CREATIVE

An education where imagination, curiosity and resilience enable us to ignite our learning.

HAPPY A shared belief that optimism, empathy and responsibility are the foundations for a respectful, safe and inclusive community.

SUCCESSFUL

 Individuals who are ready to learn, practise being reflective, and are motivated to become champions.
SUBJECT

INTENT

Maths

"Without mathematics, there's nothing you can do. Everything around you is mathematics. Everything around you is numbers." - Shakuntala Devi
Maths is a universal language that explains the world around us. The study of Mathematics enables you to make sense of everyday situations, forge links between topics and establish connections to real life context. Maths fosters curiosity, equipping students with various strategies to tackle problems; it empowers students with resilience to take risks, get it wrong, form a new strategy and start again, with determination and drive to reach the final answer. Maths is logical thinking, reasoning, intuition, analysis, construction, generalisation and beauty.

CHS SOUTH - CURRICULUM - FRAMEWORK FOR LEARNING

YEAR GROUP

YEAR 8

RATIONAL/ NARRATIVE

In Year 8, students develop their skills in multiplicative reasoning, working on topics such as percentages, ratio and proportion. Many real-life situations encountered are connected by the idea of proportionality. Recognising how these areas of Maths are connected by proportionality and the same underlying mathematics of multiplicative reasoning can help deepen students' understanding of these topics. Knowledge of basic algebra skills are revisited and then deepened, encountering topics such as quadratics and rearranging formulae.

TERM

KNOWLEDGE

AUTUMN 1

Ratio \& Scale

- Understand ratio and its link to multiplication.
- Use ratio notation.
- Reduce ratios to simplest form.
- Solve ratio problems.
- Calculate the circumference of a circle.

Multiplicative Change

- Use scale factors, linking to ratio, solve simple direct proportion problems.
- Convert between currencies, including using graphs.
- Draw and interpret scale diagrams and maps.

Multiplying and dividing fractions

- Multiply and divide fractions by integers.
- Multiply and divide fractions by fractions.
- Understand and use reciprocals.

AUTUMN 2
SPRING 1
Working in the Cartesian
plane

- Plot and interpret straight line graphs.
- Understand and us equations of a straight line, including lines parallel to the axes.
- Make links between direct proportion and straight lines of the form $\mathrm{y}=\mathrm{kx}$.
- Model situations by translating them into expressions, formulae and graphs.

Representing Data

- Draw and interpret scatter graphs.
- Understand correlation.
- Draw and use lines of best fit.
- Understand grouped, ungrouped, discrete and continuous data.
- Design and use one and two way tables.

Tables \& Probability

Brackets, equations and

 inequalities (cont'd)Sequences

- Generate sequences using more complex rules, e.g. with brackets, squared terms, both in words and algebraically.

Indices

- Form expressions, using indices.
- Understand and use addition and subtraction rules.

Fractions and Percentages

- Develop understanding of fractions, decimals and percentages.
- Evaluate percentages increases and decreases.
- Use multipliers to solve percentage problems.
- Express one number as a percentage of another.

SPRING 2

SUMMER 1

SUMMER 2

Fractions and Percentages (cont'd)
Standard Index Form

- Convert between numbers in ordinary and standard form.
- Calculate with numbers given in standard form, with and without a calculator.

Number Sense

- Developmental strategies.
- Convert between metric measures and units.
- Estimation including rounding to a given number of decimal places.
- Use the order of operations.

Angles in parallel lines and polygons

- Review Year 7 angles rules.
- Understand and use angles in parallel lines
- Revisit geometric notation.
- Work angles in special quadrilaterals.
- Find and use the sum of the interior angles of a polygon.
- Prove simple geometric facts.

Area of trapezia and
circles

- Review area of shapes covered in Year 7.
- Calculate the area of a trapezium.
- Calculate the area of a circle and the areas of parts of a circle.
- Use significant figures.
- Calculate the area of compound shapes.

Line symmetry and reflection

The data handling cycle

- Understand and use primary and secondary sources of data.
- Collect data, including questionnaires.
- Interpret and construct statistical diagrams, including multiple bar charts.
- Identify misleading graphs.

Measure of location and dispersion

- Revisit the median and mean, including finding the total given the mean.
- Find the mean of grouped data.
- Work out the mode and modal class
- Choose the appropriate average
- Comparing distributions using measures.

$\ominus_{\bullet}^{\circ} \bullet$ © $)$ CHS SOUTH - CURRICULUM - FRAMEWORK FOR LEARNING

SKILLS			Brackets Equations and Inequalities (Cont'd) Understand and use the vocabulary of inequalities. Use a variety of methods to solve linear equations in one variable (including all forms that require rearrangement), including those with brackets and fractions. Sequences Generating Sequences from a written rule Nth Term rules Indices Operations with Indices Simplifying Indices	Fractions and Percentages (cont'd) Percentage increase decrease and original value problems and simple interest in financial mathematics. Making use of fractions and decimal conversions. Standard Form		The Data Handling Cycle Describe, interpret and compare data. Construct and interpret appropriate tables, charts and diagrams. Measures of Location $\begin{array}{l}\text { Describe, interpret and } \\ \text { compare observed } \\ \text { through appropriate } \\ \text { measures of central } \\ \text { tendency, such as the } \\ \text { mean, mode, median and } \\ \text { spread (range and } \\ \text { outliers). }\end{array}$

	graphical and algebraic representations. Examples may include: - Recipe problems - Best buy problems - Exchange rates Fractions Use a variety of representations to multiply and divide fractions including proper and improper fractions. Understanding of the reciprocal and its uses.	and diagrams including frequency tables, bar charts, pie charts and pictograms. Describe mathematical relationships for bivariate data. Tables \& Probability Record, describe and analyse the frequency of outcomes of simple probability experiments, involving randomness, fairness, equally and unequally likely outcomes, using appropriate language and the 0-1 probability scale. Generate theoretical sample spaces for single or combined events. Brackets, equations and inequalities Substitute numerical values into formulae and expressions, including scientific formulae. Using a variety of representations to simplify and manipulate algebraic expressions to maintain equivalence by: - multiplying a single term over a bracket - taking out common factors - expanding products of two or more binomials. simplifying expressions involving sums, products	Define percentage as 'number of parts per hundred'. Interpret diagrams as percentages and vice versa. Find a percentage of an amount with or without a calculator. Interpret percentages as a fraction or decimal. Compare two quantities using percentages, and work with percentages greater than 100%.	Monetary maths. Metrics units and conversions. Calculating with different units of time.	solve problems involving perimeter and area of triangles, parallelograms, trapezia and circles. Efficient use of a calculator. Line symmetry and reflection Describe, sketch and draw using conventional terms and notations, point, parallel lines, perpendicular lines, right angles, regular polygons, and other polygons that reflectively and rotationally symmetric. Identify properties of and describe the results of reflections applied to given figures.	

$\ominus_{\circ}^{\circ} \otimes$ © CHS SOUTH - CURRICULUM - FRAMEWORK FOR LEARNING

ASSESSMENT		and				
	Rato Scsele Assesment	Catesin fane	leme	Foremer ferecres	Ammes ense	Summer fogess rees
	Mantiolatie Crange	Oata	Springopeses	Somatasf form	Anges unim	
HOME LEARNING	Mutionve		Seamesesmides unt		Crieses	
		Nomper matmus	Wen wendesesemens set	Weaty	Weatensesmenset	Went
READING, WRITING, TALK NUMERACY			based on previous half		Semed	
	Some		comen	liseotiteade	Userse	Endemen
		Alume tuensit iead	atememition		Citer	
	coid					
	Suden			doter		
	coly					
	Sole					
TIER2				Sequene	Coresendene verituly	Pimay,
vocabulary				Bound		

$\ominus_{\bullet}^{\circ} \otimes$ © CHS SOUTH - CURRICULUM - FRAMEWORK FOR LEARNING

	Improper, Calculate	Negative, Positive, Strong, Weak, Draw Expressions, Substitute, rearrange	Power, Base Change, Interest, Multiplier, Simple, Reverse, Increase, Decrease, Percent, Principle	Calculate, Significant	Area, shape, arc, sector, compound	Mean, Continuous, Discrete, Range, Outlier
TIER 3 VOCABULARY	Ratio, directly proportional. Integer, mixed numbers, reciprocal	Axis, line of best fit, outlier, extrapolate, correlation. Equations, formulae, factorise, binomial, indices, inequalities	Linear, Non-Linear, Geometric Index, Exponent, Indices Numerator, denominator	Standard Form, index, nth term. Metres, Litres, Grams, estimation, error interval	Alternate, Parallel, polygon, transversal equilateral, isosceles, scalene, kite, parallelogram, rhombus, rectangle, square, trapezium, regular polygon. Trapezium, radius, diameter.	Grouped frequency, median
PSPSMC, BRITISH VALUES AND DIVERSITY	Cultural Coordinates were thought up one day in the 1600's while Descartes lying in bed as a sick child watching a fly crawl on the ceiling. He wanted to find a way of stating exactly where the fly was positioned. He started off by drawing two lines at right angles to each other. Cultural The effects of a change in exchange rate on the value of the pound when going on holiday. Personal Looking at buying identical products in bulk and whether it is better value for money. Personal Understand that certain jobs such architects,	British Values are promoted through the nature of our lesson structure. Students are encouraged to share their views and listen attentively and respectfully to that of others. Values are reiterated through classroom rules. Personal Use of formulae in everyday life such as calculating the cost of calling out a plumber with a fixed charge and hourly rate and taxi rates with a fixed charge and rate per mile. Social Through a topic introduction, students' study which careers use probability and statistics,	Personal Looking at percentage discount in shop sales. Cultural Why standard form was developed, in order to say big and small numbers. Problems relating to astronomy and microbiology.	Social Awareness of the rick of borrowing money with a high interest rate and what this means for repayments. Personal Being able to use metric units when talking about height, weight or capacity when at doctors, or similar. Personal Being able to estimate to quickly solve calculations in real life situations like splitting a bill between 9 people. Diversity Katherine Johnson NASA engineer. Link in to metric units and engineering.	Social Through a topic intro, parallel lines are explored in where they appear in the world around us and which careers would use them. Personal Wherever possible, questions are linked to contextual problems such as finding the area of a garden to then calculate how much grass seed to buy or how the area of a wall to calculate the amount of paint required.	Moral Discussion on how the media/politicians use statistics to promote their side of an argument.

