Engineering Y	´12	· ·				
Term	Autumn (1)	Autumn (2)	Spring (1)	Spring (2)	Summer (1)	Summer (2)
Topic(s)/	Materials and	Modelling/prototyping	Metals plastics	Timber Practical's	Exam Theory	Coursework research
Subjects(s)	properties		practical			section.
	Structures	Electronics	Control systems	Mechanisms		
Knowledge and	i. sourcing and processing	i. planning for accuracy and	Understand that most	 cost effective 	Awareness of	 user-centred design and
skills (Content)	raw materials into a	efficiency through testing	products consist of	distribution •	different strategies,	stakeholder analysis •
	workable form ii. the	and prototyping ii. being	multiple materials and	environmental issues and	techniques and	SWOT analysis • focus
	disposal of waste, surplus	aware of issues in relation to	that design engineers	energy requirements •	approaches to	groups • qualitative
	materials and	different scales of	are required to	social media and mobile	explore, create and	observations • market
	components, by-products	production iii. designing for	discriminate between	technology • global	evaluate design	research to identify gaps
	of production including	repair and maintenance iv.	them appropriately for	production and delivery.	ideas, including: •	for new products or
	pollution related to energy	designing with consideration	their use, including: i.		iterative designing	opportunities to update
	iii. cost implications	of product life.	ferrous, non-ferrous and	Demonstrate an	 user-centred 	existing products.
	related to materials and		alloy metals, such as: o	understanding of the	design • circular	
	process.	Demonstrate an	mild steel, aluminium	functions that mechanical	economy • systems	
		understanding of the basic	and brass. ii. thermo	devices offer to products,	thinking.	
	Learners should	principles of electricity,	softening and	providing different types		
	understand processes that	including:	thermosetting polymers,	of motion, including:		
	can be used to ensure the	-voltage	such as: o HIPS, ABS and	-rotary		
	structural integrity of a	-current	polyester resin, epoxy	-Linear		
	product, such as:	-Ohm's law	resin and polyimides. iii.	-reciprocating		
	-triangulation	-power.	timbers and	-oscillating.		
	-reinforcing.	Demonstrate an	manufactured boards,			
	Demonstrate an	understanding of the	such as: o oak, plywood	Demonstrate an		
	understanding of static	function of an overall	and MDF. iv. textiles	understanding of devices		
	and dynamic forces in	system, referring to aspects	used for reinforcement	and systems that are		
	structures and how to	including:	and coverings, such as: o	used to change the		
	achieve rigidity, including:	-passive components:	geotextiles used in civil	magnitude and direction		
	-tension, compression,	resistors, capacitors, diodes	engineering and	of forces and torques,		
	torsion and bending.	 inputs: sensors for position, 	construction. v.	including:		
	-stress, strain and	light, temperature, sound,	composite materials,	-gears, cams, pulleys and		
	elasticity	infra-red, force, rotation and	such as: o fibre-	belts, levers, linkages,		
	-mass and weight	angle	reinforced plastics,	screw threads, worm		

KS5 A Level Engineering Curriculum Mapping

-rigidity	v –	process control:	glass-reinforced plastics	drives, sprockets, chain	
-modes	, s of failure.	programmable	(GRP) and carbon fibre	drives and belt drives	
	n	microcontroller	(CFRP), vi. smart	-epicyclic gear systems	
		signal amplification:	materials, such as: o	-bearings and lubrication	
		MOSFET. driver ICs	shape memory alloy.	-efficiency in mechanical	
	_	outputs: LED, sounder.	motion control gel. self-	system	
	s	solenoid. DC motor, servo	healing materials.	- /	
	r	motor, stepper motor, piezo	thermochromic.		
	a	actuator, displays	photochromic and		
		analogue and digital signals	electrochromic		
	a	and conversion between	materials, vii, modern		
	t	hem	materials, such as: o		
	-	open and closed loop	sandwich panels, e-		
	s	systems including feedback	textiles, rare earth		
	i	n a system and how it	magnets, high		
		affects the overall	performance alloys and		
	r	performance	super-alloys, graphene		
	P***	sub-systems and systems	and carbon nanotubes.		
	t	hinking			
	Ĩ		Demonstrate an		
			understanding of how		
			electronic systems		
			provide input, control		
			and output process		
			functions.		
			-switches and sensors.		
			to produce signals in		
			response to a variety of		
			inputs		
			- programmable control		
			devices		
			-signal amplification		
			- devices to produce a		
			variety of outputs		
			including light, sound,		
			motion.		

		Demonstrate an		
		understanding of how		
		programmable devices		
		are used to add		
		functionality to		
		products, relating to		
		coding of and specific		
		applications of		
		programmable		
		components, such as:		
		- how they incorporate		
		enhanced features that		
		can improve the user		
		experience and solve		
		problems in system		
		design		
		- how they use basic		
		techniques for		
		measuring, controlling,		
		storing data and		
		displaying information in		
		practical situations		
		-electronic prototyping		
		platforms and integrated		
		development		
		environments (IDE) for		
		simulation in virtual		
		environments		
		-the use of		
		programmable		
		components and		
		microcontrollers found		
		in products and systems,		
		such as robotic arms or		
		cars		

Assessment	End of project assessment exam	End of project assessment exam	- creating flowcharts to describe processes and decisions within a process to control input and output components End of project assessment exam	End of project assessment exam		
Cross Curricular Links	questions Links with science and industry protocols.	questions Links with Art, Math's and IT.	questions Links with geography, Math's and IT	questions Links with Math's, English, science and geography.	Links with Science and Math's.	Links with Math's, English, science and geography.
SMSC, British Values, Cultural Capital	British standards/values taught throughout engineering/workshop environment.		Understanding culture/clients/stake holders.	This unit covers a lot of environmental issues and green design.	N/A	This unit covers a lot of environmental issues and green design.
CEIAG	Progression from these qualifications: Apprenticeship e.g Design and Development Technician Cambridge Technicals Engineering (Levels 2 and 3) T Level Design and Development for Engineering and Manufacturing (Level 3) A Level Design and Technology (Level 3)				analyse existing products • demonstrate applied mathematical skills • demonstrate their technical knowledge of materials, product functionality, manufacturing processes and techniques • demonstrate their understanding of wider social, moral and environmental issues that impact on the design and manufacturing industries	

Learning	Students have several	Students have to research	Students research	Students use all	N/A	Students use all
outside the	home works based on	ideas and investigate the	existing products.	Resources available to		Resources available to
classroom	research and how	design brief.	Students learn about	them to revise,		them to revise,
	companies operate		industrial processes	including teams.		including teams.
	safely.		through product			Completing past
			disassembly.			papers.
Additional	This unit also cover	The schools health and	The design brief is set	Students can take this	Products need to	After school clubs
Subject	packaging and forming	safety office gives a talk	externally.	exam in Jan and retake	be manufactured	available for anyone on
Specific	batch production	which explains the schools		in the summer.	from a	the risk register.
Information	Molds.	fire/safety policy.			engineering	
					drawing.	

Engineering Y	(13					
Term	Autumn (1)	Autumn (2)	Spring (1)	Spring (2)	Summer (1)	Summer (2)
Topic(s)/ Subjects(s)	Designing (coursework)	Development (Coursework)	Manufacturing (coursework)	Manufacturing (coursework)	Exam revision	Exam revision
Knowledge and skills (Content)	Demonstrate an understanding of how to use annotated sketching and digital tools to graphically communicate ideas and sketch modelling to explore possible improvements, in terms of physical requirements, such as: • function, usability, construction, movement, stability, composition, strength • aesthetic qualities • manufacturing processes • suitability of materials and components.	Demonstrate an understanding of methods used to represent systems and components to inform third parties, including: i. constructional diagrams/working drawings ii. digital visualisations iii. circuit and system diagrams iv. flowcharts with associated symbols v. prototypes and models.	Understand that the selection of materials and components is influenced by a range of factors, including: i. functional performance ii. aesthetics iii. cost and availability iv. properties and characteristics v. environmental considerations vi. social, cultural and ethical factors.	Demonstrate an understanding of the need to incorporate knowledge from other experts and subjects to inform design and manufacturing decisions, including the areas of science and mathematics.	Demonstrate an understanding of the functions that mechanical devices offer to products, providing different types of motion, including: i. rotary ii. linear iii. reciprocating iv. oscillating. i. gears, cams, pulleys and belts, levers, linkages, screw threads, worm drives, sprockets, chain drives and belt drives ii. epicyclic gear systems iii. bearings and lubrication iv. efficiency in mechanical systems	 Identifying requirements 2. Learning from existing products and practice Implications of wider issues 4. Design thinking and communication 5. Material considerations Technical understanding 7. Manufacturing processes and techniques 8. Viability of design solutions 9. Health and safety.
Assessment	This unit is internally assessed and used as an introduction to the course to allow students to work in a safe and secure environment.	This unit is a physical portfolio. Marked internally and moderated externally. The unit is weighted at 25% of the GCSE.	This unit is produced as a e-portfolio. Marked internally and moderated externally. The unit is weighted at 25% of the GCSE.	Assessed through an externally set written examination paper, worth a maximum of 60 marks and 1 hour in duration.	The center- assessed task: • will be practical tasks in the context of an assignment, selected from the OCR bank of set	Assessed through an externally set written examination paper, worth a maximum of 60 marks and 1 hour in duration.

KS5 A Level Engineering Curriculum Mapping

Cross	Links with science and	Links with Art Math's	Links with geography	Links with Math's	assignments. Moderated externally. Weighting of 25% of the GCSE	Links with Math's
Curricular Links	industry protocols.	and IT.	Math's and IT	English, science and geography.	and Math's.	English, science and geography.
SMSC, British Values, Cultural Capital	British standards/values taught through a engineering/workshop environment.	N/A	Understanding culture/clients/stake holders.	This unit covers a lot of environmental issues and green design.	N/A	This unit covers a lot of environmental issues and green design.
CEIAG	Progression from these qualifications: Apprenticeship e.g Design and Development Technician Cambridge Technicals Engineering (Levels 2 and 3) T Level Design and Development for Engineering and Manufacturing (Level 3) A Level Design and Technology (Level 3)					
outside the classroom	home works based on research and how companies operate safely.	research ideas and investigate the design brief.	existing products. Students learn about industrial processes through product disassembly.	Resorces available to them to revise, including teams.	IN/A	Resorces available to them to revise, including teams. Completing past papers.

Additional	This unit also cover	The schools health	The design brief is set	Students can take this	Products need to	After school clubs
Subject	packaging and forming	and safety office gives	externally.	exam in Jan and retake	be manufactured	available for anyone on
Specific	batch production	a talk which explains		in the summer.	from a engineering	the risk register.
Information	Moulds.	the schools fire/safety			drawing.	_
		policy.			_	