating Algorithms

• Refining Algorithms

• Writing in

Pseudocode

• Exam techniques

• Designing Algorithms

• Creating Algorithms

• Refining Algorithms

• Identifying and

correcting errors

• Using algorithms to

search for data.

• Using algorithms to

sort data.

• Identifying

• Describing

• Explaining

• Exam techniques

• Calculating file size

• Converting data

between binary and

denary (vice versa)

• Converting to

Hexadecimal from

binary (vice versa)

• Converting to

Hexadecimal from

denary (vice versa)

• Adding binary

numbers together

• Calculating text file

size

• Calculating image file

size

• Identifying

• Describing

• Explaining

• Exam techniques

• Calculating sound file

size

• Assigning variables

and constants

• Assigning operators

• Using inputs and

outputs

• Creating programs

with selection

• Creating programs

with iteration

• Using arithmetic

operators

• Using Boolean

Operators

• Analysing the task

• Designing and writing

programs using high

level programming

language.

• Exam techniques

• Analysing the task

• Designing and writing

programs using high

level programming

language.

• Assigning data types

• Using string

manipulation

• Using file handling

• Using SQL to search

for data.

• Creating arrays

• Using sub programs

• Exam techniques

• Using random

number generation

• Interpreting logic

gates

• Draw logic gate

diagrams.

• Completing truth

tables

• Applying logic

operators in truth

tables

• Identifying

• Describing

• Explaining

• Exam techniques

Marking Point 1: OCR
GCSE Computer Science
exam questions on
system architecture
Marking Point 2: OCR
GCSE Computer Science
exam questions on
computational thinking
and algorithms

Marking Point 1: OCR
GCSE Computer Science
exam questions on
algorithms
Marking Point 2: OCR
GCSE Computer Science
exam questions on
searching and sorting
algorithms

Marking Point 1: OCR
GCSE Computer Science
exam questions on
memory and storage
Marking Point 2: Progress
Test

Marking Point 1: OCR
GCSE Computer Science
exam questions on
computational thinking
and algorithms
Marking Point 2: OCR
GCSE Computer Science
exam questions on
computational thinking
and algorithms

Marking Point 1: OCR
GCSE Computer Science
exam questions on
computational thinking
and algorithms
Marking Point 2: OCR
GCSE Computer Science
exam questions on
computational thinking
and algorithms

Marking Point 1: OCR
GCSE Computer Science
exam questions on
computational thinking
and algorithms
Marking Point 2: Progress
Test

Home Learning 1: Seneca
Learning – Von Neuman
Architecture

Home Learning 2: Seneca
Learning – Factors
affecting CPU
Performance and Exam
Style Questions

Home Learning 3: Seneca
Learning – Computational
Thinking and Algorithms

Home Learning 1: Seneca
Learning – Interpreting,
Correcting and
Completing Algorithms

Home Learning 2: Seneca
Learning – Searching
Algorithms

Home Learning 3: Seneca
Learning – Sorting
Algorithms and Exam
Style Questions

Home Learning 1:
Revision Progress Test

Home Learning 2: Seneca
Learning – Memory

Home Learning 3: Seneca
Learning – Secondary
Storage

Home Learning 4: Seneca
Learning – Units of Data

Home Learning 1: Seneca
Learning – Number
Representation

Home Learning 2: Seneca
Learning – Images and
Sound

Home Learning 1: Seneca
Learning – Compression
and End of Topic Test

Home Learning 2: Seneca
Learning – Programming
Fundamentals

Home Learning 3: Seneca
Learning – Data Types

 Home Learning 1:
Revision Progress Test

Home Learning 2: Seneca
Learning – Additional
Programming Techniques

Home Learning 3: Seneca
Learning – Boolean Logic

Reading: Students will

read a range of different

text as well as online

resources. This half term

students will focus on

developing their skills in

breaking down

information and learning

new vocab.

Writing: Students will

develop a range of

different writing skills

focusing on expository

and answering exam

questions. Some of the

exam questions will be

extended writing.

Oracy: Students will focus

on develop their listening

and responding skills

(Social and Emotional)

and their use of

appropriate language

(Linguistic)

Numeracy: Students will
use a range of numeracy
skills. They will use
comparisons and
calculations in their

Reading: Students will

read a range of different

text as well as online

resources. This half term

students will focus on

developing their skills in

learning new vocab,

predict and infer.

Writing: Students will

develop a range of

different writing skills

focusing on summarising

and answering exam

questions. Some of the

exam questions will be

extended writing.

Oracy: Students will focus

on developing their

clarity and summarising

skills (Cognitive). They will

also continue to develop

their listening and

responding.

Numeracy: Students will
use a range of numeracy
skills. They will use
operators within their
algorithms to compare
and calculate data.

Reading: Students will

read a range of different

text as well as online

resources. This half term

students will focus on

developing their skills in

asking questions, learning

new vocab and infer.

Writing: Students will

develop a range of

different writing skills

focusing on descriptive

and reflective writing.

Oracy: Students will focus

on developing their use of

appropriate vocabulary

choice (Linguistic). They

will also develop working

with others (Social and

Emotional).

Numeracy: Students will
use a range of numeracy
skills in order to calculate
binary numbers,
hexadecimal. Students
will also add together 2
binary numbers.

Reading: Students will

read a range of different

text as well as online

resources. This half term

students will focus on

developing their skills in

relating to their own

experience, infer and

asking questions.

Writing: Students will

develop a range of

different writing skills and

develop their

summarising skills further

to ensure that they can

explain the steps that

need to be taken to

convert data.

Oracy: Students will focus

on developing their self-

regulation and clarifying

and summarising skills

(Cognitive).

Numeracy: Students will
use a range of numeracy
skills. They will be
required to calculate the
data capacity of different
file data types.

Reading: Students will

read a range of different

text as well as online

resources. This half term

students will focus on

developing their skills in

empathise, relating to

experience and predict.

Writing: Students will

develop a range of

different writing skills

focusing on compare and

contrast when answering

exam questions.

Oracy: Students will

continue to develop their

working with others and

listening and responding

skills (Social and

Emotional). They will also

focus on developing their

reasoning skills

(Cognitive).

Numeracy: Students will
use a range of numeracy
skills. Students will need
to use operators in their
programs to compare
data and make decisions.

Reading: Students will

read a range of different

text as well as online

resources. This half term

students will focus on

developing their skills in

relating to their own

experience, infer and

asking questions.

Writing: Students will

develop a range of

different writing skills

focusing on descriptive

writing to be able to

explain the different

system software.

Students will also

continue to work on

extended writing

questions on this topic.

Oracy: Students will

continue to develop their

social and emotional skills

and their linguistic skills.

Focusing on listening and

responding and

appropriate language

choices.

algorithms. They will also
create a range of
algorithms.

Numeracy: Students will
use a range of numeracy
skills. Students will use
random number
generator in their
program to make
decisions and make
decisions.

• Identify

• State

• Explain

• Complete

• Justify

• Describe

• Define

• Discuss

• Write

• Draw

• Identify

• State

• Explain

• Complete

• Justify

• Describe

• Define

• Discuss

• Write

• Draw

• Identify

• State

• Explain

• Complete

• Justify

• Describe

• Define

• Discuss

• Write

• Draw

• Convert

• Add

• Give

• Show
• Calculate

• Identify

• State

• Explain

• Complete

• Justify

• Describe

• Define

• Discuss

• Write

• Draw

• Convert

• Add

• Give

• Show
• Calculate

• Identify

• State

• Explain

• Complete

• Justify

• Describe

• Define

• Discuss

• Write

• Draw

• Convert

• Add

• Give

• Show
• Calculate

• Identify

• State

• Explain

• Complete

• Justify

• Describe

• Define

• Discuss

• Write

• Draw

• Convert

• Add

• Give

• Show
• Calculate

• Central Processing
Unit

• Arithmetic Logic Unit

• Control Unit

• Cache

• Registers

• Embedded systems

• Abstraction

• Decomposition

• Algorithm

• Structure Diagram

• Searching Algorithm

• Sorting Algorithm

• Memory/ Primary
Storage

• Random Access
Memory

• Read Only Memory

• Virtual Memory

• Secondary Storage

• Characteristics

• Units of Data

• Denary

• Binary

• Hexadecimal

• Binary Shift

• Character Set

• Pixels

• Metadata

• Colour depth

• Sound

• Sample rate

• Compression

• Lossy

• Lossless

• Operators

• Sequence

• Selection

• Iteration

• Boolean

• Integer

• Real

• Casting

• String manipulation

• File Handling

• Arrays

• Procedure

• Function

• Boolean Logic

• Truth Tables

• Logical operators

• Operating system

• Peripheral
Management

• Utility software

• Encryption

Personal: Developing the valuable transferable skill of
logical thinking.
Social: Paired programming opportunities.
British value: Consideration of the working
environment of a programmer
Moral: To be able to consider the end user and their
needs when designing and creating programs.
Cultural: Considering different cultures and
backgrounds when creating and writing different
programs.

Personal: Developing the valuable transferable skill of
critical thinking.
Social: Sharing ideas and being able to explain key
topics.
British value: Understanding how programs are
created to comply with laws in data protection.
Moral: Giving peer feedback in a respectful manner.
Cultural: Understand and consider different cultures
and backgrounds when representing data and
information in a computer system.

Personal: Developing the valuable transferable skill of
critical thinking.
Social: Be able to present valid viewpoint to the class
on topics
British value: Understanding of the laws that govern
computer systems and how they are design to protect
people.
Moral: Understand the impact that computer
legislation has in keeping people safe.

Diversity: Examine Lillian Gilbreth work in flowcharts
and how they impact computer science today. Also
explore the work of Ada Lovelace and Al-Khwarizmi in
their field of algorithms.

Diversity: examine key people involved in the
development and creating of python software with
focus on women.

Physical: Understand the design of computer
programs.
Cultural: Understand and consider different cultures
and backgrounds and how their access to technology
can impact their lives.
Diversity: examine how Barbara Liskov helped to
design and create the data types that we use today.

