

THIRD SPACE LEARNING

Specialist 1-to-1 maths interventions and curriculum resources

Rapid Reasoning

Year 5 Week 2

As this is still towards the start of the introduction of Year 5 Rapid Reasoning, children should be continuing to focus on increasing their reasoning confidence each day.

The Year 5 objectives introduced this week continue to focus on place value. As with all weeks of Rapid Reasoning, there continues to be content covered from across the maths curriculum.

Year 5 objectives introduced in a reasoning context for the first time this week include:

- rounding any number to up 1,000,000 to any degree of accuracy
- counting forward and backwards (using their place value skills) in steps of multiples of 10 , up to and including 1,000,000.

The following Year 5 objectives continue to be a focus from week 1:

- reading, writing, ordering and comparing numbers up to 1,000,000
- recognising the place value of each digit in a number up to $1,000,000$.

Objectives from Fluent in Five that are also tested in a reasoning context this week include:

- finding fractions of number
- recalling multiplication and division facts up to 12×12.

Please note that some questions are worth two marks, and by their very nature, answers to these questions are never clear-cut. For a full breakdown of how marks would be awarded for these questions, please refer to the mark schemes provided.

Q1 Anika has 20 grapes.
She gives $1 / 5$ of the grapes to her sister.
Draw a ring around the number of grapes she has left.

Q2 This table shows how numbers change when they are rounded in different ways.

Complete the missing numbers.

Number	Rounded to the nearest 1,000	Rounded to the nearest 100,000
175,461		200,000
119,397	119,000	
655,603		

Q3 Chelsea thinks of a number.
She subtracts 546 from it.
The answer is 258.
What was the number Chelsea first thought of?

Q1 Anika has 20 grapes.
She gives $1 / 5$ of the grapes to her sister.
Draw a ring around the number of grapes she has left.

Q2 This table shows how numbers change when they are rounded in different ways.

Complete the missing numbers.

Number	Rounded to the nearest 1,000	Rounded to the nearest 100,000
175,461	175,000	200,000
119,397	119,000	100,000
655,603	656,000	700,000

Q3 Chelsea thinks of a number.
She subtracts 546 from it.
The answer is 258.
What was the number Chelsea first thought of?

	Requirement			Mark	Additional guidance
Q1	Ring should be drawn around any sixteen grapes.			1	
Q2	Number	Rounded to the nearest 1,000	Rounded to the nearest 100,000	2	
	175,461	175,000	200,000		
	119,397	119,000	100,000		
	655,603	656,000	700,000		
	ONE mark for two or three correct answers. TWO marks for all four correct answers.				
Q3	804			1	

What are examiners looking for?

Q3 Chelsea thinks of a number.
She subtracts 546 from it.
The answer is 258.
What was the number Chelsea first thought of?
\square

1 mark
Why are we asking this question?
This question has been written to test children's knowledge of the addition and subtraction of three-digit numbers. In particular, it has been designed to assess whether children can apply this knowledge inversely to solve missing number problems.

What common errors do we expect to see?

Some children may not comprehend what the question is asking, may see the word 'subtract' and may think that they are being asked to subtract 258 from 546. Any answer less than 546 may suggest that they have made this error, however an answer of 288 will mean that the subtraction was carried out successfully!

Some children may recognise that they need to add 546 and 258 to find the starting number, but may not regroup when adding the ones digits, (or forget to include the ten that they have regrouped). Children who make this mistake
will give an answer of 794.

How to encourage children to solve this question

In order to visualise what the problem is asking, encourage children to begin by sketching a bar model. This should show an unknown starting number followed by an equivalent bar split into two: the number being subtracted and the answer that remains. Encourage children to then consider how they might find the unknown value. It should be clear from the bar model that they need to add 546 and 258.

$?$	
546	258

If unsure which strategy to use to add the two numbers, encourage children to apply the formal written method of addition, which ensures that they consider the ones, tens and hundreds digits separately. The ones digits will result in an answer greater than 9 (which will then mean that the tens total will also result in an answer greater than 9). Children will need to apply their knowledge of regrouping to do this accurately and also ensure that they do not forget any tens or hundreds that they have regrouped.

When children have arrived at an answer, encourage them to plug this back into the original scenario in order to check that it is correct.

Q1 There are 14 books on a bookshelf.

Leah has read two of the books already.
What fraction of the books has Leah read?

1 mark

Which of these calculations has a missing number that is not a multiple of 6 ?

Q3 Ria says, "If you want to round a number to the nearest 100,000, you just need to know the digit in the 100,000 place."

Is Ria correct? Circle yes or no and explain your answer.

1 mark

Q1 There are 14 books on a bookshelf.

Leah has read two of the books already.
What fraction of the books has Leah read?

1

7

Q2

Which of these calculations has a missing number that is not a multiple of 6 ?

Q3 Ria says, "If you want to round a number to the nearest 100,000, you just need to know the digit in the 100,000 place."

Is Ria correct? Circle yes or no and explain your answer.

1 mark

	Requirement	Mark	Additional guidance
Q1	$\frac{1}{7}\left(\operatorname{or} \frac{2}{14}\right)$	1	Accept any other equivalent fraction.
Q2	C	1	
Q3	No. Ria is not correct because the ten thousands digit is also needed to know whether to round the hundred thousands digit up or down.	1	

Q1 Iona starts with the number 735,471.
She counts forwards in jumps of 1,000.
a How many jumps will Iona make before the digit in the ten-thousands place changes?

1 mark
What is lona's new number?
\square

Q2 One of these amounts is less than all the others. Which is it?

A $\frac{1}{2}$ of a packet of 30 sweets
B $\frac{1}{6}$ of a packet of 60 sweets
C $\frac{2}{5}$ of a packet of 20 sweets
D $\frac{2}{3}$ of a packet of 15 sweets

Q3 The answer to an addition question is 728. Both numbers being added have three digits.

All of the digits in the two numbers are different.

What could the question be?

Q1 Iona starts with the number 735,471. She counts forwards in jumps of 1,000.
a How many jumps will Iona make before the digit in the ten-thousands place changes?

5 jumps
b What is lona's new number?

$$
740,471
$$

Q2 One of these amounts is less than all the others. Which is it?

A $\frac{1}{2}$ of a packet of 30 sweets
B $\frac{1}{6}$ of a packet of 60 sweets
C $\frac{2}{5}$ of a packet of 20 sweets
D $\frac{2}{3}$ of a packet of 15 sweets

Q3 The answer to an addition question is 728. Both numbers being added have three digits.

All of the digits in the two numbers are different.

What could the question be?

$$
105+623
$$

	Requirement	Mark	Additional guidance	
Q1a	5 jumps	1		
Q1b	740,471	1		
Q2	C	1	The amounts are: A $\frac{1}{2}$ of a packet of 30 sweets B $\quad \frac{1}{6}$ of a packet of 60 sweets C $\frac{2}{5}$ of a packet of 20 sweets D $\frac{2}{3}$ of a packet of 15 sweets	$\begin{aligned} & =15 \\ & =10 \\ & =8 \\ & =10 \end{aligned}$
Q3	Accept any HTO + HTO calculation with a total of 728, where both numbers contain different digits, for example: $105+623$	1		

Q1 Complete this multiplication table.

x	6	
7	42	56
	30	
	72	

Q2 A number becomes 790,000 when rounded to the nearest 10,000.
a What is the largest number that it could be?
\square
b What is the smallest number that it could be?

1 mark

Q3 Match up each triangle with its correct name and property.

$$
\begin{aligned}
& \text { equilateral } \\
& \text { triangle } \\
& \hline
\end{aligned}
$$

Not to scale

all sides the
same length no sides the
same length
two sides the same length

Q1 Complete this multiplication table.

x	6	8
7	42	56
5	30	40
12	72	96

2 marks
Q2 A number becomes 790,000 when rounded to the nearest 10,000.
a What is the largest number that it could be?
794,999

1 mark
b What is the smallest number that it could be?

785,000
\square
\square

Q3 Match up each triangle with its correct name and property.

a Declan spins the spinner twice and multiplies his two digits together.
He gets the answer 0 .
Which digit must one of his digits have been?

b Katie spins the spinner twice and multiplies her two digits together.
She doesn't land on a 0 either time.
Her answer is the same as one of her digits.
Which digit must one of the digits have been?
\square

Q2 Circle the best estimate for each measurement.

Measurement	Estimate		
\square	500 g	100 g	$1,000 \mathrm{~g}$
the height of a door	3 metres	2 metres	1 metre
the mass of an apple	50		
the capacity of a can of lemonade	30 ml	$3,000 \mathrm{ml}$	300 ml

Complete these sentences with the words always, sometimes or never.

Multiples of 7 are \qquad even.

Multiples of 12 are \qquad odd.

Multiples of 12 are \qquad multiples of 3.

Q1

a Declan spins the spinner twice and multiplies his two digits together.
He gets the answer 0 .
Which digit must one of his digits have been?
0
b Katie spins the spinner twice and multiplies her two digits together.
She doesn't land on a 0 either time.
Her answer is the same as one of her digits.
Which digit must one of the digits have been?
\square
1

Q2 Circle the best estimate for each measurement.

1 mark
Q3 Complete these sentences with the words always, sometimes or never.

Multiples of 7 are sometimes even.

Multiples of 12 are never odd.
Multiples of 12 are always multiples of 3.

	Requirement	Mark	Additional guidance
Q1a	One of his digits is 0.	1	
Q1b	One of her digits is 1.	1	
Q2	2 metres	1	
Q3	sometimes, never, always Award TwO marks for all three correctly completed. Award ONE mark for two correctly completed.	2	

THIRD SPACE
 LEARNING

Specialist 1-to-1 maths interventions
and curriculum resources

Rapid Reasoning

Do you have a group of pupils who need a boost in maths this term?

Each pupil could receive a personalised lesson every week from our specialist 1-to-1 maths tutors.

- Raise attainment
- Plug any gaps or misconceptions
- Boost confidence

Speak to us:

thirdspacelearning.com02037710095
hello@thirdspacelearning.com

THIRD SPACE LEARNING

