Progression in Mathematics at Elliston Primary Academy

KS2

	Year 3	Year 4	Year 5	Year 6
Big Ideas NCETM Place Value	The value of a digit is determined by its position in a number. Place value is based on unitising, treating a group of things as one 'unit'. This generalises to 3 units + 2 units = 5 units (where the units are the same size).	Imagining the position of numbers on a horizontal number line helps us to order them: the number to the right on a number line is the larger number. So 5 is greater than 4, as 5 is to the right of 4. But -4 is greater than -5 as -4 is to the right of -5. Rounding numbers in context may mean rounding up or down. Buying packets of ten cakes, we might round up to the nearest ten to make sure everyone gets a cake. Estimating the number of chairs in a room for a large number of people we might round down to estimate the number of chairs to make sure there are enough. We can think of place value in additive terms: 456 is 400 + 50 + 6, or in multiplicative terms: one hundred is ten times as large as ten.	Large numbers of six digits are named in a pattern of three: hundreds of thousands, tens of thousands, ones of thousands, mirroring hundreds, tens and ones. It is helpful to relate large numbers to real-world contexts, for example the number of people that a local sports arena can hold.	For whole numbers, the more digits a number has, the larger it must be: any 4-digit whole number is larger than any 3digit whole number. But this is not true of decimal numbers: having more digits does not make a decimal number necessarily bigger. For example, 0-5 is larger than 0-35. Ordering decimal numbers uses the same process as for whole numbers i.e. we look at the digits in matching places in the numbers, starting from the place with the highest value i.e. from the left. The number with the higher different digit is the higher number. For example, 256 is greater than 247 because 256 has 5 tens but 247 has only 4 tens. Similarly 1-0843 is smaller than 1-524 because 1-0843 has 0 tenths but 1-524 has 5 tenths.
NCETM Spine			AS Y5 1.27	

Place Value Counting	 count from 0 in multiples of 4, 8, 50 and 100; find 10 or 100 more or less than a given number Autumn 1 Autumn 2 	 count in multiples of 6, 7, 9, 25 and 1000 count backwards through zero to include negative numbers Autumn 1 Autumn 2 	 count forwards or backwards in steps of powers of 10 for any given number up to 1 000 000 count forwards and backwards with positive and negative whole numbers, including through zero Autumn 1 	
NRICH			Sea Level <u>https://nrich.maths.org/5929</u> Swimming Pool <u>https://nrich.maths.org/5836</u> Tug Harder <u>https://nrich.maths.org/5898</u>	
Progression in Reasoning NCETM	Spot the mistake: 50,100,115,200 What is wrong with this sequence of numbers? True or False? 38 is a multiple of 8 What comes next? 936-10= 926 926 -10 = 916 916- 10= 906	Spot the mistake: 950, 975,1000,1250 What is wrong with this sequence of numbers? True or False? 324 is a multiple of 9 What comes next? 6706+ 1000= 7706 7706 + 1000 = 8706 8706 + 1000 = 9706	Spot the mistake: 177000,187000,197000, 217000 What is wrong with this sequence of numbers? True or False? When I count in 10's I will say the number 10100 What comes next? 646000-10000 = 636000 636000 - 10000 = 616000	Spot the mistake: -80,-40,10,50 What is wrong with this sequence of numbers? True or False? When I count backwards in 50s from 10 I will say -200 True or False? The temperature is -3. It gets 2 degrees warmer. The new temperature is -5
NCETM Spine	AS Y3 1.18	AS Y4 1.22	AS Y5 1.26	AS Y6 1.30

Place Value: represent	identify, represent and	identify, represent and	read, write, order and	read, write, order and
	estimate numbers using	estimate numbers using	compare numbers to at	compare numbers up to 10
	different representations	different representations	least 1 000 000 and	000 000 and determine the
				value of each digit

	 read and write numbers up to 1000 in numerals and in words Autumn 1 	 read Roman numerals to 100 (I to C) and know that over time, the numeral system changed to include the concept of zero and Autumn 1 	 determine the value of each digit read Roman numerals to 1000 (M) and recognise years written in Roman numerals Autumn 1 	Autumn 1
Place value: compare	 recognise the place value of each digit in a three-digit number (hundreds, tens, ones) compare and order numbers up to 1000 Autumn 1	 find 1000 more or less than a given number recognise the place value of each digit in a four-digit number (thousands, hundreds, tens, and ones) order and compare numbers beyond 1000 Autumn 1 	 read, write, order and compare numbers to at least 1 000 000 and determine the value of each digit Autumn 1 	 read, write, order and compare numbers to at least 1 000 000 and determine the value of each digit Autumn 1
NRich	Coded Hundred Square https://nrich.maths.org/6554 Which Scripts? https://nrich.maths.org/774	Four-digit Targets https://nrich.maths.org/6342 The Deca Tree https://nrich.maths.org/2006 Dicey Operations https://nrich.maths.org/6606 Nice or Nasty https://nrich.maths.org/6605		

Progression in Reasoning	Do, then explain	Do, then explain	Do, then explain	Do, then explain Show the value
	835 535 538 388 508	5035 5053 5350 5530 5503 If	Show the value of the digit 5 in	of the digit 6 in these numbers?
	If you wrote these numbers in	you wrote these numbers in	these numbers? 350114	6787555 95467754 Explain
	order starting with the smallest,	order starting with the largest,	567432 985376 Explain how	how you know. Make up an
	which number would be third?	which number would be third?	you know. Make up an	example Create seven digit
	Explain how you ordered the	Explain how you ordered the	example/Give	numbers where the digit sum is
	numbers	numbers.	further examples	six and the tens of thousands
			Create six digit numbers where	digit is two.
		Do, then explain	the digit sum is five and the	
	Do, then explain		thousands digit is two.	

	Show the 3 value of the digit 3 in these numbers? 341 503 937 Explain how you know. Make up an example Create numbers where the digit sum is three. E.g. 120, 300, 210 What is the largest/smallest number?	Show the value of the digit 4 in these numbers? Explain how you know. 3041 4321 5497 Make up an example Create four digit numbers where the digit sum is four and the tens digit is one. E.g. 1210, 2110, 3010. What is the largest/smallest number? Undoing I divide a number by 100 and the answer is 0.3. What number did I start with?	e.g. 3002000 2102000 What is the largest/smallest number? Do, then explain 747014, 774014, 747017, 774077, 744444 If you wrote these numbers in order starting with the smallest, which number would be third? Making links $7 \times 8 = 56$ How can you use this fact to solve these calculations? $0.7 \times 0.8 = 5.6 \div 8 =$ Undoing I divide a number by 100 and the answer is 0.33 What number did I start with? Another and another Write down a number with two decimal places which when multiplied by 100 gives an answer between 33 and 38 and another, and another,	E.g. 4020000 What is the largest/smallest number? Do, then explain Find out the populations in five countries. Order the populations starting with the largest. Explain how you ordered the countries and their populations. True or false? In all of the numbers below, the digit 6 is worth more than 6 hundredths. 3.6, 3.063, 3.006, 6.23, 7.761, 3.076 Is this true or false? Change some numbers so that it is true. What needs to be added to 6.543 to give 7? What needs to be added to 3.582 to give 5? Circle the two decimals which are closest in value to each other. 0.9 0.09 0.99 0.1 0.01
NCETM Spine			AS Y5 1.27 AS Y5 1.28	

Place value: problems and rounding	 solve number problems and practical problems involving these ideas. Autumn 1 	 round any number to the nearest 10, 100 or 1000 solve number and practical problems that involve all of the above and with 	 interpret negative numbers in context, count forwards and backwards with positive and negative whole numbers, including through zero 	 round any whole number to a required degree of accuracy use negative numbers in context, and calculate intervals across zero
		increasingly large positive numbers Autumn 1	 round any number up to 1 000 000 to the nearest 10, 100, 1000, 10 000 and 100 000 solve number problems and practical problems that involve all of the above Autumn 1 	 solve number and practical problems that involve all of the above. Autumn 1
NRich	Take Three Numbers https://nrich.maths.org/8063 A Mixed-Up Clock https://nrich.maths.org/2127 Number Match https://nrich.maths.org/6937 Number Differences https://nrich.maths.org/2790 Magic V's https://nrich.maths.org/6274 Planning a School Trip https://nrich.maths.org/6969	Reasoned Rounding https://nrich.maths.org/10945 Round the Dice Decimals 1 https://nrich.maths.org/10438	Route Product https://nrich.maths.org/5632 Forgot the Numbers https://nrich.maths.org/1015 Spiralling Decimals https://nrich.maths.org/10326 Greater Than Or Less Than https://nrich.maths.org/10587 Round the Dice Decimals 2 https://nrich.maths.org/10428	

Progression in Problem Solving	Possible answers A number rounded to the nearest ten is 540. What is the smallest possible number it could be? What do you notice? Round 296 to the nearest 10. Round it to the nearest 100. What do you notice? Can you suggest other numbers like this?	Possible answers A number rounded to the nearest ten is 540. What is the smallest possible number it could be? What do you notice? Round 296 to the nearest 10. Round it to the nearest 100. What do you notice? Can you suggest other numbers like this? Do, then explain	Possible answers A number rounded to the nearest thousand is 76000. What is the largest possible number it could be? What do you notice? Round 343997 to the nearest 1000. Round it to the nearest 10000. What do you notice? Can you suggest other numbers like this? Do, then explain	Possible answers Two numbers each with two decimal places round to 23.1 to one decimal place. The total of the numbers is 46.2. What could the numbers be? What do you notice? Give an example of a six digit number which rounds to the same number when rounded to the nearest 10000 and 100000 Do, then explain
		Circle each decimal which when rounded to the nearest whole number is 5. 5.3 5.7 5.2 5.8 Explain your reasoning Top tips Explain how to round numbers to one decimal place?	Circle each decimal which when rounded to one decimal place is 6.2. 6.32 6.23 6.27 6.17 Explain your reasoning Top tips Explain how to round decimal numbers to one decimal place?	Write the answer of each calculation rounded to the nearest whole number $75.7 \times 59\ 7734 \div 60$ $772.4 \times 9.7\ 20.34 \times (7.9 - 5.4)$ What's the same, what's different? when you round numbers to one decimal place and two decimal places?

Year	3	4	5	6

Big Ideas NCETM Addition & Subtraction	Relating numbers to 5 and 10 helps develop knowledge of the number bonds within 20. For example, given 8 + 7, thinking of 7 as 2 + 5, and adding the 2 and 8 to make 10, then the 5 to 15. This should then be applied when calculating with larger numbers. Subtraction bonds can be thought of in terms of addition: for example, in answering 15 – 8, thinking what needs to be added to 8 to make 15. Counting on for subtraction is a useful strategy that can also be applied to larger numbers.	It helps to round numbers before carrying out a calculation to get a sense of the size of the answer. For example, 4786 – 2135 is close to 5000 – 2000, so the answer will be around 3000. Looking at the numbers in a calculation and their relationship to each other can help make calculating easier. For example, 3012 – 2996. Noticing that the numbers are close to each other might mean this is more easily calculated by thinking about subtraction as difference.	Before starting any calculation is it helpful to think about whether or not you are confident that you can do it mentally. For example, 3689 + 4998 may be done mentally, but 3689 + 4756 may require paper and pencil. Carrying out an equivalent calculation might be easier than carrying out the given calculation. For example 3682 – 2996 is equivalent to 3686 – 3000 (constant difference).	Deciding which calculation method to use is supported by being able to take apart and combine numbers in many ways. For example, calculating 8.78 + 5.26 might involve calculating $8.75 + 5.25$ and then adjusting the answer. The associative rule helps when adding three or more numbers: 367 + 275 + 525 is probably best thought of as $367 + (275 + 525)$ rather than $(367 + 275) + 525$.
NCETM Spine	AS Y3 1.17, 1.19, 1.20 & 1.21		AS Y5 1.29	AS Y6 1.30
Γ		Γ	Γ	
Addition and subtraction: Recall, Represent & Use	 estimate the answer to a calculation and use inverse operations to check answers Autumn 2 	 estimate and use inverse operations to check answers to a calculation Autumn 2 	 use rounding to check answers to calculations and determine, in the context of a problem, levels of accuracy Autumn 2 	

Addition & Subtraction: Calculations	 add and subtract numbers mentally, including: a three-digit number and ones a three-digit number and tens a three-digit number and hundreds add and subtract numbers with up to three digits, using formal written methods of columnar addition and subtraction Autumn 2 	 add and subtract numbers with up to 4 digits using the formal written methods of columnar addition and subtraction where appropriate Autumn 2 	 add and subtract whole numbers with more than 4 digits, including using formal written method (columnar addition and subtraction) add and subtract numbers mentally with increasingly large numbers Autumn 2 	 perform mental calculations, including with mixed operations and large numbers use their knowledge of the order of operations to carry out calculations involving the four operations Autumn 2
Progression in Reasoning	True or false?	True or false?	True or false?	True or false?
NCETM	Are these number sentences true or folce $2507 \pm 7 = 614$	Are these number sentences	Are these number sentences true or folce $6.17 \pm 0.4 =$	Are these number sentences true or false 26.22 ± -8
Addition & Subtraction	true or false? 597 + 7 = 614 804 - 70 = 744 768 + 140 = 908 Give your reasons. Hard and easy questions Which questions are easy / hard? 323 + 10 = 393 + 10 = 454 - 100 = 954 - 120 =	true or false? $6.7 + 0.4 =$ 6.11 8.1 - 0.9 = 7.2 Give your reasons. Hard and easy questions Which questions are easy / hard? 13323 - 70 = 12893 + 300 = 19354 - 500 = 19954 + 100 = Explain why you think the hard questions are hard?	true or false? $6.17 + 0.4 =$ 6.57 8.12 - 0.9 = 8.3 Give your reasons. Hard and easy questions Which questions are easy / hard? 213323 - 70 = 512893 + 300 = 819354 - 500 = 319954 + 100 = Explain why you think the hard questions are hard?	true or false? 6.32 + = 8 = 1.68 Give your reasons. Hard and easy questions Which questions are easy / hard? 213323 - 70 = 512893 + 37 = 8193.54 - 5.9 = Explain why you think the hard questions are hard? Missing symbols

	Explain why you think the hard questions are hard? Convince me += The total is 201 Each missing digit is either a 9 or a 1. Write in the missing digits. Is there only one way of doing this or lots of ways? Convince me Possibilities I bought a book which cost between £9 and £10 and I paid with a ten pound note. My change was between 50p and £1 and was all in silver coins. What price could I have paid?	Convince me 666 = 85 What is the largest possible number that will go in the space? What is the smallest? Convince me Possibilities Adult tickets cost £8 and Children's tickets cost £4. How many adult and children's tickets could I buy for £100 exactly? Can you find more than one way of doing this?	Convince me + 1475 = 6_24 What numbers go in the boxes? What different answers are there? Convince me	Write the missing signs (+ - x ÷) in this number sentence: 6 12.3 = 61.9 11.9 What else do you know? If you know this: 86.7 + 13.3 = 100 what other facts do you know? Convince me Three four digit numbers total 12435. What could they be? Convince me
Addition & Subtraction: Solve problems	 solve problems, including missing number problems, using number facts, place value, and more complex addition & subtraction. Autumn 2 	solve addition and subtraction two-step problems in contexts, deciding which operations and methods to use and why. Autumn 2	 solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why. solve problems involving addition, subtraction, multiplication and division and a combination of these, including understanding the meaning of the equals sign 	 solve addition and subtraction multi-step problems in contexts, deciding which operations and methods to use and why. Autumn 2

			Autumn 2	
NRich	Sitting Round the Party Tables https://nrich.maths.org/7228 Finding Fifteen https://nrich.maths.org/2645 4 Dom https://nrich.maths.org/179 Domino Square https://nrich.maths.org/146 Dice In A Corner https://nrich.maths.org/8586 Super Shapes https://nrich.maths.org/1056 Make 37 https://nrich.maths.org/1885 Consecutive Numbers https://nrich.maths.org/317	Roll These Dice https://nrich.maths.org/53 Sealed Solution https://nrich.maths.org/1177 Fifteen Cards https://nrich.maths.org/7506 Amy's Dominoes https://nrich.maths.org/1044	Six Numbered Cubes https://nrich.maths.org/10918 Six Ten Total https://nrich.maths.org/10917 Make 100 https://nrich.maths.org/91 Reach 100 https://nrich.maths.org/1130 Twenty Divided Into Six https://nrich.maths.org/1047	
Progression in Reasoning NCETM Addition & Subtraction Problem Solving	Making an estimate Which of these number sentences have the answer that is between 50 and 60 174 - 119; 333 – 276; 932 - 871 Always, sometimes, never Is it always, sometimes or never true that if you subtract a multiple of 10 from any number the units digit of that number stays the same?	Making an estimate Which of these number sentences have the answer that is between 550 and 600 1174 - 611 3330 – 2779 9326 - 8777 Always, sometimes, never Is it always sometimes or never true that the difference between two odd numbers is odd?	Making an estimate Which of these number sentences have the answer that is between 0.5 and 0.6? 11.74 - 11.18 33.3 – 32.71 Always, sometimes, never Is it always, sometimes or never true that the sum of four even numbers is divisible by 4?	Making an estimate Circle the number that is the best estimate to 932.6 - 931.05 1.3 1.5 1.7 1.9 Always, sometimes, never Is it always, sometimes or never true that the sum of two consecutive triangular numbers is a square number?

Is it always, sometimes or never true that when you add two		
numbers together you will get an even number?		

Year	3	4	5	6
Big Ideas NCETM Multiplication & Division	It is important for children not just to be able to chant their multiplication tables but also to understand what the facts in them mean, to be able to use these facts to figure out others and to use in problems. It is also important for children to be able to link facts within the tables (e.g. 5× is half of 10×). They understand what multiplication means, see division as both grouping and sharing, and see division as the inverse of multiplication.	It is important for children not just to be able to chant their multiplication tables but to understand what the facts in them mean, to be able to use these facts to figure out others and to use them in problems. It is also important for children to be able to link facts within the tables (e.g. $5 \times i$ s half of $10 \times)$. They understand what multiplication means and see division as both grouping and sharing, and to see division as the inverse of multiplication. The distributive law can be used to partition numbers in different ways to create equivalent calculations. For example, $4 \times 27 = 4 \times (25 + 2) =$ $(4 \times 25) + (4 \times 2) = 108$. Looking for equivalent calculations can make calculating easier. For example, 98×5 is equivalent to $98 \times 10 \div$	Pupils have a firm understanding of what multiplication and division mean and have a range of strategies for dealing with large numbers, including both mental and standard written methods. They see the idea of factors, multiples and prime numbers as connected and not separate ideas to learn. They recognise how to use their skills of multiplying and dividing in new problem solving situations. Fractions and division are connected ideas: $36 \div 18$ $= 2 = \frac{18}{36} = \frac{1}{2}$ Factors and multiples are connected ideas: 48 is a multiple of 6 and 6 is a factor of 48.	Standard written algorithms use the conceptual structures of the mathematics to produce efficient methods of calculation. Standard written multiplication method involves a number of partial products. For example, 36 × 24 is made up of four partial products 30 × 20, 30 × 4, 6 × 20, 6 × 4. There are connections between factors, multiples and prime numbers and between fractions, division and ratios. The Big Ideas (Ratio and Proportion) It is important to distinguish between situations with an additive change or a multiplicative change (which involves ratio). For example, if four children have six

		2 or to (100 × 5) – (2 × 5). The array model can help show equivalences.		sandwiches to share and two more children join them, although two more children have been added, the number of sandwiches then needed for everyone to still get the same amount is calculated multiplicatively
NCETM Spine	MD Y3 2.7 2.8 2.9	MD Y4 2.11	MD Y5 2.18 2.20 2.21	
Multiplication & division: Recall, Represent & Use	 recall and use multiplication and division facts for the 3, 4 and 8 multiplication tables Autumn 2 	 recall multiplication and division facts for multiplication tables up to 12 × 12 use place value, known and derived facts to multiply and divide mentally, including: multiplying by 0 and 1; dividing by 1; multiplying together three numbers recognise and use factor pairs and commutativity in mental calculations Autumn 2 Spring 1 	 identify multiples and factors, including finding all factor pairs of a number, and common factors of two numbers know and use the vocabulary of prime numbers, prime factors and composite (nonprime) numbers establish whether a number up to 100 is prime and recall prime numbers up to 19 recognise and use square numbers, and the notation for squared (2) and cubed (3) Autumn 2 	 identify common factors, common multiples and prime numbers use estimation to check answers to calculations and determine, in the context of a problem, an appropriate degree of accuracy. Autumn 2

NRich	Music To My Ears	Multiplication Jigsaw	Trebling	Become Maths Detectives
	https://nrich.maths.org/5483	https://nrich.maths.org/5573	https://nrich.maths.org/2004	https://nrich.maths.org/6928
	Ordering Cards	Shape Times Shape	All the Digits	Counting Cogs
	https://nrich.maths.org/8058	https://nrich.maths.org/5714	https://nrich.maths.org/1129	https://nrich.maths.org/6966
		Let Us Divide	Division Rules	Mystery Matrix
		https://nrich.maths.org/8308	https://nrich.maths.org/10490	https://nrich.maths.org/1070

	Carrying Cards	Picture a Pyramid	The Moons of Vuya
	<u>ttps://prich.maths.org/2726</u>	https://prich.maths.org/5800	https://prich.maths.org/1066
	Light the Lights Again	Cueling Squares	<u>Easter multiple Chains</u>
		Cycling Squares	
	https://nrich.maths.org/7035	https://nrich.maths.org/1151	https://nrich.maths.org/55/8
	Multiples Grid	One Wasn't Squares	
	https://nrich.maths.org/5429	https://nrich.maths.org/1119	
	Zios and Zepts	Up and Down Staircases	
	https://nrich.maths.org/1005	https://nrich.maths.org/2283	
	Times Tables Shifts	Two Primes Make One Square	
	https://nrich.maths.org/6863	https://nrich.maths.org/1150	
	Tables Patterns Go Wild	Pebbles	
	https://nrich.maths.org/6924	https://nrich.maths.org/48	
		Factors and Multiples Game	
		https://nrich.maths.org/5468	
		Factor Trek	
		https://nrich.maths.org/7468	
		Abundant Numbers	
		https://nrich.maths.org/1011	
		Flashing Lights	
		https://nrich.maths.org/1014	
		Multiplication Squares	
		https://nrich.maths.org/1134	
		Which Is Quicker?	
		https://nrich.maths.org/1817	
		Sweets in a Box	
		https://nrich.maths.org/84	

Progression in Reasoning	Use a fact	Use a fact	Use a fact	Use a fact
NCETM	20 x 3 = 60.Use this fact to	63 ÷ 9 = 7	3 x 75 = 225	0.7 x 8 = 5.6. How can you use
	work out	Use this fact to work out	Use this fact to work out	this fact to solve these
	21 x 3 = 22 x 3 =	126 ÷ 9 = 252 ÷ 7 =	450 ÷ 6 =	calculations?
	23 x 3 = 24 x 3 =	Prove It	225 ÷ 0.6 =	0.7 x 0.08 = 0.56 ÷ 8 =
	Prove It	What goes in the missing box?	To multiply by 25 you multiply	Prove It
	What goes in the missing box?	6 □ x 4 = 512 Prove it.	by 100 and then	What goes in the missing box?
	x ? ?	How close can you get?	divide by 4. Use this strategy to	18 _ 4 ÷ 12 = 157; 38 _ 5 ÷ 18 =
	4 80 12		solve	212.5

	Prove it. How close can you get? × Using the digits 2, 3 and 4 in the calculation above how close can you get to 100? What is the largest product? What is the smallest? Missing numbers 24 = x Which pairs of numbers could be written in the boxes? Making links Cards come in packs of 4. How many packs do I need to buy to get 32 cards? True or false? All the numbers in the two times table are even. There are no numbers in the three times table that are also in the two times table	x 7 Using the digits 3, 4 and 6 in the calculation above how close can you get to 4500? What is the largest product? What is the smallest product?	48 x 25 78 x 25 4.6 x 25 Prove It What goes in the missing box? 12 3 ÷ 6 = 212 12 3 ÷ 7 = 212 22 3 ÷ 7 = 321 r 6 323 x 1 = 13243	33 _ 2 ÷ 8 = 421.5; 38 x7 = 178.6 Can you find? Can you find the smallest number that can be added to or subtracted from 87.6 to make it exactly divisible by 8/7/18? Which is correct? Which of these number sentences is correct? 3 + 6 x 2 =15; 6 x 5 - 7 x 4 = 92; 8 x 20 ÷ 4 x 3 = 37
NCETM Spine		MD Y4 2.14	MD Y4 2.15	MD Y6 2.23, 2.24 & 2.25

Multiplication & Division: Calculations	 write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for two-digit numbers times one-digit numbers, using mental and progressing to formal written methods Autumn 2 	 multiply two-digit and three-digit numbers by a one-digit number using formal written layout Spring 1 	 multiply numbers up to 4 digits by a one- or two-digit number using a formal written method, including long multiplication for twodigit numbers multiply and divide numbers mentally drawing upon known facts divide numbers up to 4 digits by a one-digit 	 multiply multi-digit numbers up to 4 digits by a two-digit whole number using the formal written method of long multiplication divide numbers up to 4 digits by a two-digit whole number using the formal written method of long division, and interpret
	Spring 1		 number using the formal written method of short division and interpret remainders appropriately for the context multiply and divide whole numbers and those involving decimals by 10, 100 and 1000 Autumn 2 Spring 1 Summer 1 	 remainders as whole number remainders, fractions, or by rounding, as appropriate for the context divide numbers up to 4 digits by a two-digit number using the formal written method of short division where appropriate, interpreting remainders according to the context perform mental calculations, including with mixed operations and large numbers Autumn

Progression in Reasoning NCETM Checking	Use the inverse Use the inverse to check if the following calculations are correct $23 \times 4 = 82$; $117 \div 9 = 14$ Size of an answer Will the answer to the following calculations be greater or less than 80 $23 \times 3 = 32 \times 3 =$ $42 \times 3 = 36 \times 2 =$	Use the inverse Use the inverse to check if the following calculations are correct: $23 \times 4 = 92$ $117 \div 9 = 14$ Size of an answer Will the answer to the following calculations be greater or less than 300 $152 \times 2 =$ $78 \times 3 =$ $87 \times 3 =$ $4 \times 74 =$	Use the inverse Use the inverse to check if the following calculations are correct: 4321 x 12 = 51852 507 ÷ 9 = 4563 Size of an answer The product of a two digit and three digit number is approximately 6500. What could the numbers be?	Use the inverse Use the inverse to check if the following calculations are correct: 2346 x 46 = 332796 27.74 ÷ 19 = 1.46 Size of an answer The product of a single digit number and a number with two decimal places is 21.34 What could the numbers be?
NCETM Spine		MD Y4 2.10 2.17	MD Y5 2.22	MD Y6 2.28
Multiplication & Division: Solve Problems	 solve problems, including missing number problems, involving multiplication and division, including positive 	 solve problems involving multiplying and adding, including using the distributive law to multiply 	 solve problems involving multiplication and division including using their knowledge of factors and 	 solve problems involving addition, subtraction, multiplication and division Autumn 2
	integer scaling problems and correspondence problems in which n objects are connected to m objects. Spring 1	two digit numbers by one digit, integer scaling problems and harder correspondence problems such as n objects are connected to m objects. Spring 1	 multiples, squares and cubes solve problems involving multiplication and division, including scaling by simple fractions and problems involving simple rates. Autumn 2 Spring 1 	

		 solve problems involving addition, subtraction, multiplication and division and a combination of these, including understanding the meaning of the equals sign Spring 1 	 use their knowledge of the order of operations to carry out calculations involving the four operations Autumn 2
NRich	Share Bears https://nrich.maths.org/2358 Lots of Biscuits https://nrich.maths.org/6883 Doubling Fives https://nrich.maths.org/10588	Cubes Within Cubes https://nrich.maths.org/1155 Odd Squares https://nrich.maths.org/2280 Curious Numbers https://nrich.maths.org/7218	Rectangle Tangle https://nrich.maths.org/1048 Jumping https://nrich.maths.org/7407 Pumpkin Pie Problem https://nrich.maths.org/1026

Year	3	4	5	6
Big Ideas NCETM Fractions	Fractions are equal parts of a whole. Equal parts of shapes do not need to be congruent but need to be equal in area. Decimal fractions	Fractions arise from solving problems, where the answer lies between two whole numbers. Fractions express a	Representations that may appear different sometimes have similar underlying ideas. For example 1 4. 0.25 and 25% are used in	Fractions express a relationship between a whole and equal parts of a whole. Pupils should recognise this and speak in full sentences when answering a
	are linked to other fractions.	relationship between a whole and equal parts of a whole.	different contexts but are all connected to the same idea.	question involving fractions. For example, in response to the

	The number line is a useful representation that helps children to think about fractions as numbers.	Children should recognise this and speak in full sentences when answering a question involving fractions. For example, in response to the question What fraction of the chocolate bar is shaded? the pupil might say Two sevenths of the whole chocolate bar is shaded. Equivalency in relation to fractions is important. Fractions that look very different in their symbolic notation can mean the same thing.		question 'What fraction of the journey has Tom travelled?' the pupil might respond, 'Tom has travelled two thirds of the whole journey.' Equivalent fractions are connected to the idea of ratio: keeping the numerator and denominator of a fraction in the same proportion creates an equivalent fraction. Putting fractions in place on the number lines helps understand fractions as numbers in their own right. Ratio & Proportion It is important to distinguish between situations with an additive change or a multiplicative change (which involves ratio). For example, if four children have six sandwiches to share and two more children
				multiplicative change (which involves ratio). For example, if four children have six sandwiches to share and two more children join them, although two more children have been added, the number of sandwiches then needed for everyone to still get the same amount is calculated multiplicatively
NCETM Spine	F Y3 3.1, 3.2, & 3.3	AS Y4 1.23 & 1.24	F Y4 3.5 F Y5 3.7	
Fractions: Recognise & Write	 count up and down in tenths; recognise that tenths arise from dividing an object into 10 equal parts and in dividing 	 count up and down in hundredths; recognise that hundredths arise when dividing an object by one 	identify, name and write equivalent fractions of a given fraction, represented visually,	

	 one-digit numbers or quantities by 10 recognise, find and write fractions of a discrete set of objects: unit fractions and non-unit fractions with small denominators recognise and use fractions as numbers: unit fractions and non-unit fractions with small denominators Spring 2 	hundred and dividing tenths by ten. Spring 2	 including tenths and hundredths □ recognise mixed numbers and improper fractions and convert from one form to the other and write mathematical statements > 1 as a mixed number ²/₅ + ⁴/₅ = ⁶/₅ = 1 ¹/₅ 	
Fractions: Compare	 recognise and show, using diagrams, equivalent fractions with small denominators compare and order unit fractions, and fractions with the same denominators Summer 1 	 recognise and show, using diagrams, families of common equivalent fractions Spring 2 	 compare and order fractions whose denominators are all multiples of the same number Spring 2 	 use common factors to simplify fractions; use common multiples to express fractions in the same denomination compare and order fractions, including fractions > 1 Spring

Progression in Reasoning NCETM Finding & Using Equivalence	Odd one out. Which is the odd one out in each of these trios? ½ 3/6 5/8 3/9 2/6 4/9 Why?	Odd one out. Which is the odd one out in each of these trio? 5¾ 9/12 4/6 9/12 10/15 2/3 Why? Complete the pattern by filling in the blank cells in this table: $\frac{1}{10} \frac{2}{10} \frac{3}{10} \frac{40}{100}$ $\frac{10}{100} \frac{20}{100} \frac{40}{100}$ Another and another	Odd one out. Which is the odd one out in each of these collections of 4 fractions? 6/10 3/5 18/20 9/15 30/100 3/10 6/20 3/9 Put in Order Imran put these fractions in order starting with the smallest. Are they in the correct order? Two fifths, three tenths, four twentieths How do you know? Complete the pattern	Odd one out. Which is the odd one out in each of these collections of 4 fractions? $\frac{3}{4}$ 9/12 26/36 18/24 4/20 1/5 6/25 6/30 Give an example of a fraction that is greater than 1.1 and less than 1.5. Now another example that no one will think of. Explain how you know. Complete the pattern $\frac{1}{8}$ $\frac{2}{8}$ $\frac{3}{8}$ $\frac{4}{8}$ 0.375 ??? ??? ???
NCETM Spine	F Y3 3.4	Write a decimal numbers (to one decimal place) which lies between a half and three quarters? and another, and another, Ordering Put these numbers in the correct order, starting with the smallest. ¼ 0.75 5/10 4/8 ¾ 1/4	$71 \\ 100 \\ 1$	Another and another Write a unit fraction which has a value of less than 0.5? and another, and another, Ordering Which is larger $\frac{1}{3}$ or $\frac{2}{5}$? Explain how you know. Put the following amounts in order, starting with the largest. 23%, 5/8, 3/5, 0.8
	F 13 3.4		F Y5 3.8	ר זט א.ש

NRich	Matching Fractions https://nrich.maths.org/8283 Fraction Match https://nrich.maths.org/6938	Fraction Wall https://nrich.maths.org/4519 Fractional Triangles https://nrich.maths.org/2124 Bryony's Triangle https://nrich.maths.org/7392		
Fractions: Calculations	add and subtract fractions with the same denominator within one whole [for example, $\frac{5}{7} + \frac{1}{7} = \frac{6}{7}$ Summer 1	 add and subtract fractions with the same denominator Spring 2 	 add and subtract fractions with the same denominator and denominators that are multiples of the same number multiply proper fractions and mixed numbers by whole numbers, supported by materials and diagrams Spring 2 	 add and subtract fractions with different denominators and mixed numbers, using the concept of equivalent fractions multiply simple pairs of proper fractions, writing the answer in its simplest form divide proper fractions by whole numbers Spring

Fractions: Solve Problems	solve problems that involve all of the above. Spring 2 Summer 1	solve problems involving increasingly harder fractions to calculate	
		quantities, and fractions to	
		divide quantities, including	
		non-unit fractions where	
		the answer is a whole	
		number	
		Spring 2	

NRich		Chocolate <u>https://nrich.maths.org/34</u> Fractions In A Box <u>https://nrich.maths.org/1103</u> Andy's Marbles <u>https://nrich.maths.org/2421</u>		
Progression in Reasoning	What comes next?	What comes next?	Give an example of a fraction	Spot the mistake
NCETM	6/10, 7/10, 8/10,,	83/100, 82/100, 81/100,,	that is more than three	Identify and explain mistakes
Fractions	12/10, 11/10,,, True	,	quarters.	when counting in more complex
	or taise?	31/100, 41/100, 51/100,,	Now another example that no	Tractional steps
	2/10 of 20 cm = 2 cm	,	Eveloin how you know the	One thousandth of my monoy is
	4/100140000 = 4000000000000000000000000000	1/10 of 100 = 10	fraction is more than three	21n. How much do L have?
	Give an example of a fraction that	1/100 of 100 = 10	quarters	What do you notico?
	s loss than a half	$\frac{1}{100} \text{ of } 100 = 20$	What do you potice?	8/5 of 25 = 40
	Now another example that no one	2/100 of 100 = 20	Find 30/100 of 200 Find	5/3 of $25 = 40$
	else will think of	How can you use this to work	3/10 of 200 What do	7/6 of 36 - 42 Can
	Explain how you know the fraction	out 6/10 of 2002	you notice? Can you	vou write similar
	is less than a half (draw an image)	6/100 of 2002	write any other similar	statements?
	Put in Order	True or false?	statements?	statements:
	Ben put these fractions in order	1/20 of a metre = 20 cm	statements.	
	starting with the smallest. Are	4/100 of 2 metres = 40 cm Give		
	they in the correct order? One	an example of a fraction that		
	fifth, one seventh, one sixth	is more than a half but less		
	What do you notice?	than a whole. Now		

	1/10 of 10 = 1 2/10 of 10 = 2 3/10 of 10 = 3 Continue the pattern. What do you notice? What about 1/10 of 20? Use this to work out 2/10 of 20, etc What do you notice? Find 2/5 of 10 Find 4/10 of 10. What do you notice? Can you write any other similar statements?	another example that no one else will think of. Explain how you know the fraction is more than a half but less than a whole. (draw an image) What do you notice? Find 4/6 of 24 Find 2/3 of 24 What do you notice? Can you write any other similar statements?		
NCETM Spin		MD Y4 2.13		MD Y5 2.19 MD Y6 2.29
Decimals: Recognise and Write		 recognise and write decimal equivalents of any number of tenths or hundredths recognise and write decimal equivalents to ¹/₄, ¹/₂ and ³/₄ Spring 2 Summer 1 	 read and write decimal numbers as fractions [for example, 0.71 = ⁷¹/₁₀₀] recognise and use thousandths and relate them to tenths, hundredths and decimal equivalents Spring 2 	identify the value of each digit in numbers given to three decimal places Autumn ???
Decimals: Compare		 round decimals with one decimal place to the nearest whole number compare numbers with the same number of decimal places up to two decimal places Summer 1 	 round decimals with two decimal places to the nearest whole number and to one decimal place read, write, order and compare numbers with up to three decimal places Spring 2 	

Decimals: Calculation and Problems			find the effect of dividing a one- or two-digit number by 10 and 100, identifying the value of the digits in the answer as ones, tenths and hundredths Spring 2		solve problems involving number up to three decimal places Summer 1	Multiply and divide numbers by 10, 100 and 1000 giving answers up to three decimal places multiply one-digit numbers with up to two decimal places by whole numbers use written division methods in cases where the answer has up to two decimal places solve problems which require answers to be rounded to specified degrees of accuracy Spring
Progression in Reasoning	Spot the mistake	Sp six	ot the mistake	Spo 1 C	ot the mistake 0.088, 0.089,	
NCETIVI	tenths nine	eig	why tenths, sevency tenths,	1.C	, nat comes next? 1 173	
Decimais	tenths, eleven tenths and	tw	enty tenths and correct it.	1.1	.83, 1.193	
	correct it.	Mi	ssing symbol	Wł	nat do you notice? One	
		Pu	t the correct symbol < or	ter	, hth of £41, One hundredth	
		> i	n each box 3.03 3.33	of	£41, One thousandth of	
		0.3	37 0.32	£4	1	
		WI	hat needs to be added to	Со	ntinue the pattern. What	
		3.2	23 to give 3.53?	do	you notice? 0.085 +	
		WI	hat needs to be added to	0.0)15 = 0.1 0.075 + 0.025 =	
		3.1	16 to give 3.2?	0.1		
				0.0	065 + 0.035 = 0.1	
					ntinue the pattern for the	
				Tre	xt rive number sentences.	
					of a kilometre is 1m	
				0.2	of 2 kilometres is 2m. 0.3	
				of	3 Kilometres is 3m	
				0.2	25 of 3m is 500cm. 2/5	
				of	£2 is 20p	

NCETM Spine	AS Y4 1.25	Missing symbol Put the correct symbol < or > in each box 4.627 4.06 12.317 12.31	F Y6 3.10
Fractions, Decimals and Percentages	 solve simple measure and money problems involving fractions and decimals to two decimal places. Spring 2 Summer 1 	 recognise the per cent symbol (%) and understand that per cent relates to 'number of parts per hundred', and write percentages as a fraction with denominator 100, and as a decimal solve problems which require knowing percentage and decimal equivalents of ¹/₄, ¹/₂, ¹/₅, ²/₅ ⁴/₄ and ⁵/₅ and those fractions with a denominator of a multiple of 10 or 25. Spring 2 	 associate a fraction with division and calculate decimal fraction equivalents [for example, 0.375] for a simple fraction ³/₈ recall and use equivalences between simple fractions, decimals and percentages, including in different contexts Spring 2 ???
NRich		Matching Fractions, Decimals and Percentages https://nrich.maths.org/1249	

Progression in Reasoning	What do you notice?	What do you notice?	What do you notice? ¾	True or false?
NCETM	1/10 + 9/10 = 1	5/5 – 1/5 = 4/5	and ¼ = 4/4 = 1	25% of 23km is longer than 0.2 of
Calculating with FDP	2/10 + 8/10 = 1	4/5 – 1/5 = 3/5	4/4 and ¼ = 5/4 = 1 ¼	20km.
3	3/10 + 7/10 = 1	Continue the pattern Can	5/4 and ¼ = 6/4 = 1 ½	Convince me.
	Continue the pattern	you make up a similar	Continue the pattern up to the	Another and another
	Can you make up a similar pattern	pattern for addition?	total of 2.	Write down two fractions which
	for eighths?	The answer is 3/5, what is the	Can you make up a similar	have a
		question?	pattern for subtraction?	

	The answer is 5/10, what is the question? (involving fractions / operations)	What do you notice? 11/100 + 89/100 = 1 12/100 + 88/100 = 1 Continue the pattern for the next five number sentences.	The answer is 1 2/5 , what is the question? Continue the pattern ¼ x 3 = ¼ x 4 = ¼ x 5 = Continue the pattern for five more number sentences. How many steps will it take to get to 3? 5/3 of 24 = 40 Write a similar sentence where the answer is 56. The answer is 2 ¼ , what is the question Give your top tips for multiplying fractions. Which is more: 20% of 200 or 25% of 180? Explain your reasoning.	difference of 1 2/ and another, and another, Another and another Write down 2 fractions with a total of 3 4/5 and another, and another, Continue the pattern What do you notice? 1/3 ÷ 2 = 1/6, 1/6 ÷ 2 = 1/12, 1/12 ÷ 2 = 1/24 Give your top tips for dividing fractions. What else do you know? 88% of a sum of money = £242. Make up some other statements. Write real life problems for your number sentences. Undoing I think of a number and then reduce it by 15%. The number I end up with is 306. What was my original number? In a sale where everything is reduced by 15% I paid the following prices for three items. What was the original selling price? £255, £850, £4.25
				MD Y6 2.27
Ratio and Proportion				 solve problems involving the relative sizes of two quantities where missing values can be found by using

				 Integer multiplication and division facts solve problems involving the calculation of percentages [for example, of measures, and such as 15% of 360] and the use of percentages for comparison solve problems involving similar shapes where the scale factor is known or can be found solve problems involving unequal sharing and grouping using knowledge of fractions and multiples. Spring 2
Year	3	4	5	6

Big Ideas		A linear sequence of numbers is
NCETM		where the difference between
Algebra		the values of neighbouring terms
		is constant. The relationship can
		be generated in two ways: the
		sequence-generating rule can be
		recursive, i.e. one number in the
		sequence is generated from the
		preceding number (e.g. by adding
		3 to the preceding number), or
		ordinal, i.e. the position of the
		number in the sequence
		generates the number (e.g. by
		multiplying the position by 3, and
		then subtracting 2).
		Sometimes sequence generating
		rules that seem different can

		that 9 – 4 = 4 + 1. We say that 4
		satisfies the symbol sentence

NCETM Spine			(equation) 9 - = + 1 (or 9 - x = x + 1). AS Y6 1.31
Algebra	solve problems including missing number problems		 use simple formulae generate and describe linear number sequences express missing number problems algebraically find pairs of numbers that satisfy an equation with two unknowns enumerate possibilities of combinations of two variables. Spring 2
NRich			Two and Two https://nrich.maths.org/781 Holes https://nrich.maths.org/6529 Button-up Some More https://nrich.maths.org/7350 Break It Up https://nrich.maths.org/2284

Progression in Reasoning	Connected Calculations	Put the numbers 7.2, 8, 0.9 in	Connected Calculations The	Connected Calculations p and q
NCETM	Put the numbers 3, 12, 36 in the	the boxes to make the number	number sentence below	each stand for whole numbers. p
Algebra	boxes to make the number	sentences correct.	represents the angles in	+ q = 1000 and p is 150 greater
, ingenitie	sentences correct.		degrees of an isosceles	than q. Work out the values of p
			triangle.	and q.
			A + B + C = 180 degrees	
			A and B are equal and are	
		D - D - D	multiples of 5.	The diagram below represents
			Give an example of what the	two rectangular fields that are
			3 angles could be. Write down	next to each other.
			3 more examples	
			Undoing	Field A B
		Undoing	The perimeter of a	
		If the longer length of a	rectangular garden is between	Field A is twice as long as field B
		rectangle is 13cm and the	40 and 50 metres. What could	but their widths are the same and
		perimeter is 36cm, what is the	the dimensions of the garden	are 7.6 metres. If the perimeter
		length of the shorter side?	be?	of the small field is 23m what is
		Explain how you got your		the perimeter of the entire shape
		answer.		containing both fields?
				If y stands for a number complete
				the table below. What is the
				largest value of y if the greatest
				number in the table was 163?
				y 3y 3y+1
				25
				28
				Conoralising
				Write a formula for the 10th
				100th and nth terms of the
				sequences below
				4, 8, 12, 16 and 0.4, 0.8, 1.2
				1.6

Year	3	4	5	6
Big Ideas NCETM Measurement	Developing benchmarks to support estimation skills is important as pupils become confident in their use of standard measures. The	The smaller the unit, the greater the number of units needed to measure (that is, there is an inverse relationship	The relationship between area and perimeter is not a simple one. Increasing or decreasing area does not necessarily mean the perimeter increases	To read a scale, first work out how much each mark or division on the scale represents. The unit of measure must be identified
	height of a door frame, for example, is approximately 2 metres, and a bag of sugar weighs approximately 1 kilogram.	between size of unit and measure).	or decreases respectively, or vice versa. Area is measured in square units. For rectangles, measuring the length and breadth is a shortcut to finding out how many squares would fit into each of these dimensions.	before measuring. Selecting a unit will depend on the size and nature of the item to be measured and the degree of accuracy required.
NCETM Spine				MD Y6 2.29

Measures: Using Measures	measure, compare, add and subtract: lengths (m/cm/mm); mass (kg/g); volume/capacity (l/ml) Spring 2 Summer 2	 convert between different units of measure [for example, kilometre to metre; hour to minute] estimate, compare and calculate different measures, including money in pounds and pence Autumn 2 Spring 2 Summer 2 	 convert between different units of metric measure (for example, kilometre and metre; centimetre and metre; centimetre and millimetre; gram and kilogram; litre and millilitre) understand and use approximate equivalences between metric units and common imperial units such as inches, pounds and pints use all four operations to solve problems involving measure [for example, length, mass, volume, money] using decimal notation, including scaling. Summer 1 Summer 2 	 solve problems involving the calculation and conversion of units of measure, using decimal notation up to three decimal places where appropriate use, read, write and convert between standard units, converting measurements of length, mass, volume and time from a smaller unit of measure to a larger unit, and vice versa, using decimal notation to up to three decimal places convert between miles and kilometres Spring
NRich	Car Journey <u>https://nrich.maths.org/10350</u> Olympic Starters	Discuss and Choose https://nrich.maths.org/7449		

https://prich.maths.o	rg/9170		
https://mich.maths.o	19/01/0		
Oh Harryl			
On harry:			
https://prich.maths.o	rg/5979		
https://inch.maths.o	<u>18/3373</u>		

Progression in Reasoning NCETM Measures	Top Tips Put these measurements in order starting with the largest. Explain your thinking Half a litre, Quarter of a litre, 300 ml Position the symbols Place the correct symbol between the measurements > or < 306cm Half a metre 930 ml 1 litre Write more statements If there are 630ml of water in a jug. How much water do you need to add to end up with a litre of water? What if there was 450 ml to start with? Testing conditions A square has sides of a whole number of centimetres. Which of the following measurements could represent its perimeter?8cm 18cm 24cm 25cm	Put these amounts in order starting with the largest. Explain your thinking Half of three litres; Quarter of two litres; 300 ml Write more statements One battery weighs the same as 60 paperclips; One pencil sharpener weighs the same as 20 paperclips. Write down some more things you know. How many pencil sharpeners weigh the same as a battery? The answer is225 metres What is the question?	Put these amounts in order starting with the largest. 130000cm2 1.2 m2 13 m2 Explain your thinking The answer is 0.3km What is the question? Write more statements Mr Smith needs to fill buckets of water. A large bucket holds 6 litres and a small bucket holds 6 litres. If a jug holds 250 ml and a bottle holds 500 ml suggest some ways of using the jug and bottle to fill the buckets.	Put these amounts in order starting with the largest. Explain your thinking 100 cm3 1000000 mm3 1 m3 What do you notice? 8 km = 5 miles 16km = miles 4 km = miles 4 km = miles Fill in the missing number of miles. Write down some more facts connecting kilometres and miles. Write more statements Chen, Megan and Sam have parcels. Megan's parcel weighs 1.2kg and Chen's parcel is 1500g and Sam's parcel is half the weight of Megan's parcel. Write down some other statements about the parcels. How much heavier is Megan's parcel than Chen's parcel?
Measurement: Money	 add and subtract amounts of money to give change, using both £ and p in practical contexts Spring 2 	 estimate, compare and calculate different measures, including money in pounds and pence 	 use all four operations to solve problems involving measure [for example, money] Summer 1 	

	Summer 2	

NRich		Discuss and Choose https://nrich.maths.org/7449		
Progression in Reasoning NCETM	Position the symbols Place the correct symbols between the measurements > or < Expl your thinking £23.60 2326p 2623p ain			
Measurement: Time Telling the time is not taught in lessons but referred to continuously.	 tell and write the time from an analogue cloc including using Roman numerals from I to XII, 12-hour and 24-hour clocks estimate and read tim with increasing accura the nearest minute; r and compare time in t of seconds, minutes a hours; afternoon, n and midnight know the number of seconds in a minute a the number of days in month, year and leap compare time tak particular events or ta Summer 	 read, write and convert time between analogue and digital 12- and 24- clocks solve problems involving converting from hours to minutes; minutes to seconc years to months; weeks to days. Summer 	solve problems involving converting between units of time	use, read, write and convert between standard units, converting measurements of time from a smaller unit of measure to a larger unit, and vice versa.

NRich	5 on the Clock		
	https://nrich.maths.org/1981		
	The Time Is		
	https://nrich.maths.org/7384		
	Clocks		
	https://nrich.maths.org/1812		
	Watch the Clock		
	https://nrich.maths.org/980		

Progression in Reasoning	Undoing	Undoing	Undoing	Undoing
	A programme lasting 45	Imran's swimming lesson lasts	A school play ends at 6.45pm	A film lasting 200 minutes
	minutes finishes at 5 20 At	50 minutes and it takes 15	The play lasted 2 hours and 35	finished at 17:45 At what time
Time	what time did it start?	minutes to change and get	minutes What time did it	did it start?
	Draw the clock at the start and	ready for the lesson. What time	start?	
	finish time. Evoluin thinking	does Imran need to arrive if his		
	Salba cave that 100 minutes is	losson finishes at		
	Sama says that 100 minutes is		working backwards	
	the same as 1 nour. Is Saina	6.15pm?	Put these lengths of time in	
	right? Explain why.		order starting with the longest	
		Explain thinking	time.	
	Working backwards	The time is 10:35 am.	105 minutes	
	Tom's bus journey takes half an	Jack says that the time is closer	1 hour 51 minutes	
	hour. He arrives at his	to 11:00am than to 10:00am.	6360 seconds	
	destination at 9:25. At what	Is Jack right? Explain why.		
	time did his bus leave?		What do you notice?	
	9:05 8:55 8:45	Working backwards	What do you notice here?	
		Put these times of the day in	1 minute = 60 seconds	
	The answer is	order, starting with the earliest	60 minutes = seconds	
	25 minutes	time.	Fill in the missing number of	
	What is the guestion?	A: Quarter to four in the	seconds	
	•	afternoon	Write down some more time	
	What do you notice?	B: 07:56	facts like this.	
	What do you notice?	C: six minutes to nine in the		
	1 minute = 60 seconds	evening D:		
	2 minutes = 120 seconds	14.36		
	Continue the pattern			
	Write down some more time	What do you potico?		
	facto like these	What do you notice?		
	facts like these	what do you notice?		

	1:00pm = 13:00 2:00pm = 14:00 Continue the pattern		
NCETM Spine	MD Y4 2.16	MD Y5 2.20	MD Y6 2.30

Measurement: Perimeter, Area and Volume	measure the perimeter of simple 2-D shapes Spring 4	 measure and calculate the perimeter of a rectilinear figure (including squares) in centimetres and metres find the area of rectilinear shapes by counting squares Autumn 3 Spring 2 	 measure and calculate the perimeter of composite rectilinear shapes in centimetres and metres calculate and compare the area of rectangles (including squares), and including using standard units, square centimetres (cm2) and square metres (m2) and estimate the area of irregular shapes estimate volume [for example, using 1 cm3 blocks to build cuboids (including cubes)] and capacity [for example, using water] Autumn 5 Summer 5 	 recognise that shapes with the same areas can have different perimeters and vice versa recognise when it is possible to use formulae for area and volume of shapes calculate the area of parallelograms and triangles calculate, estimate and compare volume of cubes and cuboids using standard units, including cubic centimetres (cm3) and cubic metres (m3), and extending to other units [for example, mm3 and km3]. Spring 5
NRich		Twice As Big https://nrich.maths.org/5561 Torn Shapes https://nrich.maths.org/4963	Through the Window <u>https://nrich.maths.org/10344</u> Area and Perimeter <u>https://nrich.maths.org/7280</u> Ribbon Squares <u>https://nrich.maths.org/9939</u> Making Boxes <u>https://nrich.maths.org/89</u> Brush Loads <u>https://nrich.maths.org/4911</u>	Next Size Up https://nrich.maths.org/6931

			Fitted https://nrich.maths.org/1854 Cubes https://nrich.maths.org/42 Shaping It https://nrich.maths.org/7301 Numerically Equal https://nrich.maths.org/1045 A Day With Grandpa https://nrich.maths.org/5983	
Progression in Reasoning NCETM	Testing conditions A square has sides of a whole number of centimetres. Which of the following measurements could represent its perimeter?8cm 18cm 24cm 25cm	Testing conditions If the width of a rectangle is 3 metres less than the length and the perimeter is between 20 and 30 metres, what could the dimensions of the rectangle be? Convince me. Always, sometimes, never? If you double the area of a rectangle, you double the perimeter.	Shape A is a rectangle that is 4m long & 3m wide. Shape B is a square with sides 3m. The rectangles and squares are put together side by side to make a path which has perimeter between 20 & 30m. e.g. Can you draw some other arrangements where the perimeter is between 20 & 30m? Always, sometimes, never? When you cut off a piece of a shape you reduce its area and perimeter. Other possibilities A cuboid is made up of 36 smaller cubes. If the cuboid has the length of two of its sides the same what could the dimensions be?	Testing conditions A square has the perimeter of 12 cm. When 4 squares are put together, the perimeter of the new shape can be calculated. e.g. What arrangements will give the maximum perimeter? Always, sometimes, never? The area of a triangle is half the area of the rectangle that encloses it Other possibilities A cuboid has a volume between 200 and 250 cm cubed. Each edge is at least 4cm long. List four possibilities for the dimensions of the cuboid. The answer is 24 metres cubed, What is the question?

Year	3	4	5	6

	During this area that	During this way and the investor	During this way it	Maning and in the
Big Ideas NCETM	During this year there is an	During this year, pupils increase the	During this year, pupils	Variance and invariance are
Geometry	increasing range of shapes	range of 2-D and 3-D shapes that	increase the range of 2-D and	important ideas in
	that pupils are familiar with.	they are familiar with. They know the	3-D shapes that they are	mathematics, particularly in
	The	correct names for these shapes, but,	familiar with. With 3-D shapes	geometry. A set of
	introduction of symmetrical	more importantly, they are able to	they think	quadrilaterals for example
	and nonsymmetrical polygons	say why certain shapes are what they	about the faces as well as the	may vary in many ways in
	and the requirement that	are by referring to their properties,	number of vertices and	terms of area, length of sides
	pupils should be able to draw	including lengths of sides, size of	through considering nets	and the size of individual
	them will give rise to	angles and number of lines of	think about the 2-D shapes	angles. However there are a
	discussions about lengths of	symmetry.	that define the 3-D	set of invariant properties
	sides and sizes of angles.	The naming of shapes sometimes	shapes.	which remain common to all
	Pupils need to appreciate	focuses on angle properties (e.g. a	Pupils learn about a range of	quadrilaterals, namely they
	these features as properties of	rectangle is right-angled), and	angle facts	have four sides and their
	shapes as well as the number	sometimes on properties of sides (e.g.	and use them to describe	internal angles sum to 360
	of sides and vertices. Pupils	an equilateral triangle is an equal	certain shapes and derive facts	degrees. Some of these
	recognise that angles are	sided triangle).	about them.	properties emerge from
	about the amount of turn –	Shapes can belong to more than one	Regular shapes have to have	naturally occurring constraints,
	the lengths of the lines used	classification. For example, a square	all sides and	for example the sum of the
	to represent angles do not	is a rectangle, a parallelogram, a	all angles the same. Although	internal angles will always sum
	affect the size of the angle.	rhombus and a quadrilateral.	non-square	to 360 degrees and they can
	Pupils recognise that		rectangles have four equal	do nothing else! The questions
	relationships are at the heart		angles, the fact	'What's the same?' and
	of properties of shapes, not		that they do not have four	'What's different?' can draw
	particular measurements. For		equal sides	pupils' attention to variance
	example, the opposite sides of		means that they are not	and invariance. Shapes can be
	anv rectangle will glwavs be		reaular.	alike in essentially two
	equal, not that rectanales		Some properties of shapes are	different ways: congruent and
	have a pair of long sides and a		dependent	similar. Congruent shapes are
	nair of short sides		upon other properties. For	alike in all ways: they could
			example, a	occupy exactly the same space
			rectanale has opposite sides	Similar shapes share identical
			equal	aeometrical properties but can
				geometrical properties but can

			because it has four right angles. A rectangle is defined as a quadrilateral with four right angles. It does not have to be defined as a quadrilateral with four right angles and two pairs of equal sides.	differ in size. All equilateral triangles are similar, but only identically sized ones are congruent. Not all isosceles triangles are similar. Angle properties are a mix of necessary conditions and conventions. It is a necessary condition that angles on a straight line combine to a complete half turn. That we measure the half turn as 180 degrees is conventional.
Geometry: 2d shapes	□ draw 2-D shapes Summer 3	 compare and classify geometric shapes, including quadrilaterals and triangles, based on their properties and sizes identify lines of symmetry in 2-D shapes presented in different orientations Summer 5 	 distinguish between regular and irregular polygons based on reasoning about equal sides and angles. use the properties of rectangles to deduce related facts and find missing lengths and angles Summer 2 	 draw 2-D shapes using given dimensions and angles compare and classify geometric shapes based on their properties and sizes and find unknown angles in any triangles, quadrilaterals, and regular polygons illustrate and name parts of circles, including radius, diameter and circumference and know that the diameter is twice the radius Summer 1
Geometry: 3d shapes	 make 3-D shapes using modelling materials; recognise 3-D shapes in different orientations and describe them 		 identify 3-D shapes, including cubes and other cuboids, from 2-D representations Summer 2 	 recognise, describe and build simple 3-D shapes, including making nets Summer 1

	Summer 3		
NRich	Board Block Challenge	Shapes on the Playground	Making Cuboids
	https://nrich.maths.org/2872	https://nrich.maths.org/1054 Sorting	https://nrich.maths.org/90
	Stick Images	Logic Blocks	
	https://nrich.maths.org/6980	https://nrich.maths.org/7192 Cut	
	Shapes on the Playground	It Out	
	https://nrich.maths.org/1054	https://nrich.maths.org/720	
	Sorting Logic Blocks	Nine Pin Triangles	
	https://nrich.maths.org/7192	https://nrich.maths.org/2852	

Progression in reasoning – Geometry Properties of shape NCETM	 What's the same, what's different? What is the same and different about these three 2D shapes? Visualising I am thinking of a 3 dimensional shape which has faces that are triangles and squares. What could my shape be? Other possibilities One face of a 3-D shape looks like this. What could it be? Are there any other possibilities? Always, sometimes, never Is it always, sometimes or never that all sides of a hexagon are the same length? Other possibilities 	What's the same, what's different about the diagonals of these 2-D shapes? Visualising Imagine a square cut along the diagonal to make two triangles. Describe the triangles. Join the triangles on different sides to make new shapes. Describe them. (you couldsketch them). Are any of the shapes symmetrical? Convince me.	What's the same, what's different about the net of a cube and the net of a cuboid? Visualising I look at a large cube which is made up of smaller cubes. If the larger cube is made up of between 50 and 200 smaller cubes what might it look like?	What's the same, what's different about the nets of a triangular prism and a square based pyramid? Visualising Jess has 24 cubes which she builds to make a cuboid. Write the dimensions of cuboids that she could make. List all the possibilities.
	Can you find shapes that can go with the set with this label? "Have straight sides that are different lengths." Convince me Which capital letters have perpendicular and / or parallel lines? Convince me			

Geometry: Angles and Lines	 recognise angles as a property of shape or a description of a turn identify right angles, recognise that two right angles make a half-turn, three make three quarters of a turn and four a complete turn; identify whether angles are greater than or less than a right angle identify horizontal and vertical lines and pairs of perpendicular and parallel lines. Summer 3 	 identify acute and obtuse angles and compare and order angles up to two right angles by size identify lines of symmetry in 2-D shapes presented in different orientations complete a simple symmetric figure with respect to a specific line of symmetry. Summer 5 	 know angles are measured in degrees: estimate and compare acute, obtuse and reflex angles draw given angles, and measure them in degrees identify: angles at a point and one whole turn (total 360) angles at a point on a straight line and ¹/₂ a turn (total 180) other multiples of 90 Summer 2 	 find unknown angles in any triangles, quadrilaterals, and regular polygons recognise angles where they meet at a point, are on a straight line, or are vertically opposite, and find missing angles. Summer 1
NRich	Square It https://nrich.maths.org/2526		Olympic Turns https://nrich.maths.org/8191 How Safe Are You? https://nrich.maths.org/5647 Six Places to Visit https://nrich.maths.org/5655 The Numbers Give the Design https://nrich.maths.org/6919	Baravelle https://nrich.maths.org/6522 Shape Draw https://nrich.maths.org/10368 Quadrilaterals https://nrich.maths.org/962 Round A Hexagon https://nrich.maths.org/8095

Progression in Reasoning NCETM Angles	Always, sometimes, never Is it always, sometimes or never that all sides of a hexagon are the same length? Other possibilities Can you find shapes that can	Always, sometimes, never Is it always, sometimes or never true that the two diagonals of a rectangle meet at right angles? Other possibilities Can you show or draw a polygon that fits both of those criteria?	Always, sometimes, never Is it always, sometimes or never true that the number of lines of reflective symmetry in a regular polygon is equal to the number of its sides?	Always, sometimes, never Is it always, sometimes or never true that, in a polyhedron, the number of vertices plus the number of faces equals the number of edges?
	go with the set with this label? "Have straight sides that are different lengths." Convince me Which capital letters have perpendicular and /or parallel lines? Convince me.	fits both of these criteria? What do you look for? "Has exactly two equal sides." "Has exactly two parallel sides."	Other possibilities A rectangular field has a perimeter between 14 and 20 metres . What could its dimensions be? Other possibilities Here is one angle of an isosceles triangle. You will need to measure the angle accurately. What could the other angles of the triangle be? Are there any other possibilities? Convince me What is the angle between the hands of a clock at four o clock? At what other times is the	Other possibilities Not to scale The angle at the top of this isosceles triangle is 110 degrees. What are the other angles in the triangle? Convince me One angle at the point where the diagonals of a rectangle meet is 36 degrees. What could the other angles be? Convince me
			angle between the hands the same? Convince me	

Geometry: Position and Direction	 describe positions on a 2-D grid as coordinates in the first quadrant describe movements between positions as translations of a given unit to the left/right and up/down plot specified points and draw sides to complete a given polygon. Summer 6 	 identify, describe and represent the position of a shape following a reflection or translation, using the appropriate language, and know that the shape has not changed. Summer 3 	 describe positions on the full coordinate grid (all four quadrants) draw and translate simple shapes on the coordinate plane, and reflect them in the axes. Summer
NRich	A Cartesian Puzzle https://nrich.maths.org/1110 Eight Hidden Squares https://nrich.maths.org/6280 Coordinate Challenge https://nrich.maths.org/5038 Counters in the Middle https://nrich.maths.org/6978 Stringy Quades https://nrich.maths.org/2913 Let Us Reflect https://nrich.maths.org/1873 School Fair Necklaces https://nrich.maths.org/9692	Transformations On A Peg Board <u>https://nrich.maths.org/1813</u> More Transformations On A Peg Board <u>https://nrich.maths.org/4901</u>	Ten Hidden Squares https://nrich.maths.org/2654 Coordinate Tan https://nrich.maths.org/1109
Progression in Reasoning NCETM Geometry: Position and Direction	Other possibilities Can you draw a non-right angled triangle with a line of symmetry? Are there other possibilities? Convince me Ayub says that he can draw a right angled triangle which has another angle which is obtuse. Is he right? Explain why.		

Year	3	4	5	6
Statistics NCETM Big Ideas	Data needs to be collected with a question or purpose in mind. Tally charts are used to collect data over time(cars passing the school, birds on the bird table). They can also be used to keep track of counting.	In mathematics the focus is on numerical data. These can be discrete or continuous. Discrete data are counted and have fixed values, for example the number of children who chose red as their favourite colour (this has to be a whole number and cannot be anything in between). Continuous data are measured, for example at what time did each child finish the race? (Theoretically this could be any time: 67·3 seconds, 67·33 seconds or 67·333 seconds, depending on the degree of accuracy that is applied.) Continuous data are best represented with a line graph where every point on the line has a potential value.	Different representations highlight different aspects of data. It is important to be able to answer questions about data using inference and deduction, not just direct retrieval.	Pie charts visually display relative proportions, for example, that the proportion of pupils at School A liking reading is greater than the proportion at School B.
NCETM Spine				MD Y6 2.26
Statistics: Present and Interpret	 interpret and present data using bar charts, pictograms and tables Spring 3 	 interpret and present discrete and continuous data using appropriate graphical methods, including bar charts and time graphs. Summer 4 	 complete, read and interpret information in tables, including timetables. 	 interpret and construct pie charts and line graphs and use these to solve problems Autumn Summer

Statistics: Solving Problems	solve one-step and twostep questions [for example, 'How many	solve comparison, sum and difference problems using information presented in bar	solve comparison, sum and difference problems using information presented in a	calculate and interpret the mean as an average. Autumn
	more?' and 'How many	charts, pictograms, tables	line graph	
	fewer?'] using information	and other graphs. Summer 4		
	presented in scaled bar			

	charts and pictograms and tables. Spring 3		
NRich	Class 5's names https://nrich.maths.org/7522 Going For Gold https://nrich.maths.org/7800 The Domesday Project https://nrich.maths.org/7554 The Car That Passes https://nrich.maths.org/7249 Now and Then https://nrich.maths.org/8171 Real Statistics https://nrich.maths.org/4938 Our Sports https://nrich.maths.org/7779 How Big Are Classes 5, 6 and 7? https://nrich.maths.org/2399		Match the Matches https://nrich.maths.org/4937

NCETM reaconing	True or false? (Looking at a bar	True or false? (Looking at a graph	True or false? (Looking at a	True or false? (Looking at a nio
	chart)	showing how the class supflewer	train time table	chart)
		is growing now the class sufflower	"If I want to get to Eveter by 4	(Indit)
	Twice as many people like	is growing over time)	If I want to get to Exeter by 4	More than twice the number of
	strawberry than lime". Is	"Our sunflower grew the fastest	o clock this afternoon, I will	people say their favourite type of
	this true or false?	in July". Is this true or false?	need to get to Taunton station	T.V. programme is soaps than
	Convince me.	Convince me.	before midday".	any other"
			Is this true or false?	Is this true or false?
	Make up your own 'true/false'	Make up your own 'true/false'	Convince me.	Convince me.
	statement about the bar chart.	statement about the graph.		Make up your own 'true/false'
			Make up your own 'true/false'	statement about the pie chart.
	What's the same, what's	What's the same, what's	statement about a journey	
	different?	different?	using the timetable.	What's the same, what's
		Punils identify similarities and	C C	different?
		differences between different		
		amerences between amerence		
	Pupils identify similarities and	representations and explain them	What's the same, what's	Pupils identify similarities and
	differences between different	to each other	different?	differences between different
	representations and explain		Pupils identify similarities and	representations and explain them
	them to each other.	Create a guestion Dunils ask	differences hot we are different	
		Create a question Pupils ask	differences between different	to each other
		(and answer) questions about	representations and explain	to each other
	Create a question Pupils ask	(and answer) questions about different statistical	representations and explain them to each other.	to each other Create a question
	Create a question Pupils ask (and answer) guestions	(and answer) questions about different statistical representations using key	representations and explain them to each other.	to each other Create a question Make up a set of five numbers
	Create a question Pupils ask (and answer) questions about different statistical	(and answer) question Pupils ask different statistical representations using key vocabulary relevant to the	representations and explain them to each other. Create a question Pupils	to each other Create a question Make up a set of five numbers with a mean of 2.7
	Create a question Pupils ask (and answer) questions about different statistical representations using key	(and answer) question Pupils ask (and answer) questions about different statistical representations using key vocabulary relevant to the objectives.	create a question Pupils ask (and answer)	to each other Create a question Make up a set of five numbers with a mean of 2.7
	Create a question Pupils ask (and answer) questions about different statistical representations using key vocabulary relevant to the	(and answer) question Pupils ask (and answer) questions about different statistical representations using key vocabulary relevant to the objectives.	create a question Pupils ask (and answer) questions about different	to each other Create a question Make up a set of five numbers with a mean of 2.7 Missing information
	Create a question Pupils ask (and answer) questions about different statistical representations using key vocabulary relevant to the objectives	(and answer) question Pupils ask (and answer) questions about different statistical representations using key vocabulary relevant to the objectives.	create a question Pupils ask (and answer) questions about different statistical representations	to each other Create a question Make up a set of five numbers with a mean of 2.7 Missing information The mean score in six test papers
	Create a question Pupils ask (and answer) questions about different statistical representations using key vocabulary relevant to the objectives.	(and answer) question Pupils ask (and answer) questions about different statistical representations using key vocabulary relevant to the objectives.	representations and explain them to each other. Create a question Pupils ask (and answer) questions about different statistical representations using key vocabulary	to each other Create a question Make up a set of five numbers with a mean of 2.7 Missing information The mean score in six test papers in a spelling test of 20 questions
	Create a question Pupils ask (and answer) questions about different statistical representations using key vocabulary relevant to the objectives.	(and answer) question Pupils ask (and answer) questions about different statistical representations using key vocabulary relevant to the objectives.	representations and explain them to each other. Create a question Pupils ask (and answer) questions about different statistical representations using key vocabulary	to each other Create a question Make up a set of five numbers with a mean of 2.7 Missing information The mean score in six test papers in a spelling test of 20 questions
	Create a question Pupils ask (and answer) questions about different statistical representations using key vocabulary relevant to the objectives.	(and answer) question Pupils ask (and answer) questions about different statistical representations using key vocabulary relevant to the objectives.	representations and explain them to each other. Create a question Pupils ask (and answer) questions about different statistical representations using key vocabulary relevant to the objectives	to each other Create a question Make up a set of five numbers with a mean of 2.7 Missing information The mean score in six test papers in a spelling test of 20 questions is 15. Five of the scores were 13
	Create a question Pupils ask (and answer) questions about different statistical representations using key vocabulary relevant to the objectives.	(and answer) question Pupils ask (and answer) questions about different statistical representations using key vocabulary relevant to the objectives.	representations and explain them to each other. Create a question Pupils ask (and answer) questions about different statistical representations using key vocabulary relevant to the objectives	to each other Create a question Make up a set of five numbers with a mean of 2.7 Missing information The mean score in six test papers in a spelling test of 20 questions is 15. Five of the scores were 13 12 17 18 16

NRich problem solving		Venn diagrams <u>https://nrich.maths.org/6290</u> Plants <u>https://nrich.maths.org/36</u>		Birdwatch https://nrich.maths.org/7553
Statistics NCETM Big Ideas	Y3 Data needs to be collected with a question or purpose in mind. Tally charts are used to collect data over time(cars passing the school, birds on the bird table). They can also be used to keep track of counting.	Y4 In mathematics the focus is on numerical data. These can be discrete or continuous. Discrete data are counted and have fixed values, for example the number of children who chose red as their favourite colour (this has to be a whole number and cannot be anything in between). Continuous data are measured, for example at what time did each child finish the race? (Theoretically this could be any time: 67-3 seconds, 67-33 seconds or 67-333 seconds, depending on the degree of accuracy that is applied.) Continuous data are best represented with a line graph where every point on the line has a potential value.	Y5 Different representations highlight different aspects of data. It is important to be able to answer questions about data using inference and deduction, not just direct retrieval.	Y6 Pie charts visually display relative proportions, for example, that the proportion of pupils at School A liking reading is greater than the proportion at School B.
NCETM Spine				MD Y6 2.26