Grange Infant Primary School

Maths Calculation Policy
2020-2021

Progression in Calculations from Year 1 to 2

Addition: sum, total, parts and wholes, plus, add, altogether, more, exchange, 'is equal to' 'is the same as'

Key skills and stem sentences	Concrete (can we make it?)	Pictorial (can we draw it?)	Abstract (can we write the calculation?)
Year 1 Addition			
Combining two parts to make a whole: part-part- whole model \qquad is a whole, \qquad is a part, \qquad is a part. There are \qquad in total. First... Then... Now... e.g.	(a) (a) (0) (a) (a) © 5	Use pictures to add two numbers together as a group or in a bar. Introduce the bar model and the partwhole model to secure number bonds. \square	

Starting at the bigger number and counting on The bigger number is \qquad To find the total, I need to start at the biggest number, then count on. (delete words as chn become more familiar) First... Then... Now... E.g. First there were 4 children on the bus, then 3 children got on, now there are 7 children on the bus. (This will help with the inverse relationship and missing numbers.)	Counting on using number lines using cubes or Numicon. Start with the larger number and then count on to the smaller number 1 by 1 to find the answer. Ten frames will also support this skill		$5+12=17$ Place the larger number in your head and count on the smaller number to find your answer. \qquad more than \qquad is The sum of \qquad and \qquad is \qquad The total of \qquad and \qquad is \qquad
Making 10. I need \qquad to make ten. I have	$6+5=11$ Start with the bigger number and use the smaller number to make 10.	Use pictures. Regroup or partition the smaller number to make 10.	$7+4=11$ If I am at seven, how many more do I need to make 10 . How many more do I add on now?

$\begin{aligned} & \ldots \\ & +\ldots \\ & \text { left over. } 10 \\ & \text { is } \end{aligned}$		Draw the tens frame and counters $6+5$ $9+5=14$ 14	
Use known number facts Part part whole	Children explore ways of making numbers within 20		\square $1+[$ \square $=16$ 16 - \square $=1$

Bar Model	$3+4=7$	$7+3=10$	$\begin{aligned} & 6+2=8 \\ & 2+6=8 \end{aligned}$ $\begin{aligned} & 6+4=10 \\ & 4+6=10 \\ & \hline \end{aligned}$
Year 2 Addition			
Adding three single digits (delete words as chn become more familiar) \qquad and \qquad make ten. Ten add \qquad is \qquad	Make 10 with 2 of the digits (if possible) then add on the third digit, e.g. put 4 and 6 together to make 10 . Add on 7 .	Regroup and draw representation. Add together three groups of objects. Draw a picture to recombine the groups to make 10.	$\begin{aligned} (4)+7+6 & =10+7 \\ & =17 \end{aligned}$ Combine the two numbers that make/bridge 10 and then add on the remainder. Look for ways to make 10 and use this knowledge to solve, $\begin{aligned} & \text { e.g. } 9+3+4=10+2+4 \\ & =16 \end{aligned}$

Adding multiples of ten. \qquad tens and \qquad tens total. The sum of \qquad tens and \qquad tens is \qquad .	Model using dienes.	3 tens +5 tens $=$ \qquad tens $30+50=$ \qquad Use representations for base 10.	$\begin{aligned} & 20+30=50 \\ & 70=50+20 \\ & 40+\square=60 \end{aligned}$								
Using known facts. Use addition facts of 10 to derive facts of 100. If I know that 3 and 3 make 6. Then I know that 30 and 30 makes 60.		$\\|\\|+\\|\\|=\\| \\|\\| \\|$ Children draw representations of tens and ones.	$3+4=7$ leads to $30+40=70$								

Add a two digit number and ones \qquad can be partitioned into \qquad tens and \qquad ones. \qquad one and \qquad ones makes \qquad ones. \qquad tens. The total is \qquad . 41 can be partitioned into 4 tens and 1 one. 1 one and 8 ones is 9 ones. We have 4 tens. The total is 49.	TO + O using base 10. Continue to develop understanding of partitioning and place value. $41+8$	Children to represent base 10 e.g. lines for ten and dots for ones.			41	$\begin{aligned} & +8=9 \\ & 0+9= \\ & +L \end{aligned}$	$\begin{aligned} & 2 \\ & =49 \\ & 4 \quad 1 \\ & 48 \\ & \hline 49 \\ & \hline \end{aligned}$
Add a twodigit number and tens.	Explore how we are adding multiples of ten and the ones digit doesn't change.	$27+30=57$				$=37$ 47 57	

We need to exchange ten ones for one ten.	Make both numbers on a place value grid. $36+25$ Add up the ones and exchange 10 ones for one 10. Then count how many ones there are and record the answer under the ones column. Count the tens nor forgetting the extra 10 which you exchanged the 10 ones for.	

Subtraction: take away, less than, the difference, subtract, minus, fewer, decrease, exchange

\begin{tabular}{|c|c|c|c|}
\hline Key skills \& Concrete \& Pictorial \& Abstract \\
\hline \multicolumn{4}{|c|}{Year 1} \\
\hline \begin{tabular}{l}
Taking away \\
ones \\
First... Then... \\
Now... \\
e.g. First there were 4 children in the car, then 1 child got out, Now there are 3 children in the car.
\end{tabular} \& Use physical objects, counters, cubes etc to show how objects can be taken away.

$$
6-2=4
$$

\[
4-3=1

\] \& | $4-1=3$ |
| :--- |
| Cross out drawn objects to show what has been taken away. |
| Children to draw the concrete resources they are using and cross out the correct amount. The bar model can also be used. |
| $8-6=2$ |
| $x \times \gg 00$ |
| $7-0=7$ | \& 4-3 $=$

$$
[=4-3
$$

\square

\hline
\end{tabular}

											$7-4=3$ $16-9=7$
Counting back The whole is \qquad The part we are taking away is \qquad on Start \qquad \qquad and count back \qquad -.	Counting back (using number lines or tracks) $6-2=$ Children start at 6 and count back 2									Count back on a number line or number track $13-4=$ Start at the bigger number and count back the smaller number showing the jumps on the number line.	Put 13 in your head, count back 4. What number are you at? Use your fingers to help.

Finding the difference.

The difference is the amount between amounts.
(10

Make 10
To reach the next
10 I need to
takeaway \qquad —.
\qquad can be partitioned into
\qquad and \qquad —.
\qquad takeaway
\qquad is 10 .
10 takeaway \qquad is

Finding the difference (using cubes, Numicon or other objects can also be used).
Calculate the difference between 8 and 5.

3 Erasers
?
Lay objects to represent bar model.

Make 14 on the ten frame. Take away the four first to make 10 and then takeaway one more so you have taken away 5. You are left with the answer of 9 .

Children to draw the cubes/other concrete objects which they have used or use the bar model to illustrate what they need to calculate.	Find the difference between 8 and 5 . $8-5$, the difference is \square
	Hannah has 12 sweets and her sister has 5 . How many more does Hannah have than her sister?
To reach the next 10 I need to takeaway 3. 7 can be partitioned into 3 and 4 . 13 takeaway 3 is ten. 10 takeaway 4 is 6 .	$16-8=$ How many do we take off to reach the next 10 ? How many do we have left to take off?

Column subtraction with regrouping.		Children may draw base ten or PV counters and cross off.	$\begin{array}{rr} \hline 33-15= & \\ 2 & \\ 3 & 13 \\ -\quad 1 & 5 \\ \hline 1 & 8 \end{array}$

Multiplication double, times, multiplied by, the product of, groups of, lots of, equal groups, exchange

Key Skills	Concrete	Pictorial	Abstract
Year 1			
Doubling Doubling is an amount twice.	Use practical activities to show how to double a number.	Draw pictures to show how to double a number. Double 4 is 8	Double 4 is $\begin{aligned} & 4+4= \\ & 2 \times 4= \end{aligned}$
Counting in multiples We are counting in multiples of \qquad so we count every . \qquad	Count in multiples supported by concrete objects in equal groups.	Use a number line or pictures to continue support in counting in multiples. Children make representations to show counting in multiples.	Count in multiples of a number aloud. Write sequences with multiples of numbers. $2,4,6,8,10$ $5,10,15,20,25,30$

Making equal groups and counting the total.		to show $2 \times 3=6$ Draw and make representations 000 000	$2 \times 4=8$
Understanding arrays	Use objects laid out in arrays to find the answers to 2 lots 5,3 lots of 2 etc.	$\begin{aligned} & 5+5+5+5 \\ & 4+4+4+4+4 \end{aligned}$	$\begin{aligned} & 3 \times 2=6 \\ & 2 \times 5=10 \end{aligned}$
Year 2			
Counting in Multiples of 2, 3, 5 and 10 from 0 .	Count the groups as children skip coutning. Children may use their fingers as they are skip counting. $3+3+3$	Children to use pictures to help counting in multiples.	Count in multiples of a number aloud Write sequences with multiples of numbers. $\begin{aligned} & 0,2,4,6,8,10 \\ & 0,3,6,9,12,15 \\ & 0,5,10,15,20,25,30 \end{aligned}$ $4 \times 3=$ \square

	Pupils should understand that an array can represent different equations and that, as multiplication is commutative, the order of the multiplication does not affect the answer.		$\begin{aligned} & \text { O } \\ & 5+5+5=15 \\ & 3+3+3+3+3=15 \\ & 5 \times 3=15 \\ & 3 \times 5=15 \end{aligned}$
\qquad lots of \qquad is the same as \qquad lots of \qquad Using the inverse (to be taught alongside division) \qquad lots of \qquad is \qquad so \qquad divided by \qquad is \qquad _.	Use arrays to illustrate commutativity counters and other objects can also be used. $2 \times 5=5 \times 2$	Children to represent the arrays pictorially. $3 \times 4=12$. $\sqrt{2} \times 3 \times 3=12$ $\sqrt{12}+4=2$ $(12+3=\ldots 4$	Children to be able to use an array to write a range of calculations e.g. - $10=2 \times 5$ - $5 \times 2=10$ - $2+2+2+2+2=10$ - $10=5+5$

Division share, group, divide, divided by, half, remainder

| Key skills | Concrete | Pictorial | Abstract |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Sharing
 objects into
 groups
 shared
 equally between
 is | I have 10
 cubes, can you
 share them
 equally in 2
 groups? | Children
 quantities. | Share 9 buns between
 three people. |

Division as grouping. \qquad shared equally into groups of \qquad There are \qquad groups.	Divide quantities into equal groups. Use cubes, counters, objects or place value counters to aid understanding.	There are 8 flowers. 2 flowers in each vase. How many vases? Represent: 10 biscuits. Five on each plate. How many plates?	$10 \div 5=2$ Divide 10 into groups of 5 . How many groups are there?
Year 2			
Division as sharing. \qquad shared equally between \qquad is \qquad	Sharing a range of objects $12 \div 2=$	Represent the sharing pictorially $10 \div 2=5$	Children should also be encouraged to use their 2 times table facts. $6 \div 2=3$

Division as grouping \qquad split into groups means there would be \qquad in each group.	Divide quantities into equal groups. Use cubes, counters, objects or place value counters to aid understanding. 12 divided into equal groups of $4=3$	$12 \div 4=3$	$28 \div 7=4$ Divide 28 into 7 groups. How many are in each group?
Division within arrays	Link division to multiplication by creating an array and thinking about the number sentences that can be created. $\begin{array}{rc} \operatorname{Eg} 15 \div 3=5 & 5 \times 3=15 \\ 15 \div 5=3 & 3 \times 5=15 \end{array}$	Draw an array and use lines to split the array into groups to make multiplication and division sentences.	Find the inverse of multiplication and division sentences by creating four linking number sentences. $\begin{aligned} & 7 \times 4=28 \\ & 4 \times 7=28 \\ & 28 \div 7=4 \\ & 28 \div 4=7 \end{aligned}$

