Year	1	2	3
Big Ideas NCETM Place Value	The position a digit is placed in a number determines its value. The language used to name numbers does not always expose the place value, for example the word 'twelve' does not make it transparent that the value of this number is ten and two. It is important that children develop secure understanding of the value of each digit. Place value is based on unitising: treating a group of things as one 'unit'. In mathematics, units can be any size, for example units of 1, 2, 5 and 10 are used in money. In place value units of 1, 10 and 100 are used.	The position (place) of a digit in a number determines its value. Hence the term place value.	The value of a digit is determined by its position in a number. Place value is based on unitising, treating a group of things as one 'unit'. This generalises to 3 units + 2 units = 5 units (where the units are the same size).
Place Value Counting	 count to and across 100, forwards and backwards, beginning with 0 or 1, or from any given number count, read and write numbers to 100 in numerals; count in multiples of twos, fives and tens Autumn 1 Autumn 2 Spring 2 Summer 2 	 count in steps of 2, 3, and 5 from 0, and in tens from any number, forward and backward Autumn 1 	 count from 0 in multiples of 4, 8, 50 and 100; find 10 or 100 more or less than a given number Autumn 1 Autumn 2

NRICH	Biscuit decorations <u>https://nrich.maths.org/154</u> Shut the box <u>https://nrich.maths.org/6074</u> Same length Trains <u>https://nrich.maths.org/4332</u> Grouping Goodies <u>https://nrich.maths.org/232</u>	Five steps to 50 <u>https://nrich.maths.org/10586</u> Busy Bee <u>https://nrich.maths.org/194</u>	
Progression in Reasoning NCETM	Spot the mistake: 5,6,8,9 What is wrong with this sequence of numbers? True or False? I start at 2 and count in twos. I will say 9 What comes next? 10+1 = 11, 11+1= 12, 12+1 = 13	Spot the mistake: 45,40,35,25 What is wrong with this sequence of numbers? True or False? I start at 3 and count in threes. I will say 13? What comes next? 41+5=46, 46+5=51, 51+5=56	Spot the mistake: 50,100,115,200 What is wrong with this sequence of numbers? True or False? 38 is a multiple of 8 What comes next? 936-10= 926 926 -10 = 916 916- 10= 906
Place Value: represent	 identify and represent numbers using objects and pictorial representations including the number line read and write numbers to 100 in numerals read and write numbers from 1 to 20 in numerals and words. Autumn 1 Autumn 2 Spring 1 Summer 2 	 read and write numbers to at least 100 in numerals and in words identify, represent and estimate numbers using different representations, including the number line Autumn 1 	 identify, represent and estimate numbers using different representations read and write numbers up to 1000 in numerals and in words Autumn 1

Place value: compare	 given a number, identify one more and one less Autumn 1 	•	recognise the place value of each digit in a two-digit number (tens, ones)	•	recognise the place value of each digit in a three-digit number (hundreds, tens, ones)
	Autumn 2 Spring 1	•	compare and order numbers from 0 up to 100; use <, > and = signs	•	compare and order numbers up to 1000

	Summer 2	Autumn 1	Autumn 1
NCETM Spine	AS Y1 1.2, 1.8, 1.9 1.10	AS Y1 (1.1)	
Nrich	What's in a name? <u>https://nrich.maths.org/7952</u> Count the digits <u>https://nrich.maths.org/7302</u> Making Sticks <u>https://nrich.maths.org/231</u> Robot Monsters <u>https://nrich.maths.org/2404</u> Dotty Six <u>https://nrich.maths.org/7337</u>	That Number Square https://nrich.maths.org/8169 100 square jigsaw https://nrich.maths.org/5572 Next Domino https://nrich.maths.org/168 Domino Number Patterns https://nrich.maths.org/225 Domino Number Sequences https://nrich.maths.org/241 Snail One hundred https://nrich.maths.org/8303 Two Digit Targets https://nrich.maths.org/6343 6 Beads https://nrich.maths.org/152 How Would We Count? https://nrich.maths.org/8123	Coded Hundred Square https://nrich.maths.org/6554

Progression in Reasoning	Do, then explain	Do, then explain	Do, then explain
	Look at the objects (in a collection). Are	37 13 73 33 3	835 535 538 388 508
	there more of one type than another?	If you wrote these numbers in order	If you wrote these numbers in order
	How can you find out?	starting with the smallest, which	starting with the smallest, which
		number would be third?	number would be third?
		Explain how you ordered the numbers.	Explain how you ordered the numbers
		Do, then explain	Do, then explain
		Show the value of the digit 2 in these	Show the 3 value of the digit 3 in these
		numbers?	numbers?
		32 27 92	341 503 937
		Explain how you know.	Explain how you know.
		Make up an example	Make up an example
		Create numbers where the units digit is	Create numbers where the digit sum is
		one	three.
		less than the tens digit. What is the	E.g. 120, 300, 210
		largest/smallest number?	What is the largest/smallest number?
Place value: problems and rounding		use place value and number facts to	solve number problems and
		solve problems	practical problems involving these
		Autumn 1	ideas.
			Autumn 1
NRich		Round the Two Dice	Take Three Numbers
		https://nrich.maths.org/10435 Largest	https://nrich.maths.org/8063 A
		Even	Mixed-Up Clock
		https://nrich.maths.org/7431 Light	https://nrich.maths.org/2127 Number
		the Lights	Match
		https://nrich.maths.org/7044	https://nrich.maths.org/6937 Number
		Like	Differences
		https://nrich.maths.org/6962	https://nrich.maths.org/2790 Magic
			V's
			https://nrich.maths.org/6274 Planning
			a School Trip
			https://nrich.maths.org/6969

Progression in Problem Solving		Possible answers A number rounded to the nearest ten is 540. What is the smallest possible number it could be?
		What do you notice? Round 296 to the nearest 10. Round it to the nearest 100. What do you notice? Can you suggest
		other numbers like this?

Year	1	2	3
Big Ideas NCETM	Relating numbers to 5 and 10 helps develop	Understanding that addition of two or	Relating numbers to 5 and 10 helps
Addition & Subtraction	knowledge of the number bonds within 20.	more	develop
	Forexample, given 8 + 7, thinking of 7 as 2 +	numbers can be done in any order is	knowledge of the number bonds
	5and adding the 2 to 8 to make 10 and then the	important	within 20. For example, given 8 + 7,
	5 to total 15.		thinking of 7 as 2 + 5, and adding the 2

	Thinking of part whole relationships is helpfulin linking addition and subtraction. For example, where the whole is 6, and 4 and 2 are parts. This means that 4 and 2 together form the whole, which is 6 and 6 subtract 4 leaves the 2 and 6 subtract 2 leaves the 4.	to support children's fluency. When adding two numbers it can be more efficient to put the larger number first. For example, given $3 + 8$ it is easier to calculate $8 + 3$. When adding three or more numbers it is helpful to look for pairs of numbers that are easy to add. For example, given $5 + 8 + 2$ it is easier to add $8 + 2$ first than to begin with $5 + 8$. Understanding the importance of the equals sign meaning 'equivalent to' (i.e. that $6 + 4 = 10$, $10 = 6 + 4$ and $5 + 5$ = 6 + 4 are all valid uses of the equals sign) is crucial for later work in algebra. Empty box problems can support the development of this key idea. Correct use of the equals sign should be reinforced at all times. Altering where the equals sign is placed develops fluency and flexibility.	and 8 to make 10, then the 5 to 15. This should then be applied when calculating with larger numbers. Subtraction bonds can be thought of in terms of addition: for example, in answering 15 – 8, thinking what needs to be added to 8 to make 15. Counting on for subtraction is a useful strategy that can also be applied to larger numbers.
Addition and subtraction: Recall, Represent & Use	 read, write and interpret mathematical statements involving addition (+), subtraction(-) and equals (=) signs represent and use number bonds and related subtraction facts within 20 Autumn 1 Autumn 2 Spring 1 	 recall and use addition and subtraction facts to 20 fluently, and derive and use related facts up to 100 show that addition of two numbers can be done in any order(commutative) and subtraction of one number from another cannot recognise and use the inverse relationship between addition and subtraction and use this to check 	 estimate the answer to a calculation and use inverse operations to check answers Autumn 2

		calculations and solve missing number problems Autumn 2	
NCETM Spine	AS Y1 1.2, 1.3, 1.4, 1.5 1.6 1.7	AS Y2 1.11, 1.12, 1.13, 1.14, 1.15 1.16	
NRich	Domino Recall https://nrich.maths.org/4940 One Big Triangle https://nrich.maths.org/192 Ladybirds in the Garden https://nrich.maths.org/1816 NumberLines https://nrich.maths.org/5652 Pairs of Numbers https://nrich.maths.org/7233 Butterfly Flowers https://nrich.maths.org/229 2,4,6,8 https://nrich.maths.org/175?time=1188566002 How Do You See It? https://nrich.maths.org/8296 What Could It Be? https://nrich.maths.org/10479	Strike It Out https://nrich.maths.org/6589 4 Dom https://nrich.maths.org/179 Number Round Up https://nrich.maths.org/188	

Addition & Subtraction: Calculations	 add and subtract one-digit and two- digit numbers to 20, including zero Autumn Autumn 2 Spring 1 	 add and subtract numbers using concrete objects, pictorial representations, and mentally, including: a two-digit number and ones a two-digit number and tens two two-digit numbers adding three one-digit numbers Autumn 2 	 add and subtract numbers mentally, including: a three-digit number and ones a three-digit number and tens a three-digit number and hundreds add and subtract numbers with up to three digits, using formal
---	---	---	---

			written methods of columnar addition and subtraction Autumn 2
NRich	2,4,6,8	Dicey Addition	
	https://nrich.maths.org/175?time=1188566002	https://nrich.maths.org/11863 Unit	
	How Do You See It?	Differences	
	https://nrich.maths.org/8296 What	https://nrich.maths.org/10480 Number	
	Could It Be?	Balance	
	https://nrich.maths.org/10479	https://nrich.maths.org/4725 Jumping	
		Squares	
		https://nrich.maths.org/7471	

Progression in Reasoning	Convince me	Convince me	True or false?
NCETM	In my head I have two odd numbers with a	What digits could go in the boxes? Try	Are these number sentences true or
	difference of 2. What could they be? Convince	to find all of the possible answers.	false?
Addition & Subtraction	me	How do you know you have got them	597 + 7 = 614
	Missing numbers Fill in the missing numbers	all?	804 – 70 = 744 768
	(using a range of practical resources to support)	Convince me	+ 140 = 908 Give
	12 + = 19 20= 3	7 - 2 = 46	your reasons.
	Fact families	Fact families	Hard and easy questions
	Which four number sentences link these	Which four number sentences link	Which questions are easy / hard?
	numbers? 12, 15, 3	these numbers? 100, 67, 33	323 + 10 =
	What else do you know? If you know; 12 – 9	What else do you know? If you know;	393 + 10 =
	= 3 what other facts do you know? Missing	87 = 100	454 - 100 =
	symbols Write the missing symbols (+ - =) in	– 13 what other facts do you know?	954 - 120 =
	these number sentences:	Missing symbols Write the missing	Explain why you think the hard
	17 3 20	symbols (+	questions are hard? Convince
	18 20 2	- =) in these number sentences:	me
	Working backwards	80 20 100	+=
	Through practical games on number tracks and	100 70 30	
	lines ask questions such as "where have you	87 13 100	The total is 201
	landed?" and "what numbers would you need	True or false? Are these number	Each missing digit is either a 9 or a 1.
	to throw to land on other given numbers?"	sentences true or false? Give	Write in the missing digits.
	What do you notice?	your reasons. 73 + 40 = 113 98 –	
		18 = 70	

	11 - 1 = 10 11 - 10 = 1 Can you make up some other number sentences like this involving 3 different numbers? Continue the pattern 10 + 8 = 18 11 + 7 = 18 Can you make up a similar pattern for the number 17? How would this pattern look if it included subtraction? Missing numbers 9 + = 10 10 - = 9 What number goes in the missing box?	46 + 77 = 123 92 - 67 = 35 Hard and easy questions Which questions are easy / hard? Explain why you think the hard questions are hard? 23 + 10 = 93 + 10 = 54 + 9 = 54 + 1 = Other possibilities + + = 14 What single digit numbers could go in the boxes? How many different ways can you do this? Continue the pattern 90 = 100 - 10 80 = 100 - 20 Can you make up a similar pattern starting with the numbers 74, 26 and 100? Missing numbers What number goes in the missing box? 91 + = 100 100 - = 89	Is there only one way of doing this or lots of ways? Convince me Possibilities I bought a book which cost between £9 and £10 and I paid with a ten pound note. My change was between 50p and £1 and was all in silver coins. What price could I have paid?
Addition & Subtraction: Solve problems	 solve one-step problems that involve addition and subtraction, using concrete objects and pictorial representations, and missing number problems such as 7 =9. Autumn 2 Spring 1 	 solve problems with addition and subtraction: using concrete objects and pictorial representations, including those involving numbers, quantities and measures applying their increasing knowledge of mental and written methods Autumn 2 	 solve problems, including missing number problems, using number facts, place value, and more complex addition & subtraction. Autumn 2

Big Ideas NCETM	Counting in steps of equal sizes is based on the big idea of 'unitising' ; treating a	It is important that pupils both commit multiplication facts to memory and also develop	It is important for children not just to be able to chant their multiplication tables but also to
Multiplication & Division	group of, say, five objects as one unit of five. Working with arrays helps pupils to become aware of the commutative property of multiplication, that 2 × 5 is equivalent to 5 × 2.	develop an understanding of conceptual relationships. This will aid them in using known facts to work out unknown facts and in solving problems. Pupils should look for and recognise patterns within tables and connections between them (e.g. 5× is half of 10×). Pupils should recognise multiplication and division as inverse operations and use this knowledge to solve problems. They should also recognise division as both grouping and sharing. The recognition of pattern in	but also to understand what the facts in them mean, to be able to use these facts to figure out others and to use in problems. It is also important for children to be able to link facts within the tables (e.g. 5× is half of 10×). They understand what multiplication means, see division as both grouping and sharing, and see division as the inverse of multiplication.
		to memory, for example doubling twice is the same as multiplying by four, or halving a multiple of ten gives you the related multiple of five.	

Multiplication & division: Recall, Represent & Use	 recall and use multiplication and division facts for the 2, 5 and 10 multiplication tables, including recognising odd and even numbers 	 recall and use multiplication and division facts for the 3, 4 and 8 multiplication tables Autumn 2
	 show that multiplication of two numbers can be done in any order (commutative) and division of one number by another cannot Autumn 2 Spring 1 	

NCETM Spine	MD Y2 2.3, 2.4 2.5 2.6	
NRich	l'm 8	
	https://nrich.maths.org/55 Which	
	Symbol?	
	https://nrich.maths.org/6777	
	Ordering Cards	
	https://nrich.maths.org/8058	

Progression In Reasoning Making links NCETM If one teddy has two apples, how may apples will three teddies have? Here are 10 lego people If 2 people fit into the train carriage, how many carriag do we need? Practical If we put two pencils in each pencil p how many pencils will we need? Spot the mistake Use a puppet to count but make son deliberate mistakes. e.g. 2 4 5 6 10 9 8 6 See if the pupils can spot the deliber mistake and correct the puppet	 Making links Write the multiplication number sentences to describe this array X X X X X X X X X What do you notice? Write the division sentences. Prove It Which four number sentences link these numbers? 3, 5, 15? Prove it Missing numbers 10 = 5 x What number could be written in the box? Making links I have 30p in my pocket in 5p coins. How many coins do I have? True or false? When you count up in tens starting at 5 there will always be 5 units. 	Use a fact 20 x 3 = 60.Use this fact to work out 21 x 3 = 22 x 3 = 23 x 3 = 24 x 3 = Prove It What goes in the missing box? x 7 74 80 $12Prove it.How close can you get?XUsing the digits 2, 3 and 4 in thecalculation above how close can youget to 100? What is the largestproduct? What is the smallestproduct?Missing numbers24 = xWhich pairs of numbers could bewritten in the boxes?Making links Cards come in packs of 4.How many packs do I need to buy toget 32 cards? True or false?All the numbers in the two times tableare$
---	---	---

	even. There are no numbers in the three
	times table that are also in the two
	times table.

Multiplication & Division: Calculations	 calculate mathematical statements for multiplication and division within the multiplication tables and write them using the multiplication (×), division (÷) and equals (=) signs Autumn 2 Spring 1 	 write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for two-digit numbers times one-digit numbers, using mental and progressing to formal written methods Autumn 2 Spring 1
NRich	Double or Halve https://nrich.maths.org/10654 Clapping Times https://nrich.maths.org/5482 How Odd https://nrich.maths.org/7190 More Numbers in the Ring https://nrich.maths.org/2783 Ring a Ring of Numbers https://nrich.maths.org/2782 Even and Odd https://nrich.maths.org/6895 Odd Times Even https://nrich.maths.org/8062	Music to my Ears https://nrich.maths.org/5483
Progression in Reasoning NCETM Checking	Use the inverse Use the inverse to check if the following calculations are correct: 12 ÷ 3 = 4 3 x 5 = 14	Use the inverse Use the inverse to check if the following calculations are correct $23 \times 4 = 82$; $117 \div 9 = 14$ Size of an answer Will the answer to the following calculations be greater or less than 80 $23 \times 3 = 32 \times 3 =$ $42 \times 3 = 36 \times 2 =$

Multiplication & Division: Solve Problems	 solve one-step problems involving multiplication and division, by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher. Summer 1 	 solve problems involving multiplication and division, using materials, arrays, repeated addition, mental methods, and multiplication and division facts, including problems in contexts. Autumn 2 Spring 1 	 solve problems, including missing number problems, involving multiplication and division, including positive integer scaling problems and correspondence problems in which n objects are connected to m objects. Spring 1
NCETM Spine		MD Y2 2.2	
NRich	Share Bears https://nrich.maths.org/2358 Lots of Biscuits https://nrich.maths.org/6883 Doubling Fives https://nrich.maths.org/10588	Growing Garlic https://nrich.maths.org/5579 Lots of Lollies https://nrich.maths.org/2360 The Tomato and the Bean https://nrich.maths.org/1079 The Amazing Splitting Plant https://nrich.maths.org/159 Magic Plant https://nrich.maths.org/145 Our Numbers https://nrich.maths.org/7006	Journeys in Numberland https://nrich.maths.org/7285 lp Dip https://nrich.maths.org/7185 What's in the Box https://nrich.maths.org/5576 Follow the Numbers https://nrich.maths.org/7127 This Pied Piper of Hamelin https://nrich.maths.org/8315 What Do You Need https://nrich.maths.org/5950 A Square of Numbers https://nrich.maths.org/2005

Year	1	2	3
Big Ideas NCETM Fractions	Fractions express a relationship between a whole and equal parts of the whole. Ensure children express this relationship when talking about	Fractions involve a relationship between a whole and parts of a whole. Ensure children express this relationship when	Fractions are equal parts of a whole. Equal parts of shapes do not need to be congruent but need to be equal in area.

	fractions. For example, 'If the circle (where the circle is divided into four equal parts with one part shaded) is the whole, one part is one quarter of the whole circle.' Halving involves partitioning an object, shape or quantity into two equal parts. The two parts need to be equivalent in, for example, area, mass or quantity.	talking about fractions. For example, 'If the bag of 12 sweets is the whole, then 4 sweets are one third of the whole.' Partitioning or 'fair share' problems when each share is less than one gives rise to fractions. Measuring where the unit is longer than the item being measured gives rise to fractions.	Decimal fractions are linked to other fractions. The number line is a useful representation that helps children to think about fractions as numbers.
Fractions: Recognise & Write	 recognise, find and name a half as one of two equal parts of an object, shape or quantity recognise, find and name a quarter as one of four equal parts of an object, shape or quantity. Summer 1 	□ recognise, find, name and write fractions of a length, shape, set of $\frac{1}{3}$ $\frac{1}{4}, \frac{2}{4}, \frac{3}{4}$ of a length, shape, set of objects or quantity Spring 2	 count up and down in tenths; recognise that tenths arise from dividing an object into 10 equal parts and in dividing one-digit numbers or quantities by 10 recognise, find and write fractions of a discrete set of objects: unit fractions and non-unit fractions with small denominators recognise and use fractions as numbers: unit fractions and nonunit fractions with small denominators Spring 2
NCETM Spine	F KS1 3.0	F KS1 3.0	
NRich	Halving <u>https://nrich.maths.org/1788</u> Happy Halving <u>https://nrich.maths.org/217</u>		

Fractions: Compare	$\square \text{recognise the equivalence of} \\ \frac{2}{4} \frac{1}{and} \frac{1}{2} \\ \text{Spring 2}$	 recognise and show, using diagrams, equivalent fractions with small denominators
	Spring 2	

		 compare and order unit fractions, and fractions with the same denominators Summer 1
Progression in Reasoning NCETM Finding & Using Equivalence	Odd one out.Which is the odd one out in this trio:½ 2/4 ¼Why?What do you notice?Find ½ of 8, Find 2/4 of 8.What do you notice?	Odd one out. Which is the odd one out in each of these trios? ½ 3/6 5/8 3/9 2/6 4/9 Why?
Fractions: Calculations	$ \begin{array}{ c c } \hline & \text{write simple fractions for example,} \\ & \frac{1}{2} \text{ of } 6 = 3 \\ \hline & \text{Spring 2} \end{array} $	add and subtract fractions with the same denominator within one whole [for example, $\frac{5}{7} + \frac{1}{7} = \frac{6}{7}$ Summer 1
Fractions: Solve Problems		 solve problems that involve all of the above. Spring 2 Summer 1

Progression in Reasoning NCETM Fractions	What do you notice? Choose a number of counters. Place them onto 2 plates so that there is the same number on each half. When can you do this and when can't you? What do you notice? True or false? Sharing 8 apples between 4 children means each child has 1 apple.	What do you notice? ¼ of 4 = 1 ¼ of 8 = 2 ¼ of 12 = 3 Continue the pattern What do you notice? True or false? Half of 20cm = 5cm ¾ of 12cm = 9cm Ordering Put these fractions in the correct order, starting with the smallest. ½ ¼ 1/3	What comes next? 6/10, 7/10, 8/10,, 12/10, 11/10,,, True or false? 2/10 of 20cm = 2cm 4/10 of 40cm = 4cm 3/5 of 20cm = 12cm Give an example of a fraction that is less than a half. Now another example that no one else will think of. Explain how you know the fraction is less than a half. (draw an image) Put in Order
Decimals: Recognise and Write			Ben put these fractions in order starting with the smallest. Are they in the correct order? One fifth, one seventh, one sixth What do you notice? 1/10 of 10 = 1 2/10 of 10 = 2 3/10 of 10 = 3 Continue the pattern. What do you notice? What about 1/10 of 20? Use this to work out 2/10 of 20, etc What do you notice? Find 2/5 of 10 Find 4/10 of 10. What do you notice? Can you write any other similar statements?
Decimals: Recognise and Write			

Decimals: Compare		
Decimals: Calculation and Problems		
Progression in Reasoning NCETM Decimals	Spot the mistake and correct it 7, 7 ½, 8, 9, 10 8 ½, 8, 7, 6 ½, What comes next? 5 ½, 6 ½, 7 ½,, 9 ½, 9, 8 ½,,	Spot the mistake six tenths, seven tenths, eight tenths, nine tenths, eleven tenths and correct it.
Fractions, Decimals and Percentages		
Progression in Reasoning NCETM Calculating with FDP		What do you notice? 1/10 + 9/10 = 1 2/10 + 8/10 = 1 3/10 + 7/10 = 1 Continue the pattern Can you make up a similar pattern for eighths? The answer is 5/10, what is the question? (involving fractions / operations)

Year	1	2	3

Big Ideas NCETM Measurement	Measurement is about comparison, for example measuring to find out which rope is the longest. Measurement is about equivalence, for example how many cubes are equivalent to the length of the table or the mass of the teddy? Standard units can initially be introduced through using a unit that is greater than the things being compared, for example comparing the capacity of a cup and a carton by filling each and pouring into matching bottles to compare the two. Measuring is a practical activity and activities should be conducted in practical contexts, using real materials.	We need standard units of measure in order to compare things more accurately and consistently.	Developing benchmarks to support estimation skills is important as pupils become confident in their use of standard measures. The height of a door frame, for example, is approximately 2 metres, and a bag of sugar weighs approximately 1 kilogram.
--------------------------------	---	---	--

Measures: Using Measures	 compare, describe and solve practical problems for: lengths and heights [for example, long/short, longer/shorter, tall/short, double/half] mass/weight [for example, heavy/light, heavier than, lighter than] capacity and volume [for example, full/empty, more than, less than, half, half full, quarter] time [for example, quicker, slower, earlier, later] measure and begin to record the following: lengths and heights mass/weight capacity and volume time (hours, minutes, seconds) Spring 2 Summer 2 	 choose and use appropriate standard units to estimate and measure length/height in any direction (m/cm); mass (kg/g); temperature (°C); capacity (litres/ml) to the nearest appropriate unit, using rulers, scales, thermometers and measuring vessels compare and order lengths, mass, volume/capacity and record the results using >, < and = Spring 2 Summer 2 	 measure, compare, add and subtract: lengths (m/cm/mm); mass (kg/g); volume/capacity (l/ml) Spring 2 Summer 2
NRich	Wallpaper <u>https://nrich.maths.org/4964</u> Sizing Them Up <u>https://nrich.maths.org/4962</u> The Animals' Sports Day <u>https://nrich.maths.org/7789</u> Different Sizes <u>https://nrich.maths.org/8117</u> How Tall <u>https://nrich.maths.org/7536</u> Can You Do It Too <u>https://nrich.maths.org/8327</u>	Little Man <u>https://nrich.maths.org/4789</u> Discuss and Choose <u>https://nrich.maths.org/7449</u> Compare the Cups <u>https://nrich.maths.org/10656</u> Order, Order <u>https://nrich.maths.org/7340</u>	Car Journey https://nrich.maths.org/10350

Progression in Reasoning NCETM Measures	Top tips How do you know that this (object) is	Top tips	Top Tips
	heavier / longer / taller than this one?	Put these measurements in order	Put these measurements in order

	Explain how you know Application (Can be practical) Which two pieces of string are the same length as this book?	starting with the smallest. 75 grammes 85 grammes 100 grammes Explain your thinking Position the symbols Place the correct symbol between the measurements > or < 36cm 63cm 130ml 103ml Explain your thinking Application (Practical) Draw two lines whose lengths differ by 4cm.	starting with the largest. Explain your thinking Half a litre, Quarter of a litre, 300 ml Position the symbols Place the correct symbol between the measurements > or < 306cm Half a metre 930 ml 1 litre Write more statements If there are 630ml of water in a jug. How much water do you need to add to end up with a litre of water? What if there was 450 ml to start with? Testing conditions A square has sides of a whole number of centimetres. Which of the following measurements could represent its perimeter?8cm 18cm 24cm 25cm
Measurement: Money	 recognise and know the value of different denominations of coins and notes Summer 2 	 recognise and use symbols for pounds (£) and pence (p); combine amounts to make a particular value find different combinations of coins that equal the same amounts of money solve simple problems in a practical context involving addition and subtraction of money of the same unit, including giving change Autumn 2 	 add and subtract amounts of money to give change, using both £ and p in practical contexts Spring 1

NCETM Spine	MD Y1 2.1		
NRich		Money Bags https://nrich.maths.org/1116 Five Coins https://nrich.maths.org/142	

Progression in Reasoning NCETM	Possibilities Ella has two silver coins. How much money might she have?	Possibilities How many different ways can you make 63p using only 20p, 10p and 1p coins?	Position the symbols Place the correct symbols between the measurements > or < Explain your thinking £23.60 2326p 2623p
Telling the time is not taught in lessons but referred to continuously.	 order using language [for example, before and after, next, first, today, yesterday, tomorrow, morning, afternoon and evening] recognise and use language relating to dates, including days of the week, weeks, months and years tell the time to the hour and half past the hour and draw the hands on a clock face to show these times. Summer 2 	 tell and write the time to five minutes, including quarter past/to the hour and draw the hands on a clock face to show these times know the number of minutes in an hour and the number of hours in a day. Summer 2 	 analogue clock, including using Roman numerals from I to XII, and 12-hour and 24-hour clocks estimate and read time with increating accuracy to the nearest minute; reand compare time in terms of seccominutes and hours; use vocabulary such as o'clock, a.m./p.m., mornin afternoon, noon and midnight knot the number of seconds in a minute the number of days in each month year and leap year compare duratiof events [for example to calculate time taken by particular events or tasks]. Summer 1

NRich	The Games Medals https://nrich.maths.org/7763 Times of Day https://nrich.maths.org/6609	Stop the Clock https://nrich.maths.org/6071 What is the Time? https://nrich.maths.org/7377 Matching Time https://nrich.maths.org/10332	5 on the Clock <u>https://nrich.maths.org/1981</u> The Time Is <u>https://nrich.maths.org/7384</u> Clocks <u>https://nrich.maths.org/1812</u> Watch the Clock <u>https://nrich.maths.org/980</u>
Progression in Reasoning NCETM Time	Explain thinking Ask pupils to reason and make statements	Undoing	Undoing

	about to the order of daily routines in school e.g. daily timetable e.g. we go to PE after we go to lunch. Is this true or false? What do we do before break time?	The film finishes two hours after it starts. It finishes at 4.30. What time did it start? Draw the clock at the start and the finish of the film. Explain thinking The time is 3:15pm. Kate says that in two hours she will be at her football game which starts at 4:15. Is Kate right? Explain why. Working backwards Draw hands on the clock faces to show when break started and when it finished 15 minutes later at 10:35. The answer is 3 hours What is the question? What do you notice? 1 hour = 60 minutes ½ hour = 15 minutes Write down some more time facts like these	A programme lasting 45 minutes finishes at 5.20. At what time did it start? Draw the clock at the start and finish time. Explain thinking Salha says that 100 minutes is the same as 1 hour. Is Salha right? Explain why. Working backwards Tom's bus journey takes half an hour. He arrives at his destination at 9:25. At what time did his bus leave? 9:05 8:55 8:45 The answer is 25 minutes What is the question? What do you notice? 1 minute = 60 seconds 2 minutes = 120 seconds Continue the pattern Write down some more time facts like these
Measurement: Perimeter, Area and Volume			 measure the perimeter of simple 2D shapes Spring 2
Progression in Reasoning NCETM			Testing conditions A square has sides of a whole number of centimetres. Which of the following measurements could represent its perimeter?8cm 18cm 24cm 25cm

Year	1	2	3
Big Ideas NCETM Geometry	It is important for children to be familiar with a range of 2-D and 3-D shapes and not just recognise them in specific orientations. It is preferable to introduce 3-D shapes before 2-D shapes, since 2-D shapes only exist in the real world as faces of 3-D shapes. An emphasis should be placed upon identifying and describing the properties of shapes. It is important that pupils develop the correct mathematical language to do so. the development of precise language to describe position and movement is important.	It is not uncommon for pupils to say that this is a square and this is not , or that something like this is a triangle due to orientation. It is important for pupils to know what the properties are that make up certain shapes, and for them not to just learn the names of typical proto looking shapes. It is helpful to think about non examples of shapes. For example, why this is not a triangle: Recognising pattern and generalising structures and relationships are key elements for laying the foundations for later work in algebra.	During this year there is an increasing range of shapes that pupils are familiar with. The introduction of symmetrical and nonsymmetrical polygons and the requirement that pupils should be able to draw them will give rise to discussions about lengths of sides and sizes of angles. Pupils need to appreciate these features as properties of shapes as well as the number of sides and vertices. Pupils recognise that angles are about the amount of turn – the lengths of the lines used to represent angles do not affect the size of the angle. Pupils recognise that relationships are at the heart of properties of shapes, not particular measurements. For example, the opposite sides of any rectangle will always be equal, not that rectangles have a pair of long sides and a pair of short sides.

Geometry: 2d shapes	 recognise and name common 2-D shapes, [for example, rectangles (including squares), circles and triangles] Autumn 	 identify and describe the properties of 2-D shapes, including the number of sides and line symmetry in a vertical line draw 2-D shapes Summer 2
	2	 identify 2-D shapes on the surface of 3-D shapes [for example, a circle on a cylinder and a triangle on a pyramid]

		 compare and sort common 2-D shapes and everyday objects. Autumn 2 	
NRich	Shaping It <u>https://nrich.maths.org/7301</u> What's Happening? <u>https://nrich.maths.org/7810</u> Jig Shapes <u>https://nrich.maths.org/6886</u> Overlaps <u>https://nrich.maths.org/5819</u>	Inside Triangles https://nrich.maths.org/5648 Let's Investigate Triangles https://nrich.maths.org/93 Complete the Square https://nrich.maths.org/2910 Exploded Square https://nrich.maths.org/7008 Colouring Triangles https://nrich.maths.org/171 Shapely Lines https://nrich.maths.org/7009 Data Shapes https://nrich.maths.org/7523 Matching Triangles https://nrich.maths.org/5638	Board Block Challenge https://nrich.maths.org/2872 Stick Images https://nrich.maths.org/6980 Shapes on the Playground https://nrich.maths.org/1054 Sorting Logic Blocks https://nrich.maths.org/7192
Geometry: 3d shapes	 recognise and name common 3d shapes, [for example, cuboids (including cubes), pyramids and spheres]. Autumn 2 		make 3-D shapes using modelling materials; recognise 3-D shapes in different orientations and describe them Summer 2

NRich	Rolling That Cube	Building Blocks
	https://nrich.maths.org/7299 Skeleton	https://nrich.maths.org/2343 The
	Shapes	Third Dimension
	https://nrich.maths.org/1156	https://nrich.maths.org/1148 Triple
	Building with Solid Shapes	Cubes
	https://nrich.maths.org/239 Cubes	https://nrich.maths.org/7128 Sponge
	Cut Into Four Pieces	Sections
	https://nrich.maths.org/233	https://nrich.maths.org/2156 A
		Puzzling Cube
		https://nrich.maths.org/1140

Progression in reasoning – Geometry Properties of shape NCETM	What's the same, what's different? Find a rectangle and a triangle in this set of shapes. Tell me one thing that's the same about them. Tell me one thing that is different about them. Visualising Put some shapes in a bag. Find me a shape that has more than three edges. True or false? All 2-D shapes have at least 4 sides Other possibilities Can you find shapes that can go with the set with this label? "Have straight sides"	 What's the same, what's different? Pick up and look at these 3-D shapes. Do they all have straight edges and flat faces? What is the same and what is different about these shapes? Visualising In your head picture a rectangle that is twice as long as it is wide. What could its measurements be? Always, sometimes, never Is it always, sometimes or nerver true that when you fold a square in half you get a rectangle. Other possibilities Can you find shapes that can go with the set with this label? "Have straight sides and all sides are the same length" 	What's the same, what's different? What is the same and different about these three 2-D shapes? Visualising I am thinking of a 3-dimensional shape which has faces that are triangles and squares. What could my shape be? Other possibilities One face of a 3-D shape looks like this. What could it be? Are there any other possibilities? Always, sometimes, never Is it always, sometimes or never that all sides of a hexagon are the same length? Other possibilities Can you find shapes that can go with the set with this label? "Have straight sides that are different lengths." Convince me Which capital letters have perpendicular and / or parallel lines? Convince me
Geometry: Angles and Lines			 recognise angles as a property of shape or a description of a turn identify right angles, recognise that two right angles make a half-turn, three make three quarters of a turn and four a complete turn; identify whether angles are greater than or less than a right angle identify horizontal and vertical lines and pairs of perpendicular and parallel lines.

			Summer 2
Progression in Reasoning NCETM Angles			Always, sometimes, never Is it always, sometimes or never that all sides of a hexagon are the same length? Other possibilities Can you find shapes that can go with the set with this label? "Have straight sides that are different lengths." Convince me Which capital letters have perpendicular and /or parallel lines? Convince me.
Geometry: Position and Direction	 describe position, direction and movement, including whole, half, quarter and three-quarter turns. Summer 1 Summer 2 	 order and arrange combinations of mathematical objects in patterns and sequences use mathematical vocabulary to describe position, direction and movement, including movement in a straight line and distinguishing between rotation as a turn and in terms of right angles for quarter, half and three-quarter turns (clockwise and anticlockwise). Summer 1 	

NRich	Tangram Tangle	Three Ball Line Up
	https://nrich.maths.org/2398 Olympic	https://nrich.maths.org/2858 Hundred
	Rings	Square
	https://nrich.maths.org/7551	https://nrich.maths.org/2397 Break
	2 Rings	It Up
	https://nrich.maths.org/5330 Turning	https://nrich.maths.org/2284 Domino
	https://nrich.maths.org/5656	Patterns
		https://nrich.maths.org/9970
		Repeating Patterns
		https://nrich.maths.org/5944
		Caterpillars
		https://nrich.maths.org/5742 A
		City of Towers
		https://nrich.maths.org/183 Triple
		Cubes
		https://nrich.maths.org/7128

Year	1	2	3
Statistics NCETM Big Ideas	Statistics does not appear explicitly in the Year 1 curriculum. Additions included here focus around adaptation to the Year 2 curriculum	Data need to be collected with a question or purpose in mind. Tally charts are used to collect data over time (cars passing the school, birds on the bird table).	Data needs to be collected with a question or purpose in mind. Tally charts are used to collect data over time (cars passing the school, birds on the bird table). They can also be used to keep track of counting.
Statistics: Present and Interpret		 interpret and construct simple pictograms, tally charts, block diagrams and simple tables Summer 1 	 interpret and present data using bar charts, pictograms and tables Spring 1

NRich	Ladybird Count	Class 5's names
	https://nrich.maths.org/2341 What	https://nrich.maths.org/7522 Going
	Shape and Colour?	For Gold
	https://nrich.maths.org/2185 Plants	https://nrich.maths.org/7800 The
	https://nrich.maths.org/36 If	Domesday Project
	The World Were A Village	https://nrich.maths.org/7554 The
	https://nrich.maths.org/7725	Car That Passes
	Sticky Data	https://nrich.maths.org/7249 Now
	https://nrich.maths.org/7687	and Then
		https://nrich.maths.org/8171

	Beads and Bags <u>https://nrich.maths.org/7374</u> Button Up <u>https://nrich.maths.org/7227</u> Sort the Street <u>https://nrich.maths.org/5157</u> Mixed Up Socks <u>https://nrich.maths.org/166</u> The Hair Colour Game <u>https://nrich.maths.org/6964</u>	Real Statistics <u>https://nrich.maths.org/4938</u> Our Sports <u>https://nrich.maths.org/7779</u> How Big Are Classes 5, 6 and 7? <u>https://nrich.maths.org/2399</u>
Statistics: Solving Problems	 ask and answer simple questions by counting the number of objects in each category and sorting the categories by quantity ask and answer questions about totalling and comparing categorical data. Summer 1 	 solve one-step and two-step questions [for example, 'How many more?' and 'How many fewer?'] using information presented in scaled bar charts and pictograms and tables. Spring 1
NRich	In The Playground https://nrich.maths.org/7248	

NCETM reasoning	True or false? (Looking at a simple	True or false? (Looking at a bar chart)
	pictogram)	"Twice as many people like strawberry
	"More people travel to work in a car	than lime". Is this true or false?
	than on a	Convince me. Make up your own
	bicycle". Is this true or false? Convince	'true/false' statement about the bar
	me.	chart.
	Make up you own 'true/false' statement	What's the same, what's different?
	about the pictogram	Pupils identify similarities and
	What's the same, what's different?	differences between different
	Pupils identify similarities and	representations and explain them to
	differences between different	each other.
	representations and explain them to	Create a question
	each other	Pupils ask (and answer) questions about
	Create questions. Pupils ask (and	different statistical representations
	answer) questions about different	using key vocabulary relevant to the
	statistical	objectives.
	representations using key vocabulary	
	relevant to the objectives.	