GCSE Science

GCSE BIOLOGY, CHEMISTRY & PHYSICS GCSE COMBINED SCIENCE

MRS R HOY SCIENCE CURRICULUM LEADER

AQA Triple Science

GCSE Biology- 2x 100 mark exam papers (105 mins)

GCSE Chemistry- 2x 100 mark exam papers (105 mins)

GCSE Physics- 2x 100 mark exam papers (105 mins)

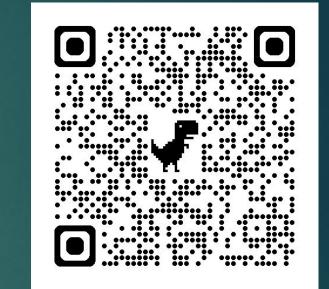
Each subject is awarded a separate grade Each subject can be sat at higher or foundation level

AQA (Triology) Combined Science

Biology- 2x 70 mark exam papers (75 mins)

Chemistry- 2x 70 mark exam papers (75 mins)

Physics- 2x 1 70 mark exam papers (75 mins)


The subject is awarded two grade which are an average of all papers, e.g. 5,5 or 4,3 All 6 paper to be sat at higher or foundation level

Question types

- Multiple choice
- Structured
- Closed short answer
- Open response (maximum 6 marks)

Biology

- 1. Cell biology
- 2. Organisation
- 3. Infection and response
- 4. Bioenergetics
- 5. Homeostasis and response
- 6. Inheritance, variation and evolution
- 7. Ecology
- 8. Key ideas

https://www.aqa.org.uk/subjects/biology/gcse/biology-8461/specifica tion/specification-at-a-glance

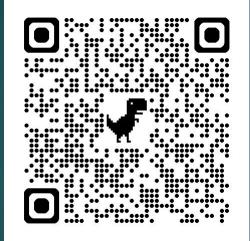
Chemistry

- 1. Atomic structure and the periodic table
- 2. Bonding, structure, and the properties of matter
- 3. Quantitative chemistry
- 4. Chemical changes
- 5. Energy changes
- 6. The rate and extent of chemical change
- 7. Organic chemistry
- 8. Chemical analysis
- 9. Chemistry of the atmosphere
- 10. Using resources
- 11. Key ideas

https://www.aqa.org.uk/subjects/chemistry/gcse/ch emistry-8462/specification/specification-at-a-glance

Physics

- 1. Energy
- 2. Electricity
- 3. Particle model of matter
- 4. Atomic structure
- 5. Forces
- 6. Waves
- 7. Magnetism and electromagnetism
- 8. Space physics (physics only)



https://www.aqa.org.uk/subjects/physics/gcse/physics/scs-8463/specification/specification-at-a-glance

Combined Science

- 1. Cell biology
- 2. Organisation
- 3. Infection and response
- 4. Bioenergetics
- 5. Homeostasis and response
- 6. Inheritance, variation and evolution
- 7. Ecology
- 8. Atomic structure and the periodic table
- 9. Bonding, structure, and the properties of matter
- 10. Quantitative chemistry
- 11. Chemical changes
- 12. Energy changes

- 13. The rate and extent of chemical change
- 14. Organic chemistry
- 15. Chemical analysis
- 16. Chemistry of the atmosphere
- 17. Using resources
- 18. Energy
- 19. Electricity
- 20. Particle model of matter
- 21. Atomic structure
- 22. Forces
- 23. Waves
- 24. Magnetism and electromagnetism

https://www.aqa.org.uk/subjects/science/gcse/science-8464/specification/specification-at-a-glance

Periodic tables are provided in chemistry exams but no equation sheets

AQA

The Periodic Table of Elements

1	2			Key			1 H hydrogen 1					3	4	5	6	7	4 He heliun 2
7 Li Ithium 3	9 Be beryllium 4		ato	name (proton)		r .						11 B boron 5	12 C carbon 6	14 N nitrogen 7	16 O axygen 8	19 F fluorine 9	20 Ne neon 10
23 Na sodium 11	24 Mg magnesium 12					-						27 Al atuminium 13	28 Si silicon 14	31 P phosphorus 15	32 S suffur 16	35.5 CI chlorine 17	40 Ar argor 18
39 K potassium 19	40 Ca calcium 20	45 Sc scandium 21	48 Ti ttanium 22	51 V vanadium 23	52 Cr chromium 24	55 Mn manganese 25	56 Fe iron 26	59 Co cobalt 27	59 Ni nickel 28	63.5 Cu copper 29	65 Zn zinc 30	70 Ga gallum 31	73 Ge germanium 32	75 As arsenic 33	79 Se selenium 34	80 Br bromine 35	84 Krypte 36
85 Rb rubidium 37	88 Sr strontium 38	89 Y yttium 39	91 Zr zirconium 40	93 Nb niobium 41	96 Mo molybdenum 42	[98] Tc technetium 43	101 Ru ruthenium 44	103 Rh modium 45	106 Pd palladium 46	108 Ag silver 47	112 Cd cadmium 48	115 In indium 49	119 Sn 50	122 Sb antimony 51	128 Te tellurium 52	127 I I 53	13 Xe 54
133 Cs caesium 55	137 Ba barium 56	139 La* lanthanum 57	178 Hf hathium 72	181 Ta tantalum 73	184 W tungsten 74	186 Re menium 75	190 Os osmium 76	192 Ir Iridium 77	195 Pt platinum 78	197 Au gold 79	201 Hg mercury 80	204 TI thallum 81	207 Pb lead 82	209 Bi bismuth 83	[209] Po polonium 84	[210] At astatine 85	[22 Ri rado 86
[223] Fr francium 87	[226] Ra radum 88	[227] Ac* actinium 89	[261] Rf nutherlordium 104	[262] Db dubnium 105	[266] Sg seaborgium 106	[264] Bh bohrium 107	[277] Hs hassium 108	[268] Mt meitherium 109	[271] Ds damstadtum 110	[272] Rg roentgenium 111	[285] Cn copernicium 112	[286] Nh nhonium 113	[289] FI ^{herovium} 114	[289] Mc moscovium 115	[293] Lv Ivermorium 116	[294] Ts tennessine 117	[29 09 11

Relative atomic masses for Cu and CI have not been rounded to the nearest whole number.

Full Physics equation sheets have been provided for the last few exam series, it is likely this will continue in summer 2025.

Please complete this online survey

Proposed changes to the assessment of mathematics, physics and combined science GCSEs in 2025, 2026 and 2027 - Page 1 of 8 - Ofqual Citizen Space - Citizen Space

How to support your child

📀 Knowledge 🦆 😔 🔊

B2 Cell transport

65

20

Diffusion	Osmosis	Active transport		
The spreading out of particles, resulting in a net movement from an area of higher concentration to an area of lower concentration.	The diffusion of water from a dilute solution to a concentrated solution through a partially permeable membrane.	The movement of particles from a more dilute solution to a more concentrated solution using energy from respiration. Particles move against the concentration gradient – from an area of <i>low</i> concentration to an area of <i>high</i> concentration.		
Particles move down the concentration gradient – from an area of <i>high</i> concentration to an area of <i>low</i> concentration.	Water moves from an area of <i>lower</i> solute concentration to an area of <i>higher</i> solute concentration.			
no – passive process	no – passive process	yes – using energy released during respiration		
 Humans Nutrients in the small intestine diffuse into the blood in the capillaries through the villi. Oxygen diffuses from the air in the alveoli into the blood in the capillaries. Carbon dioxide diffuses from the blood in the capillaries into the air in the alveoli. Urea diffuses from cells into the blood for excretion by the 	Plants Water moves by osmosis from a dilute solution in the soil to a concentrated solution in the root hair cell.	Humans Active transport allows sugar molecules to be absorbed from the small intestine when the sugar concentration is higher in the blood than in the small intestine. Plants Active transport is used to absorb mineral ions into the root hair cells from more dilute solutions in the soil.		
 kidneys. Fish Oxygen from water passing over the gills diffuses into the blood in the gill filaments. Carbon dioxide diffuses from the blood in the gill filaments into the water. Plants Carbon dioxide used for photosynthesis diffuses into leaves through the stomata. Oxygen produced during photosynthesis diffuses out of the leaves through the 	high concentration wate of the solution wate dilute mole solution to the solution of the solut	ter molecules move down the low concentration r molecules move or a dilute to a centrated solution solute ter partially permeable membrane against the entration gradient + energy		

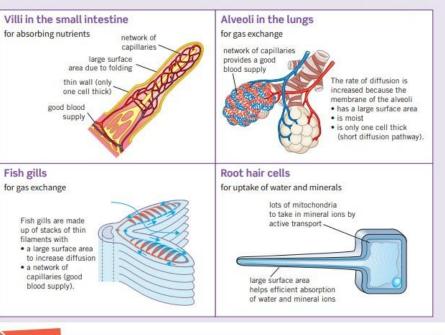
Factors that affect the rate of diffusion

1	Difference in concentration	
The s	teeper the concentration	
gradi	ent, the faster the rate of	
diffus	ion.	

The higher the temperature, the faster the rate of diffusion.

(2) Temperature

③ Surface area of the membrane


The larger the membrane surface area, the faster the rate of diffusion.

Adaptations for exchanging substances

Single-celled organisms have a large surface area-to-volume ratio. This allows enough molecules to be transported across their cell membranes to meet their needs.

Multicellular organisms have a small surface area-to-volume ratio. This means they need specialised organ systems and cells to allow enough molecules to be transported into and out of their cells.

Exchange surfaces work most efficiently when they have a large surface area, a thin membrane, and a good blood supply.

Key terms Make sure you can write a definition for these key terms.

active transport alveoli capillaries concentration diffusion dilute gill filament gradient osmosis partially permeable membrane passive process root hair cell stomata urea villi

B2

Learn the answers to the questions below, then cover the answers column with a piece of paper and write as many as you can. Check and repeat.

	B2 questions		Answers
0	What is diffusion?	Putpa con	movement of particles from an area of high centration to an area of low concentration along oncentration gradient – this is a passive process es not require energy from respiration)
0	Name three factors that affect the rate of diffusion.	con	centration gradient, temperature, membrane íace area
0	How are villi adapted for exchanging substances?	• o go	ong and thin – increases surface area ne-cell-thick membrane – short diffusion distance ood blood supply – maintains a steep oncentration gradient
0	How are the lungs adapted for efficient gas exchange?	rhere Putg	lveoli – large surface area noist membranes – increases rate of diffusion ne-cell-thick membranes – short diffusion istance ood blood supply – maintains a steep oncentration gradient
0	How are fish gills adapted for efficient gas exchange?	• tł	arge surface area for gases to diffuse across hin layer of cells – short diffusion distance ood blood supply – maintains a steep oncentration gradient
6	What is osmosis?	con	usion of water from a dilute solution to a centrated solution through a partially permeable mbrane
0	Give one example of osmosis in a plant.	Put paper here	er moves from the soil into the root hair cell
8	What is active transport?	mo\ ج grac	vement of particles against a concentration dient – from a dilute solution to a more centrated solution – using energy from respiration
9	Why is active transport needed in plant roots?	agai	centration of mineral ions in the soil is lower than de the root hair cells – the mineral ions must move inst the concentration gradient to enter the root cells
9	What is the purpose of active transport in the small intestine?	a con	ars can be absorbed into the blood when the centration of sugar in the small intestine is lower n the concentration of sugar in the blood
-			

Now go back and use the questions below to check your knowledge from previous chapters.

2

3

4

6

6

7

8

microscopes?

Previous questions Answers Give two adaptations of a root hair cell. long projection, lots of mitochondria What is the function of a red blood cell? carries oxygen around the body What type of cell are bacteria? prokaryotic What is the function of ribosomes? enable production of proteins (protein synthesis) Give two adaptations of a nerve cell. branched endings, myelin sheath insulates the axon What is the function of a sperm cell? fertilises an ovum (egg) Give two adaptations of a sperm cell. tail, contains lots of mitochondria electron microscopes use beams of electrons instead How are electron microscopes different to light of light, cannot be used to view living samples, are

much more expensive, and have a much higher

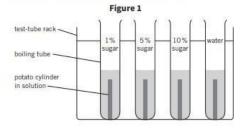
magnification and resolution

Required practical skills

Practise answering questions on the required practicals using the example below. You need to be able to apply your skills and knowledge to other practicals too.

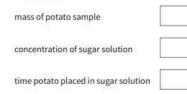
Osmosis in cells	Worked example	Practice
Different concentrations of sugar and salt solutions both affect the movement of water by	A sample of carrot was placed into a 0.75 mol/dm ³ sugar solution for 30 minutes. The mass of the carrot was recorded before and after this.	 Give one reason why it is important to dry the samples of carrot cores before they are weighed.
osmosis, causing cells to lose or gain water, and changing the mass of a tissue sample. For this practical you need to be able to accurately measure length, mass, and volume to measure	Initial mass = 6.02 g Final mass = 3.91 g 1 Determine the percentage change in mass of the sample. Change in mass = $3.91 - 6.02 = -2.11$ g Percentage change in mass = $\left(\frac{-2.11}{6.02}\right) \times 100 = -35\%$	2 When repeating this experiment using different concentrations of sugar solution, a student found that one sample did not change mass. Suggest what this tells you about the concentration of the solution. Assume no error in the experiment.
osmosis in cells. You will need to be comfortable applying this knowledge to a range of samples, not just to the typical example of potato tissue, as osmosis happens in all cells.	 (a minus sign is used because the sample has lost mass) 2 Explain why this experiment should be repeated, and give one other variable that should be controlled. The experiment should be repeated to give a more reliable result, and to allow calculation of a mean loss in mass for the sample. The dimensions of the carrot samples need to be controlled between repeats. 	3 Two students set up this experiment. Student A said that each sample of carrot must have the same starting mass. Student B argued that each sample must have the same length and width. Explain which student is correct.

B2



Exam-style questions

A group of students investigated how the mass of a potato sample 01 changed over time, when placed into sugar solutions of varying concentrations.



They set up their equipment as shown in Figure 1.

Ţ.

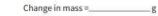
01.1 Identify the independent variable in their investigation. [1 mark] Tick one box.

01.2 Use Figure 1 to identify two variables that the students controlled. [2 marks] Tick two boxes.

mass of potato sample at start

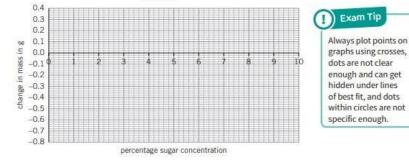
volume of sugar solution change in mass of potato sample

light intensity


Table 1							
Solution	0% sugar solution	1% sugar solution	5% sugar solution	10% sugar solution			
Starting mass in g	3.1	3.3	3.1	3.4			
Final mass in g	3.4	3.5	2.9	2.7			
Change in mass in g	+0.3	+0.2	-0.2				

 Exam Tip If you're not sure how to

calculate the change in mass, use the 1% or 5% as practice calculations where you've already been given the answer.


Always plot points on

Complete the results table by calculating the change in mass for the 10% sugar solution. [1 mark]

01.4 Plot the students' results of sugar concentration against change in mass on Figure 2. Draw a line of best fit. [2 marks]

Figure 2

01.5 Use the graph to determine the concentration of sugar present in the potato. [1 mark]

- Many substances move into and out of cells by diffusion. 02
- Choose the appropriate bold words to complete this description of 02.1 diffusion. [4 marks]

Diffusion is the spreading out / clumping together of particles in a gas or solid / liquid.

Particles move from an area of low / high concentration to an area of low / high concentration.

Practice Papers

<u>Triple Science</u>

https://www.aqa.org.uk/subjects/biology/gcse/biolo gy-8461/assessment-resources

https://www.aqa.org.uk/subjects/chemistry/gcse/ch emistry-8462/assessment-resources

Combined Science

https://www.aqa.org.uk/subjects/s cience/gcse/science-8465/assess ment-resources

Practical Videos

https://www.youtube.com/playlist?list=PLAd0MSIZBSsF3vV_uxzbcNHuDrQ6Hc-Ul

Revision techniques that work:


- Don't just read the revision guide
- Make notes
- Make mind maps
- Talk about your revision- say it out loud
- Complete quizzes and online tests (e.g. SENECA)
- Get someone to test you

BBC Bitesize

- Biology <u>https://www.bbc.co.uk/bitesize/examspecs/zpgcbk7</u>
- Chemistry <u>https://www.bbc.co.uk/bitesize/examspecs/z8xtmnb</u>
- Physics https://www.bbc.co.uk/bitesize/subjects/zpm6fg8

Combined Science https://www.bbc.co.uk/bitesize/examspecs/z8r997h

Top Tips:

Learn key words and their meanings
 Calculations (showing working out)
 Underline key words in questions

Get started with revision NOW!