Vocabulary and Core Concept Check

- 1. COMPLETE THE SENTENCE The sum S_n of the first n terms of an infinite series is called
- **2. WRITING** Explain how to tell whether the series $\sum_{i=1}^{\infty} a_i r^{i-1}$ has a sum.

Monitoring Progress and Modeling with Mathematics

In Exercises 3–6, consider the infinite geometric series. Find and graph the partial sums S_n for n = 1, 2, 3, 4, and 5. Then describe what happens to S_n as n increases. (See Example 1.)

3.
$$\frac{1}{2} + \frac{1}{6} + \frac{1}{18} + \frac{1}{54} + \frac{1}{162} + \cdots$$

4.
$$\frac{2}{3} + \frac{1}{3} + \frac{1}{6} + \frac{1}{12} + \frac{1}{24} + \cdots$$

5.
$$4 + \frac{12}{5} + \frac{36}{25} + \frac{108}{125} + \frac{324}{625} + \cdots$$

6.
$$2 + \frac{2}{6} + \frac{2}{36} + \frac{2}{216} + \frac{2}{1296} + \cdots$$

In Exercises 7–14, find the sum of the infinite geometric series, if it exists. (See Example 2.)

7.
$$\sum_{n=1}^{\infty} 8 \left(\frac{1}{5} \right)^{n}$$

7.
$$\sum_{n=1}^{\infty} 8 \left(\frac{1}{5} \right)^{n-1}$$
 8. $\sum_{k=1}^{\infty} -6 \left(\frac{3}{2} \right)^{k-1}$

9.
$$\sum_{k=1}^{\infty} \frac{11}{3} \left(\frac{3}{8}\right)^{k-1}$$
 10. $\sum_{i=1}^{\infty} \frac{2}{5} \left(\frac{5}{3}\right)^{i-1}$

10.
$$\sum_{i=1}^{\infty} \frac{2}{5} \left(\frac{5}{3}\right)^{i-1}$$

11.
$$2 + \frac{6}{4} + \frac{18}{16} + \frac{54}{64} + \cdots$$

12.
$$-5-2-\frac{4}{5}-\frac{8}{25}-\cdots$$

13.
$$3 + \frac{5}{2} + \frac{25}{12} + \frac{125}{72} + \cdots$$

14.
$$\frac{1}{2} - \frac{5}{3} + \frac{50}{9} - \frac{500}{27} + \cdots$$

ERROR ANALYSIS In Exercises 15 and 16, describe and correct the error in finding the sum of the infinite geometric series.

15.
$$\sum_{n=1}^{\infty} \left(\frac{7}{2}\right)^{n-1}$$

For this series,
$$a_1 = 1$$
 and $r = \frac{7}{2}$.

$$S = \frac{a_1}{1 - r} = \frac{1}{1 - \frac{7}{2}} = \frac{1}{-\frac{5}{2}} = -\frac{2}{5}$$

16.
$$4 + \frac{8}{3} + \frac{16}{9} + \frac{32}{27} + \dots$$

For this series, $a_1 = 4$ and $r = \frac{4}{\frac{8}{2}} = \frac{3}{2}$.

Because $\left| \frac{3}{2} \right| > 1$, the series has no sum.

17. MODELING WITH MATHEMATICS You push your younger cousin on a tire swing one time and then allow your cousin to swing freely. On the first swing, your cousin travels a distance of 14 feet. On each successive swing, your cousin travels 75% of the distance of the previous swing. What is the total distance your cousin swings? (See Example 3.)

18. MODELING WITH MATHEMATICS A company had a profit of \$350,000 in its first year. Since then, the company's profit has decreased by 12% per year. Assuming this trend continues, what is the total profit the company can make over the course of its lifetime? Justify your answer.

In Exercises 19-24, write the repeating decimal as a fraction in simplest form. (See Example 4.)

- **19.** 0.222 . . .
- **20.** 0.444 . . .
- **21.** 0.161616...
- **22.** 0.625625625 . . .
- **23.** 32.323232...
- **24.** 130.130130130...
- 25. PROBLEM SOLVING Find two infinite geometric series whose sums are each 6. Justify your answers.