Grove Vale Primary School

Mental and Written Calculation Progression

Calculation

Policy

Date: November 2022
Review: November 2024
Written by: J. Ahearn

Grove Vale Primary School
 Calculation Progression

Addition

Addition

EYFS	Year 1
National Curriculum:	National Curriculum:
Pupils should be taught to:	Pupils should be taught to:
- Know one more than a number	- Read, write and interpret mathematical statements involving addition
- Using quantities and objects, they add two single-digit numbers and	- Represent and use all number bonds within 20
count onto find the answer.	- Add one-digit and two-digit numbers to 20, including 0
Adding One More Than a Number	- Solve one-step problems that involve addition using concrete objects and pictorial representations, and missing number problems

Adding One More Than a Number

Ady given number to 5 , 10 en, fingers any given number to 5,10 and then 20 starting with the biggest number.

ololololololololo

9 blocks +1 more block equals 10 blocks
Use of pictorial representations to count one more than a number (using 5 frame).

CNㅜㅇ

Ask children to add one more, using a 5 frame and a number track underneath, pointing to the new number (part whole):

Use of a number track to count on or jump one more than a number. Use counters or fingers to show jumping forwards one

0	1	2	3	4	5	6	7	8	9	10

Begin to count on one from a number between 1 and 9 mentally. 8.... 9 through simple songs and nursery rhymes

Add Two Single-Digit Numbers

Use a range of concrete objects and pictorial representations (including drawing own pictures) counting on from one, progressing to counting on from the biggest number using number track. Re-enforced through real life role play, games, songs, playful practical indoor and outdoor math activities ocusing on use of mathematical language like 'altogether'. Encourage discussion while solving practical problems to discuss ideas and processes

Number bonds to 5 progressing to number bonds to 10 pictorially (part whole) progressing to show this as an abstract calculation.

Adding One and Two-Digit Numbers (Up to 20)
Use a range of concrete objects (Using cubes to show part=part-whole, counters, real life objects) to add one and two-digits up to 20.. Then, progress this as a pictorial representation, starting with the biggest number and adding on the smaller number. Finally progress to showing this abstractly as a calculation or using number bond circles to show part-part-whole while beginning to count on mentally from the larger number. Progress to number line if confident (see year 2).

Children should then apply this skill to missing number problems by counting on from the first number. First using concrete objects (washing lines) then to pictorial (circle number on number line, count on) to abstract use of number bonds to partition when counting on to find the missing number

Regrouping to Make 10

Use a 10 frame concretely then pictorially to regroup by partitioning the smaller number to make 10 and then counting on the left-over amount.
Start with the biggest number (7) then partition that number to make 10 $(5=3+2)$. Then place the remaining amount.

Adding a Two Digit and Ones

Use of concrete objects such as numicon, beads, or dienes etc to add on ones. Progress this to using part-part-whole concept to enable children to use knowledge of number binds to partition to support adding. Mentally secure number facts to 20/100 Concrete ($14+3$)

Adding Ten to a Number
Start showing this concretely using dienes and a hundred square to jump a multiple of ten. Progress this to showing pictorially using dienes how adding a ten changes the place value. Encourage children to notice the pattern that the tens column increases by one each time.

Adding Two Two-Digit Numbers

Use of number line initially to add tens individually and then ones: $(43+24)$

When children are confident, move to groups of jumps i.e. +20 rather than $+10+10$. Progress to partitioning numbers into tens and ones and adding them individually using concrete and pictorial representations moving onto doing this abstractly and mentally as well as using bar model to show the inverse to check answers.

Adding Three Single Digit Numbers

Make sure two of the numbers add to ten. ($3+5+7$) Then encourage children to find the number bonds to ten first. ($3+7=10$) Then, make a new calculation adding the remaining number $(10+5=15)$. Use blocks concretely to show this in relation to
part-part-whole. Use ten frames also
$0|0| 0$ + 0|0|010 $+0|0| 0|0| 0$

Addition

Year 6	
National Curriculum: In year six children continue to practise column method for addition for bigger numbers and decimal numbers up to three decimal places	
Addition of Numbers to One Million Children should be confident in adding several numbers together with an increasing level of complexity. The numbers should be a combination of thousands, tens of thousands and hundreds of thousands. (Children should have a secure understanding of the place value involved)	
81059 42372 3668 47 15301 3133 $+\frac{20551}{}$ $+\underline{413}$ $\frac{125579}{1111}$ $\frac{915}{11}$	$\begin{array}{r} 423721 \\ 47890 \\ 31133 \\ +\frac{413214}{} \\ \hline \frac{915558}{1111} \end{array}$
Children should be efficient in their use of vocabulary to explain their process when calculating.	
Column Addition with Decimals	
Children should be taught to add decimals of a range of values up to 3	о 5.400
decimal places. Embedded in a range of	nge of 3.060
real-life contexts (money, time, measurements etc see year 5), using	${ }_{\text {sing }}{ }_{12.421}$
their place value knowledge ensure the	re the
digits and decimal point are correctly	ctly $\quad 9.900$
aligned. Children use the column method to add several numbers with	with 30.781
mal places	

Useful Pictorial Resources:

Dienes Generato

(used to make the illustrations in this policy) https://mathsbot.com/manipulatives/blocks

Number Line Generator

(used to make the illustrations in this policy) https://apps.mathlearningcenter.org/number-line/

Maths Frame Online Interactive Addition Game https://mathsframe.co.uk/en/resources/category/9/addition-and-subtraction

White Rose Reasoning and Problem Solvin

https://whiterosemaths.com/resources/schemes-of learning/primary-sols/

Grove Vale Primary School
 Calculation Progression

Subtraction

Finding One Less Than a Number

Use of concrete resources（everyday objects，cubes，beads，counters，toys etc） to show that the quantity of a group $(5,10$ and then 20 ）can be changed by taking items away．

4 blocks take away 1 block leaves 3 blocks．Discuss it is one less． Also，use pictorial representations to cross objects off to show one less． OOOOL
Ask children to cross one out，using a 5 frame and a number track underneath，pointing to the new number（part whole）：

Use of a number track to count or jump backwards one number from different single digits．Use counters or fingers to show jumping forwards one． | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Begin to count on one backwards from a number between 1 and 9 mentally． 9．．．． 8 through simple songs，actions and nursery rhymes．

Subtracting Two Single Digit Number

Use a range of concrete objects and pictorial representations（including drawing own pictures）counting back from 5 ，progressing to counting on from the bigger numbers using number track．Re－enforced through real life role play，games，songs，stories，role play and playful practical indoor and outdoo math activities focusing on use of mathematical language like take away．

Subtraction

\section*{Subtracting One and Two－Digit Numbers（within 20）} Use of concrete objects，in －$\square|\square| \square \mid \square$ model and part－part whole model－ | | \square | \square | \square | \square |
| :--- | :--- | :--- | :--- | :--- | making links with number bonds．

10
 （4） 6

Use a number track to show this by counting back from the largest number from 10 progressing to showing this on a number from 20．（See year 2）

Once subtracting two－digits within 20 ，move to solving missing number problems using a number line practically to count backwards．

Missing Number Problems

Following on from children using concrete objects to count back，do this with missing number problems by starting with the biggest number and then counting back

Children can then use the support of a number line to support counting back to find missing numbers，as well as trying this mentally counting back if secure．

Subtracting 10 from a Number
Start showing this concretely using dienes and a hundred square to jump backwards multiple of ten．Progress this to showing pictorially using dienes how subtracting a ten changes the place value．Encourage children to notice the pattern that the tens column decreases by one each time a multiple of ten is taken．
Subtracting Two Two－Digit Numbers
Use of number line to take tens individually and then ones：（43－24）
$-1-1-1-1$

When children are confident，move to groups of jumps i．e．-20 rather than $-10-10$ ， Progress to partitioning numbers into tens and ones and subtract tens then ones，re－ grouping if not enough ones using concrete and pictorial representation （see below）moving onto doing this abstractly and mentally as well as using bar model to show the inverse to check answers combined with addition
 Ones『可 roup as there are not enough ones to su
4 ones ロッアロ白

Inverse Operation Use bar model／part－part－ whole to demonstrate the inverse relationship between addition and subtraction to then further help with problems i．e．missing number

$43-24=19$
$19+24==43$
$33-19=24$
$43-19=24$
$24-19=23$

Subtraction

Subtract 3 Digit Numbers
Then, use the number line to subtract three-digit numbers, in place value steps) using concrete (like above) and pictorial representations to assist understanding, using place value vocabulary to reinforce. E.g. 324-213
$\frac{1}{\substack{124}}$

Apply this when solving problems and use bar model/ partpart whole to re-enforce inverse relationship. (See year 2)

$300-200=100$ (Subtract hundreds) 20-10 $=10$ (Subtract tens) $4-3=1$ (Subtract ones)

Further develop
partitioning strategy with calculations
partitioning and subtracting the groups of hundreds, tens and ones using columns where possible.

Follow this strategy with $300-200=100$ (Subtract hundreds) he expanded column method, subtracting $\quad 20-10=10$ (Subtract tens) individually, then Then add what is left $100+10+1=111$ subtracting those totals up to get the final answer. Develop this to bridge a barrier in preparation for the formal written method using relevant vocabulary to reinforce. Use dienes or ther concrete resources to reinforce. Move on to doing this with re-grouping (see year 4)
ATTEMPT SUBTRACTING DECIMALS MAKING IT EXPLICIT THAT IT IS TENTHS AND THE DECIMAL PLACE STAYS ROOTED. If children are confident and ready to move on, they can begin to introduce the formal written method (see year 4).

Subtract Four-Digit Numbers (with re-grouping)

 Importantly, model the process of re-grouping with a large place value display and heavy use of concrete or pictorial dienes to show if there isn't enough in that column to subtract then they re-group so they can do the calculation. E.g. 3658-1369
hen, once secure, focus on abstract method:
Expose children to a range of problems to solve, reason and apply calculation knowledge for both - and + $3 G 58$

Subtracting Decimals Include real life math 2289 (money and measurements) as the context.
3141 When adding decimals make it explicit that it is
tenths and the decimal place stays rooted.
136.9 make a one using dienes to show this $228.9{ }^{\text {concretely/pictorially. E.g. 365.8-136.9 }}$

Year 5
National Curriculum: Pupils should be taught to: - Subtract whole numbers with more than 4 digits, including using formal written methods (columnar addition) - Continue to revisit mental strategies of years 3 and 4 - Continue to solve missing number problems

Subtracting More Than Four Digit Numbers

 Children should use the column method with re grouping to add two numbers in the tens and hundreds of thousands (five and six-digit numbers). Continue to use concrete/ pictorial methodsto reinforce re-grouping as it to reinforce re-grouping as it becomes more challenging (especially if there are 0's or
column method to subtract more than two value

Column Addition with Decimals

Childrens place value knowledge is key here when adding decimals, recognising they are adding tenths and hundredths and understanding this is a part of a whole. So, 658.8-369.02 = becomes

${ }_{514}$ ค
 658.8

- 369.02
289.82

It is also important to add then, that 658.8 is actually 658.80 when putting it in to the column method and zero is added as a place value. (Again, it is important children understand that eight tenths is equal to eighty hundredths.

5141 $6 \$ 8.80$ 6590

- 369.02
289.82

Children should be familiar in using the column method to add more than two decimal values while also applying in real life maths like time, money and measurements.

How much change would I get from $£ 10$ if l bought a bag of apples
costing $£ 4.27$? costing $£ 4.27$?

Useful Pictorial Resources:

Dienes Generator
(used to make the illustrations in this policy) https://mathsbot.com/manipulatives/blocks

Number Line Generator
(used to make the illustrations in this policy)
https://apps.mathlearningcenter.org/number-line/
Maths Frame Online Interactive Subtraction Games
https://mathsframe.co.uk/en/resources/category/9/addition and-subtraction

White Rose Reasoning and Problem Solving
https://whiterosemaths.com/resources/schemes-of
learning/primary-sols/

Grove Vale Primary School
 Calculation Progression

Multiplication

Doubling

Children should learn that double means twice as many, having access to an array of real-life objects and mathematical equipment to build doubles progressing to numbers up to ten. Children should have access to mirrors to double the items they build understanding each side is equal or the same.

Making Equal Groups

Children will have access to a range of concrete and pictorial versions of real life objects to begin to make sets of objects by counting the objects in a set and making more sets. For example, this could be the pairing of socks. How many groups of two have you made?

Match the same two objects. How many sets of two objects can you make?

Multiplication

Grouping/Repeated Addition

Use concrete resources/ everyday objects as well as pictorial representation on whiteboards to show the visuals of making groups/multiples of 2,5 or 10 while solving simple 1 step problems.

Arrays

Use of array in maths, arranging objects, numbers or pictures in columns or rows. The purpose of an array is to help children understand and identify groups and reinforce multiplication is grouping and repeated addition.

Counting in Multiples (Timetables)

Use practical concrete real-life objects, as well as pictorial representation to count in 2,5,10 and beginning 3. Practical methods should reinforce the connection between multiplication and timetables. Children should be progress to doing this mentally. $\begin{array}{llllllllll}5 & 10 & 15 & 20 & 25 & 2 & 4 & 6 & 8 & 10\end{array}$ ary

Arrays

Begin with use of objects and pictures within arrays in columns and rows by
recognising equal groups and counting the multiple/ groups. Then, progress to use of pictorial representation of arrays enabling count the total amount of multiples/

Commutative Relationship and Inverse
Follow ander to install a commutative understanding 5 is the 5 is operation and the 2 multiplication and 2 division calculations that can be made from one array. USE THE BAR MODEL TO DEMONSTRATE THIS.

Multiplication

Counting in Multiples

See year 2 for methods to explicitly teach to reinforce timetable knowledge of 2,5 and 10 . Build on this to secure 3, 4 and 8 . Use concrete resources to aid fluent mental recall.

Number Line

Use a number line to multiply by through repeated addition, reinforce this by teaching with use of concrete objects. णाणणण णाणणण णाणणण णणाणण णाणणण

Partitioning and Grid

 MethodEnsure place value
understanding is secure s children are competent in ortioning a 2 -digit numbe to its T and O .
hn will first practise this
method concretely and
ctorially using dienes.

\mathbf{x}	$\mathbf{1 0}$	$\mathbf{8}$
$\mathbf{3}$	30	24

Then add the values $30+24=54$
This will progress to using the grid method abstractly, and then adding the two values to get the answer. Children should be confident drawing these independently.

Problem Solving (Bar Model/ Inverse)

Use the bar model to reinforce understanding, reinforce inverse operation knowledge as well as to assist with problem solving when multiplying.

54			Inverse: $54 \div 18=3$
18	18	18	$3 \times 18=54$

\section*{| Year 4 |
| :--- |
| $\begin{array}{l}\text { National Curriculum: } \\ \text { Pupils should be taught to: } \\ \text { - Recall and use multiplication and division facts for } \\ \text { multiplication tables up to } 12 \\ \text { Multiple two-digit and three-digit numbers by a one-digit } \\ \text { number using formal written layout }\end{array}$ |}

Timetables
Timetables should be embedded within mental math sessions, with regular explicitly timetable teaching - refer to
counting in multiple methods if needed

This will progress to using the grid method abstractly, and then adding the two values to get the answer. Children should be confident drawing these independently.

Expanded Column Method

Column method of addition should be taught initially using the expanded method with the use of concrete and pictoria dienes to reinforce relational understanding.

H T O
36
$\times \quad 4$

$\begin{array}{r}4 \\ \times \quad 24 \\ +\quad 20 \\ \hline\end{array}$
 $(24+120)$ The new columns are added
starting with the digit of least value.

Short Column Method

The expanded method facilitates a

expanded method faciltates | T | O |
| :--- | :--- |
| 3 | 0 |

he process of short column multiplication. When initially eaching short method, show without regrouping Then understandins is secure, proges

36
$\times \quad 4$
144
2

bar model should still be used to reenforce inverse UNDERSTANDING AND ASSIST PROBLEM SOLVING (SEE YEAR 3)
 modeling during problem solving

Short Column Method

The expanded method facilitates a good practical understanding of the process of short column multiplication. When initially teaching short method, show without regrouping. Then, once
understanding is secure, progress
to teaching it with regrouping, ensuring explicit teaching using
dienes to enable a concrete understanding of regrouping.

Expanded Long Multiplication/Grid Method

						Initially model the Grid
	T	H	T			Method for long
			3	6		multiplication to
X			7	4		demonstrate practically
			2	4	(4 X 6)	how the expanded method
		1	2	0	(4×30)	works. Use the same
		4	2	0	(70×6)	process as in Y 4 , just add
	2	1	0	0	(70×30)	another row.
	2	6	6	4		

Then, move on to using the
expanded long multiplication method to teach multiplying up to 4 digits by a 2-digit number. Initially, use dienes concretely or pictorially to enable a more relational understanding of the method.

Long Multiplication (Column Method)

 Once secure with the expanded method, ensure children are secure by the end of the year in using the compact long method with regrouping including the use of decimals. This should be applied within problems that focus on real life maths particular| H | T | O |
| ---: | ---: | ---: |
| | 2 | 4 |
| \times | 1 | 6 |
| 1 | 4 | 4 |
| 2 | 4 | 0 |
| 3 | 8 | 4 |
| 2 digit. | | | digit by 2 digit progressing to 3 or 4 digit by 2 digit.

Multiplying Decimals

As well as multiplying up to 4 digit whole numbers by a 2 digit number, children
should be exposed to
similar calculations involving decimals, ensuring place value knowledge is secure and decimal stays rooted.

Year 6	
National Curriculum: Pupils should be taught to: - Multiply multi-digit numbers up to 4 digits by a two-digit whole number using the formal written method of long multiplication	
Short Column Method for multiplying up to 4 digits by 1 digit in from a range of real-life contexts. Ensure that children are using pictorial m previous year groups to support their con complex understanding. If secure, use lar	Answer: 16446 luding decimals thods as shown in tinued and more er numbers.
Long Column Method	324
Children should consolidate long multiplication by being exposed to more complex calculation up to 4 digits by 2 digits. Including decimals from a range of real-life contexts.	$\begin{array}{r} x \quad 46 \\ \hline 1944 \\ +12960 \\ \hline 14904 \end{array}$

Problem Solving
Access to regular problem solving and reasoning where children can apply these methods is essential. Use of bar model is still required as it should be a familiar aid bein embedded across the school.

Useful Pictorial Resources

Dienes Generator
(used to make the illustrations in this policy) https://mathsbot.com/maninulatives/blocks
(used to make the illustrations in this policy) https://apps.mathlearningcenter.org/number-line/

Maths Frame Online Interactive Subtraction Games

 https://mathsframe.co.uk/en/resources/category/7/multiplic ation-and-divisionWhite Rose Reasoning and Problem Solving $\mathrm{https}: / /$ whiterosemaths.com/resources/schemes-of learning/primary-sols/

Grove Vale Primary School
 Calculation Progression

Division

Division

EYFS
National Curriculum: Pupils should be able to: - Understanding the concept of a fair share

Halving

Children should be encouraged to use a range of everyday objects in the classroom and outdoor environments to share fairly. Children should start to understand the concept that halving is sharing equally and fairly between two people, both having the same amount. Use language half for you, half for me.

Also, demonstrate when something is not shared equally and discuss why:

Fair Sharing

Children will have access to a range of concrete and pictorial versions of real life objects and also engage in a variety of songs and rhymes to share quantities of objects equally between two people. If confident, begin to explore sharing between three and four. Use language half, sharing equally and fairly.

Also, demonstrate when something is not shared equally and discuss why:

Fair Sharing

Children will start with practical sharing using a range of concrete resources and everyday objects. They will share objects in to equal groups in a variety of real-life situations. Encourage use of vocabulary (share, equally, fair)

Children can then move on to representing pictorial in books either them drawing themselves

If children are ready, they could be pushed on to solve more abstractly through use of a bar model. Or provided with a bar and show their representations. (See above)

Division Facts/ Inverse Operation

Children should be encouraged to count in multiples as seen in the multiplication policy; using their timetable knowledge to make division fact links (link to inverse). As seen in multiplication, the inverse operation link between \div / x should constantly be referred to throughout.

Fair Sharing and Grouping

Children will continue with embedding understanding of sharing and grouping with
concrete objects and pictorial arrays (see year 1). This should progress to enable
children to see the two division relationships. This should be done to share between 2,5 and 10 equally.

[^0]Division

Repeated Subtraction

Children use previous methods learned in year 2, but focus on aspect of repeated subtraction to prepare for subtracting when chunking.

Formal Layout

Introduce the forma
division layout using multiplication/ division facts hat the children know to repare them for formal division methods.
$24 \div 3=8$
This can also be recorded as.
$3 \longdiv { 2 4 }$

Chunking

Begin by showing chunking on a number line, rather than using repeated subtraction, jumping back in chunks of groups. Children should be encouraged to write down the related me tables facts to support them with the formal method of chunking. Use concrete resources to reinforce.
hen, begin to use chunking vertically to demonstrate conceptual understanding of short division (subtracting chunks of the divisor rather than individual jumps). Children eed to recognise that chunking is inefficient if too many ubtractions have to be carried out. Encourage them to reduce the number of steps and move them on quickly to finding the largest possible multiples.

[^1] method, progressing to short method without remainders.

jumps). Children need to recognise that chunking is inefficient if too many subtractions have to be carried out. Encourage them to reduce the number of steps and move them on quickly to finding the largest possible multiples.
If confident move to dividing with remainders using this method, once consolidated, children should progress to short method without remainders. Reinforce with concrete resources like dienes.

Short Column Division (no remainders)
Continue to use the formal division layout using multiplication/ division facts that the children know to prepare them for formal division methods. This could progress to remainders within timetable division facts. $25 \div 3=8 \mathrm{r} 1$

8 r 1
$3 \longdiv { 2 5 }$

Short Column Method

When children are secure with division, they are taught the compact column method, starting from the left and regrouping each remainder. Progress to more complex numbers with more complex regrouping.
$40_{088}^{3^{3} 5^{3} 3}$ R1
Children should revisit chunking as a class reinforce short method as well as aiding children to make an informed estimation or to check their answers.

Dividing Decimals

As well as dividing up to 4 digit whole numbers by a 1 digit number, children should be exposed to similar calculations involving decimals, ensuring place value knowledge is secure and decimal stays rooted.

$$
4 \longdiv { 3 ^ { 3 } 5 \quad { } ^ { 3 } 3 }
$$

Remainders

$$
\begin{array}{cccc}
0 & 8 & 8 \\
4 & 3^{3} 5 & 3 & \text { R1 }
\end{array} \begin{aligned}
& \text { Pupils will begin } \\
& \text { to be taught how } \\
& \text { to calculate the } \\
& \text { remainder as a } \\
& \text { fraction or }
\end{aligned}
$$ decimal, relating to how far they are in that area of maths. The remainder becomes $1 / 4$ then children will use their The remainder becomes $/ 4$ then children will use their

conversion knowledge that the answer will be $881 / 4$ or 88.25 .

Dividing/ Multiplying by 10, 100 and 1000

Place value knowledge should be secure so children are aware the decimal stays rooted and the place value place value
moves to the moves to the
right or left right or left depending on the operation

National Curriculum:
Pupils should be taught to
Divide numbers up to 4 -digits by a two-digit whole
number using the formal written method of short division
Where appropriate for the context divide numbers up to 4 digits by a two digit whole number using the formal written method of long division, and interpret
remainders as whole number remainders, fractions, or by
rounding, as appropriate for the context
Solve problems involving division
Use written division methods in cases where the answer has up to two decimal places

$$
\begin{aligned}
& \frac{\text { Short Division }}{088} \\
& 4 \longdiv { 3 ^ { 3 } 5 ^ { 3 } 3 }
\end{aligned}
$$

Same applies as year 5 , children should have access to problems in a wide range of real-life contexts, and should be dividing more complex 4 to 5 -digit numbers (inc decimals).

Remainders

0	8	8
	3_{5}	3_{3}

Pupils will be taught how to calculate the remainder as a
fraction or decimal, understanding the remainder as a fraction of a group left over.. The remainder becomes $1 / 4$ then children will use their conversion knowledge that the answer will be $881 / 4$ or 88.25 .

Long Division

Children are taught initially to divide up to 4 digit numbers by a 2 digit number subtracting large chunks, this wil consolidate understanding ready to progress to formal long division method.
$1 5 \longdiv { 4 8 r 1 2 }$
Multiples of the divisor (15) have been subtracted from the dividend
(432) (432)
$\frac{300}{132}(20 \times 15)$ 132

20 (chunks of 15) +8 (chunks of 15)
$\frac{120}{12}{ }_{(8 \times 15)}^{(8)}$ $=28$
$12 / 15$
$=28$
$12 / 15$ is the remainder

Then, teach the formal long method ONLY when children are completely secure with the prior method and have a relational understanding of used to reinforce.
$432 \div 15=28 \cdot 8$
$1 5 \longdiv { 2 8 \cdot 8 } \begin{array} { r } { 4 3 2 \cdot 0 } \\ { 3 0 \downarrow } \end{array}$ $\frac{30}{132}$ $\frac{120}{120}$

120

Grove Vale Primary School

Mental Calculation Progression

Mental

Calculation

Year Group	Mental calculation National curriculum objectives Key Stage 1	Strategies/ Teaching points
1	- represent and use number bonds and related subtraction facts within 20 - add and subtract one-digit and two-digit numbers to 20 , including 0 - recognise, find and name a half as 1 of 2 equal parts of an object, shape or quantity - recognise, find and name a quarter as 1 of 4 equal parts of an object, shape or quantity	- count on or back in ones; reorder numbers in a calculation; begin to bridge through 10, and later 20 , when adding a single-digit number; use known number facts and place value to add or subtract pairs of single-digit numbers; add 9 to single-digit numbers by adding 10 then subtracting 1 ; identify near doubles, using doubles already known; - use patterns of similar calculations.
2	- count in steps of 2, 3, and 5 from 0 , and in 10 s from any number, forward and backward - applying their increasing knowledge of mental and written methods - recall and use addition and subtraction facts to 20 fluently, and derive and use related facts up to 100 - add and subtract numbers using concrete objects, pictorial representations, and mentally, including: - a two-digit number and 1s - a two-digit number and 10 s - 2 two-digit numbers - adding 3 one-digit numbers - show that addition of 2 numbers can be done in any order (commutative) and subtraction of 1 number from another cannot - recall and use multiplication and division facts for the 2,5 and 10 multiplication tables, including recognising odd and even numbers - calculate mathematical statements for multiplication and division within the multiplication tables and write them using the multiplication (\times), division (\div) and equals (=) signs - show that multiplication of 2 numbers can be done in any order (commutative) and division of 1 number by another cannot - recognise, find, name and write fractions $\frac{1}{3}, \frac{1}{4}, \frac{2}{4}$ and $\frac{3}{4}$ of a length, shape, set of objects or quantity	- count on or back in tens or ones; - find a small difference by counting up from the smaller to the larger number; - reorder numbers in a calculation; add three small numbers by putting the largest number first and/or find a pair totalling 10 ; - partition additions into tens and units then recombine; - bridge through 10 or 20; - use known number facts and place value to add or subtract pairs of numbers; - partition into ' 5 and a bit' when adding $6,7,8$ or 9 , then recombine; - add or subtract $9,19,11$ or 21 by rounding and compensating; identify near doubles; - use patterns of similar calculations; use the relationship between addition and subtraction; - use knowledge of number facts and place value to multiply or divide by 2, 5 or 10; - use doubles and halves and halving as the inverse of doubling

Non-Negotiables - End of Key Stage 1

- add or subtract a single-digit to or from a single-digit, without crossing 10, eg 4+5,8-3;
- add or subtract a single-digit to or from 10;
- add or subtract a single-digit to or from a 'teens' number, without crossing 20 or 10, eg 13+5,17-3;
- doubles of all numbers to 10 , eg $8+8$, double 6 .
- add or subtract any single-digit to or from any two-digit number, without crossing the tens boundary, eg $62+4$, 38-7;
- add or subtract any single-digit to or from a multiple of 10, eg 60+5,80-7;
- add or subtract any 'teens' number to any two-digit number, without crossing the tens boundary, eg $23+14,48$
- 13;
- find what must be added to any two-digit multiple of 10 to make 100, eg $70+?=100$;
- add or subtract a multiple of 10 to or from any two-digit number, without crossing 100, eg, $47+30,82-50$;
- subtract any two-digit number from any two-digit number when the difference is less than 10, eg 78-71, or 52 -

48;

- doubles of all numbers to at least 15, eg double 14;
- double any multiple of 5 up to 50 , eg double 35;
- halve any multiple of 10 up to 100, eg halve 50

3	- count from 0 in multiples of $4,8,50$ and 100 ; find 10 or 100 more or less than a given number add and subtract numbers mentally, including: a three-digit number and 1 s a three-digit number and 10s a three-digit number and 100s recall and use multiplication and division facts for the 3,4 and 8 multiplication tables write and calculate mathematical statements for multiplication and division using the multiplication tables that they know, including for two-digit numbers times one-digit numbers, using mental and progressing to formal written methods count up and down in tenths; recognise that tenths arise from dividing an object into 10 equal parts and in dividing one-digit numbers or quantities by 10 - recognise, find and write fractions of a discrete set of objects: unit fractions and nonunit fractions with small denominators	○ ${ }_{\circ}^{\circ}$	count on or back in tens or ones; find a small difference by counting up from the smaller to the larger number; reorder numbers in a calculation; add three or four small numbers by putting the largest number first and/or by finding pairs totalling 9 , 10 or 11; partition into tens and units then recombine; bridge through a multiple of 10 , then adjust; use knowledge of number facts and place value to add or subtract pairs of numbers; partition into ' 5 and a bit' when adding $6,7,8$ or 9 ; add or subtract mentally a 'near multiple of 10 ' to or from a twodigit number; identify near doubles; use patterns of similar calculations; say or write a subtraction statement corresponding to a given addition statement; to multiply a number by $10 / 100$, shift its digits one/two places to the left; use knowledge of number facts and place value to multiply or divide by 2, 5, 10, 100; use doubling or halving; say or write a division statement corresponding to a given multiplication statement.

- count in multiples of 6, 7, 9, 25 and 1,000
- find 1,000 more or less than a given number
- count backwards through 0 to include negative numbers
- recall multiplication and division facts for multiplication tables up to 12×12
- use place value, known and derived facts to multiply and divide mentally, including: multiplying by 0 and 1 ; dividing by 1 ; multiplying together 3 numbers
- recognise and use factor pairs and commutativity in mental calculations
- count up and down in hundredths; recognise that hundredths arise when dividing an object by 100 and dividing tenths by 10
- find the effect of dividing a one- or two-digit number by 10 and 100 , identifying the value of the digits in the answer as ones, tenths and hundredths
- round decimals with 1 decimal place to the nearest whole number of 10,100 or 1000 ;
- reorder numbers in a calculation;
- partition to carry out multiplication; use doubling or halving; use closely related facts to carry out multiplication and division; use the relationship between multiplication and division.

Non-Negotiables - End of Lower Key Stage 2

- find what must be added to any multiple of 100 to make 1000, eg $300+$? = 1000;
- find what must be added to/subtracted from any two-digit number to make the next higher/lower multiple of 10, eg $64+?=70,56-?=50 ;$
- subtract any three-digit number from any three-digit number when the difference is less than 10, eg 458 451, or 603-597;
- find what must be added to/subtracted from any three-digit number to make the next higher/lower multiple of 10, eg $647+$? = 650, $246-$? $=240$;
doubles:
double any number to at least 20, eg double 18, and corresponding halves, eg halve 36;
double 60, halve 120;
double 35, halve 70;
double 450, halve 900;
multiply single-digit numbers by 10 or 100, eg 6×100;
divide any multiple of 10 by 10 , eg $60 \div 10$, and any multiple of 100 by 100 , eg $700 \div 100$.
find what must be added to any two-digit number to make 100, eg $37+?=100$;
add or subtract any pair of two-digit numbers, eg $38+85,92-47$;
find out what must be added to/subtracted from any two- or three-digit number to make the next higher/lower multiple of 100 , eg $374+?=400,826-?=800$;
subtract any four-digit number from any four-digit number when the difference is small, eg 3641-3628, 6002-5991;
doubles and halves:
double any whole number from 1 to 50 , eg double 36 , and find all the corresponding halves, eg $96 \div 2$;
double any multiple of 10 to 500 , eg 380×2, and find all the corresponding halves, eg $760 \div 2,130 \div 2$;
double any multiple of 5 to 100 , eg 65×2;
multiply any two-digit number by 10 , eg 26×10;
divide a multiple of 100 by 10 , eg $600 \div 10$;
multiply any two-digit multiple of 10 by $2,3,4$ or 5, eg $60 \times 4,80 \times 3$.

5	- count forwards or backwards in steps of powers of 10 for any given number up to 1,000,000 interpret negative numbers in context, count forwards and backwards with positive and negative whole numbers, including through 0 round any number up to $1,000,000$ to the nearest $10,100,1,000,10,000$ and 100,000 add and subtract numbers mentally with increasingly large numbers identify multiples and factors, including finding all factor pairs of a number, and common factors of 2 numbers establish whether a number up to 100 is prime and recall prime numbers up to 19 multiply and divide numbers mentally, drawing upon known facts multiply and divide whole numbers and those involving decimals by 10,100 and 1,000 - recognise and use square numbers and cube numbers, and the notation for squared $\left({ }^{2}\right)$ and cubed (${ }^{3}$) - round decimals with 2 decimal places to the nearest whole number and to 1 decimal place	- count up through the next multiple of 10,100 or 1000 ; reorder numbers in a calculation; partition into hundreds, tens and units, adding the most significant digit first; use known number facts and place value to add or subtract pairs of three-digit multiples of 10 and twodigit numbers with one decimal place; add or subtract the nearest multiple of 10 or 100 then adjust; identify near doubles; add several numbers; develop further the relationship between addition and subtraction; use factors; partition to carry out multiplication; use doubling and halving; use closely related facts to carry out multiplication and division; use the relationship between multiplication and division; use knowledge of number facts and place value to multiply or divide.
6	- round any whole number to a required degree of accuracy - use negative numbers in context, and calculate intervals across 0 - perform mental calculations, including with mixed operations and large numbers - identify common factors, common multiples and prime numbers - use common factors to simplify fractions; use common multiples to express fractions in the same denomination - identify the value of each digit in numbers given to 3 decimal places and multiply and divide numbers by 10,100 and 1,000 giving answers up to 3 decimal places	- consolidate all strategies from previous years; use knowledge of number facts and place value to add or subtract pairs of three-digit multiples of 10 and two-digit numbers with one decimal place; add or subtract the nearest multiple of 10,100 or 1000 , then adjust; continue to use the relationship between addition and subtraction; use factors; partition to carry out multiplication; use doubling and halving; use closely related facts to carry out multiplication and division; use the relationship between multiplication and division; use knowledge of number facts and place value to multiply or divide.

Non-Negotiables - End of Key Stage 2

- add or subtract any pair of three-digit multiples of 10, eg $570+250,620-380$;
- find what must be added to a decimal fraction with units and tenths to make the next higher whole number, eg. $4.3+?=5$;
- add or subtract any pair of decimal fractions each with units and tenths, or each with tenths and hundredths, eg 5.7 + 2.5, 0.63-0.48;
- subtract a four-digit number just less than a multiple of 1000 from a four-digit number just more than a multiple of 1000, eg 5001-1997;
- multiply any two- or three-digit number by 10 or 100 , eg $79 \times 100,363 \times 100$;
- divide a multiple of 100 by 10 or 100 , eg $4000 \div 10,3600 \div 100$;
- multiply any two-digit multiple of 10 by a single-digit, eg $60 \times 7,90 \times 6$;
- double any whole number from 1 to 100, multiples of 10 to 1000, and find corresponding halves;
- find $50 \%, 25 \%, 10 \%$ of a small whole numbers or quantities, eg 25% of $£ 8$.
- multiply any two-digit number by a single-digit, eg 34×6;
- multiply any two-digit number by 50 or 25 , eg $23 \times 50,47 \times 25$;
- multiply or divide any whole number by 10 or 100 , giving any remainder as a decimal, eg $47 \div 10=4.7$, $1763 \div 100=17.63$;
- find squares of multiples of 10 to 100 ;
\circ
find any multiple of 10% of a whole number or quantity, eg 70% of $£ 20,50 \%$ of $5 \mathrm{~kg}, 20 \%$ of 2 metres.

Mental Calculation Strategies Progression

Counting Forwards and Backwards	
Example Calculation	Possible counting strategy
$4+5$	count on in ones from 4 (or in ones from 5)
8-3	count back in ones from 8
$10+7$	count on in ones from 10 (or use place value)
$13+5$	count on in ones from 13
17-3	count back in ones from 17
18-6	count back in twos
$23+5$	count on in ones from 23
57-3	count back in ones from 57
$60+5$	count on in ones or use place value
80-7	count back in ones from 80 (or use knowledge of number fact to 10 and place value)
$27+60$	count on in tens from 27
$72-50$	count back in tens from 72
$50+38$	count on in tens then in ones from 50
$90-27$	count back in tens then in ones from 90
$34+65$	count on in tens then ones from 34
$87-23$	count back in tens then ones from 87
$35+15$	count on in steps of 5 from 35
73-68	count up from 68, counting 2 to 70 then 3 to 73
$47+58$	count on 50 from 47, then 3 to 100 then 5 to 105
124-47	count back 40 from 124, then 4 to 80 , then 3 to 77
$570+300$	count on in hundreds from 570
960-500	count back in hundreds from 960
$3.2+0.6$	count on in tenths
$1.7+0.55$	Count on in tenths and hundredths

Re-ordering	
Example Calculation	Possible reordering strategy
$2+7$	$7+2$
$5+13$	$13+5$
$10+2+10$	$10+10+2$
$5+34$	$34+5$
$5+7+5$	$5+5+7$
$23+54$	$54+23$
$12-7-2$	$12-2-7$
$13+21+13$	$13+13+21$ (using double 13)
$6+13+4+3$	$6+4+13+3$
$17+9-7$	$17-7+9$
$28+75$	$75+28$ (thinking of 28 as $25+3$)
$12+17+8+3$	$12+8+17+3$
$25+36+75$	$25+75+36$
$58+47-38$	$58-38+47$
$200+567$	$567+200$
$3+8+7+6+2$	$3+7+8+2+6$
$34+27+46$	$34+46+27$
$180+650$	$650+180$ (thinking of 180 as $150+30$)
$1.7+2.8+0.3$	$1.7+0.3+2.8$
$4.7+5.6-0.7$	$4.7-0.7+5.6=4+5.6$

Partitioning: counting on or back:

Example Calculation	Possible counting on or back strategy
$30+47$	$30+40+7$
$78-40$	$70+8-40=70-40+8$
$17+14$	$10+7+10+4=10+10+7+4$
$23+45$	$40+5+20+3=40+20+5+3$
$68-32$	$60+8-30-2=60-30+8-2$
$55+37$	$50+5+30+7=85+7$
$365-40$	$300+60+5-40=300+60-40+5$
$43+28+51$	$40+3+20+8+50+1=40+20+50+3+8+1$
$5.6+3.7$	$5.6+3+0.7=8.6+0.7$
$4.7-3.5$	$4.7-3-0.5$
$540+280$	$540+200+80$
$276-153$	$276-100-50-3$

Partitioning: bridging through multiples of 10:

Example Calculation	Possible bridging through ten strategy
$5+8$ or $12-7$	$5+5+3$ or $12-2-5$
$65+7$ or $43-6$	$65+5+2$ or $43-3-3$
$24-19$	$19+1+4$
$49+32$	$49+1+31$
$90-27$	$27+3+60$
$57+34$ or $92-25$	$57+3+31$ or $92-2-20-3$
$84-35$	$35+5+40+4$
$607-288$	$288+12+300+7$
$6070-4987$	$4987+13+1000+70$
$1.4+1.7$ or $5.6-$	$1.4+0.6+1.1$ or $5.6-0.6-3-0.1$
3.7	$0.8+0.2+0.15$
$0.8+0.35$	$2.8+0.2+5.3$ or $8.3-2.3-0.5$
$8.3-2.8$	

Partitioning: compensation	
Example Calculation	Possible compensating strategy
$34+9$	
$34+19$	
$34+29$ and so on	$34+10-1$
$34+20-1$	
$34+11$	
$34+21$	
$34+31$ and so on	$34+10+1$
$74+20+1$	
$70-9$	$70-10+1$
$53+12$	$53+10+2$
$53-12$	$53-10-2$
$53+18$	$53+20-2$
$84-18$	$84-20+2$
$38+68$	$38+70-2$
$95-78$	$95-80+2$
$58+32$	$58+30+2$
$64-32$	$64-30-2$
$138+69$	$138+70-1$
$405-399$	$405-400+1$
$21 / 2+11 / 4$	$21 / 2+2-1 / 4$
$5.7+3.9$	$5.7+4.0-0.1$
$6.8-4.9$	$6.8-5.0+0.1$

Partitioning: using near doubles:	
Example Calculation	Possible compensating strategy
$6+7$	is double 6 and add 1 or double 7 and subtract 1
$13+14$	is double 13 and add 1 or double 14 and subtract 1
$39+40$	is double 40 and subtract 1
$18+16$	is double 18 and subtract 2 or double 16 and add 2
$60+70$	is double 60 and add 10 or double 70 and subtract 10
$76+75$	is double 76 and subtract 1 or double 75 and add 1
$160+170$	is double 150 then add 10, then add 20 or double 160 and add 10 or double 170 and subtract 10
$2.5+2.6$	is double 2.5 and add 0.1 or double 2.6 and subtract 0.1

Doubling and halving:
Expectations of learners with examples
Double all numbers to 10 e.g. double 9
---:

Multiplying and dividing by multiples of 10:
Expectations of learners with examples
Recall multiplication and division fact for the 10 times table
e.g. $7 \times 10,60 \div 10$

Multiplying and dividing by single-digit numbers and multiplying by two-digit numbers:

Expectations of learners with examples
Find one quarter by halving one half
Multiply numbers to 20 by a single-digit number e.g. 17×3

Multiply and divide two-digit numbers by 4 or 8 e.g. $26 \times 4,96 \div 8$

Multiply two-digit numbers by 5 or 20 e.g. $32 \times 5,14 \times 20$.

Multiply by 25 or 50 e.g. $48 \times 25,32 \times 50$

Multiply a two-digit and a single digit number

$$
\text { e.g. } 28 \times 7
$$

Divide a two-digit number by a single-digit number e.g. $68 \div 4$

Divide by 25 or 50
e.g. $480 \div 25,3200 \div 50$

Find new facts from given facts e.g. given that three pears cost 24 p, find the cost of 4 pears

Fractions, decimal fractions and percentages:
Expectations of learners with examples
Find half of any even number to 40 or multiple of 10 to 100 e.g. halve 80

Find half of any multiple of 10 up to 200 e.g. halve 170

Find $1 / 2,1 / 3,1 / 4,1 / 5$ and $1 / 10$ of numbers in the 2, 3, 4, 5 and 10 times tables
Find half of any even number to 200
Find unit fractions and simple non-unit fractions of whole numbers or quantities e.g. $3 / 8$ of 24

Recall fractions and decimal fraction equivalents from one-half, quarters, tenths and hundredths
e.g. recall the equivalence of 0.3 and $3 / 10$ and 0.03 and $3 / 100$

Recall percentage equivalents of one-half, one-quarter, three-quarters, tenths and hundredths

Find fractions of whole numbers or quantities
e.g. $2 / 3$ of $27,4 / 5$ of 70 kg

Find $50 \%, 25 \%$ or 10% of whole numbers or quantities e.g. 25% of $20 \mathrm{~kg}, 10 \%$ of $£ 80$

Recall equivalent fractions, decimal fractions and percentages for hundredths e.g. 35% is equivalent to 0.35 or $35 / 100$

Find half of decimal fractions with units and tenths

$$
\text { e.g. half of } 3.2
$$

Find 10% or multiples of 10% of whole numbers and quantities e.g. 30% of $50 \mathrm{ml}, 40 \%$ of $£ 30,70 \%$ of 200 g

Recall commonly used equivalent fractions for $331 / 3 \%$ and $662 / 3 \%$

[^0]: Number Line (Repeated Addition)
 Children should start mental and formal division methods by using the number line method learnt in multiplication, counting on in groups to reach the total then logging the number of groups. E.g. $25 \div 5=$ How many groups of 5 do we count to make 25 ? See multiplication for pictorial representation.

 ## Number Line (Repeated Subtraction)

 Following on from counting in multiples of 2,5 and 10, use this timetable knowledge to make the same steps backwards. You could use a meter stick or beads to reinforce this concretely, This would be further on in the year and greater depth children could even use this to incorporate remainders. (2,5 and 10 multiples)

 E.g. $\mathbf{2 5} \div \mathbf{5}=\mathbf{5}$ Start at 25 , jump backwards in groups of 5 until you reach 0 . If confident, children could begin to chunk the groups to make less jumps (se year 3).
 bar model should continue to be used for problem solving (see year 1)

[^1]: If confident move to dividing with remainders using this

