




**HARPER BELL  
ADVENTIST  
SCHOOL**

# COMPUTING



</>



## HARPER BELL ADVENTIST SCHOOL

### WHERE IS OUR CURRICULUM NOW?

- Computing has not been taught for a number of years
- IT resources are poor within the school – all teaching must be completed from a limited number of ipads
- The DFE CTC is funding an upgrade school Wi-Fi and network infrastructure so pupils have fast, secure and reliable connectivity for digital learning
- IT support for the school has been changed to Bishop's Challenor and an action plan has been created for compliance following a thorough external review.

### NATIONAL REQUIREMENTS

- By the end of primary school, pupils should:
- Understand and apply principles of computer science (abstraction, logic, algorithms, data representation).
- Analyse problems computationally and gain practical experience writing programs.
- Evaluate and apply IT to solve problems.
- Be digitally literate for future work and active participation in a digital world

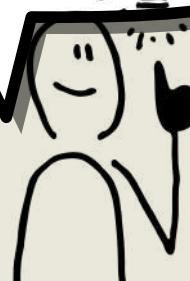
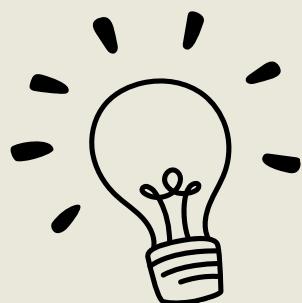
### RESOURCES

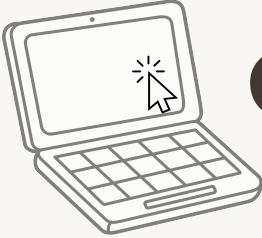
- Teach Computing Curriculum
- The Computing Curriculum (Raspberry Pi Foundation)
- Barefoot Computing
- Computing at School (CAS)
- STEM Learning

### TRENDS IN

### PRIMARY COMPUTING

1. Greater Emphasis on Physical Computing  
Tools like micro:bit, Crumble, and MaKey MaKey are increasingly used to make programming tangible and engaging for younger learners. These hands-on experiences help pupils connect coding with real-world applications.
2. Focus on Inclusivity and Accessibility  
Universal Design for Learning (UDL) principles are being applied to computing lessons to ensure all pupils, including those with SEND, can access and engage with content. Strategies include multimodal resources, assistive technologies, and differentiated tasks.
3. Online Safety and Digital Ethics  
Online safety is now a whole-school priority, integrated into computing lessons from KS1 onward. Teaching digital etiquette and respect for digital creations is becoming standard practice.
4. Computational Thinking Beyond Coding  
Schools are embedding problem-solving, logic, and abstraction into broader subjects, not just programming. Gamified learning (e.g., Robot Turtles, Scratch-based games) is popular for teaching these skills.
5. Addressing Gender Imbalance  
Initiatives to empower girls in computing are gaining traction, with targeted CPD and classroom strategies to close the gender gap.
6. Integration of Emerging Technologies  
There is growing interest in introducing AI concepts and critical thinking about technology use, though this is still underdeveloped in many schools.
7. Curriculum Personalisation & Teacher Autonomy  
While off-the-shelf schemes (like NCCE units) are widely used, there's a push for more creative, flexible approaches to avoid overly structured lessons.
8. Digital Infrastructure & Equity  
Government investment aims to close the digital divide, ensuring all schools meet core digital standards (Wi-Fi, security, connectivity) by 2030.



### HOW DO WE GET THE BIG PICTURE?


- Alongside the National Curriculum, the underlying pillars of our Computing Curriculum are taken from the Ofsted Research review.
- Early computing experiences are crucial
- Time in school for computing is a challenge and the school's technology needs to improve in quality and quantity
- Progression covers 3 pillars – Computer Science, Information Technology and Digital Literacy.
- Declarative (knowing that) and Procedural (knowing how) knowledge need to be sequenced and connected
- Our curriculum includes breadth in the 3 pillars, building skills gradually through sequence and connection.

### SCHOOL PRIORITIES

- Clear sequences of learning in all wider curriculum subjects
- Ensure key knowledge is clear within lesson planning
- Regular check ins on how well pupils remember their learning and filling any gaps swiftly
- To ensure pupils with additional needs are supported

### COMPUTING ON A PAGE





# Computing - Aims and Intent



## Aims

At Harper Bell SDA School, our intent is to provide every pupil with the knowledge, skills, and confidence to thrive in a digital world. We aim to develop computational thinking, problem-solving, and creativity through a progressive curriculum that builds from early years to upper key stages. Despite limited resources, we prioritise core computing concepts—such as algorithms, programming, and digital safety—using a blend of practical and unplugged activities. Our goal is to ensure pupils become responsible, competent, and innovative users of technology, prepared for future learning and employment.

## Implementation

Our computing curriculum is designed to empower pupils to become confident, creative, and responsible users of technology. We follow the Raspberry Pi Foundation's Computing Curriculum, which is research-informed and structured around three strands: Computer Science, Information Technology, and Digital Literacy. Our intent is to develop computational thinking, problem-solving, and creativity through progressive units from EYFS to KS2. We prioritise online safety and inclusivity, ensuring all pupils can access high-quality computing education regardless of prior experience or resources.

### Key Features of Intent:

- Based on national curriculum and Raspberry Pi progression framework.
- Ambitious yet realistic for a low baseline.
- Emphasises digital safety, creativity, and problem-solving.
- Builds logical progression across year groups.
- We use Raspberry Pi Foundation resources to deliver structured, engaging lessons:
- Curriculum Structure
- KS1: Unplugged activities, simple algorithms, introduction to Scratch.
- KS2: Programming with Scratch, data handling, creating media, and understanding networks.
- Cross-curricular links: Use computing in science (data logging), maths (logical reasoning), and art (digital media).

### Teaching Strategies

- Unplugged activities for algorithmic thinking when devices are limited.
- Free tools: Scratch, BBC Micro:bit simulator, Raspberry Pi projects.
- Differentiation: Scaffolded tasks and extension challenges.
- CPD: Staff training via Raspberry Pi Foundation's free courses and Hello World magazine.

# The National Curriculum

A high-quality computing education equips pupils to use computational thinking and creativity to understand and change the world. It has strong links with mathematics, science, and design technology. The curriculum ensures pupils:

- Understand and apply principles of computer science (abstraction, logic, algorithms, data representation).
- Gain practical experience in programming to solve problems.
- Evaluate and apply information technology effectively.
- Become digitally literate, confident, and responsible users of technology

Three Pillars of Progression underpin the Computing curriculum:

## 1. Computer Science

- Core theoretical knowledge: how computers and computation work, including algorithms, data, and programming concepts.
- Provides the foundation for all other computing learning.

## 2. Information Technology (IT)

- Practical application: using technology to create digital artefacts and solve real-world problems.
- Includes understanding systems, networks, and digital tools in context.

## 3. Digital Literacy

- Safe, responsible, and effective use of technology.
- Enables pupils to communicate, collaborate, and participate in a digital society

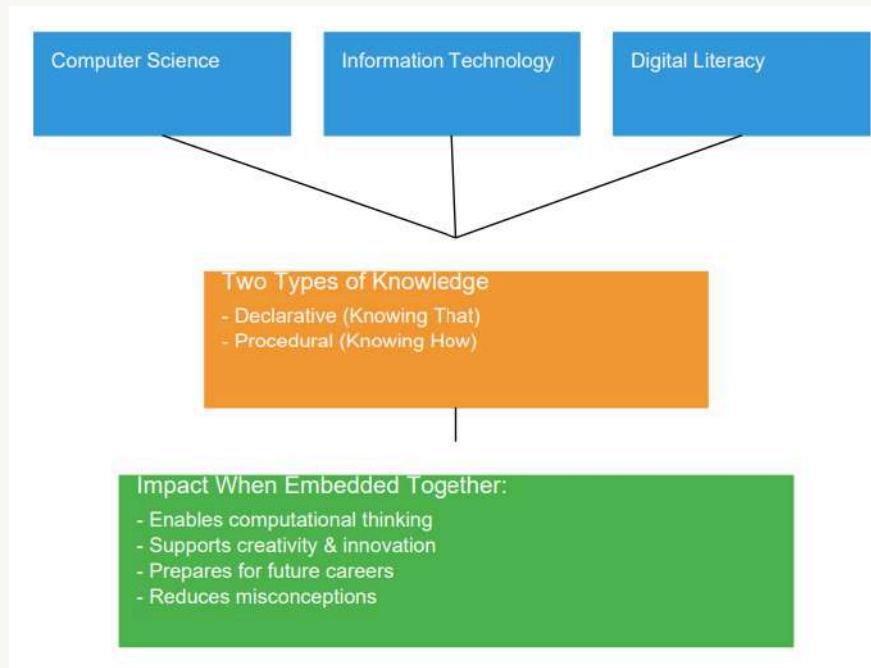
Two Types of Knowledge are key:

Declarative Knowledge (“Knowing That”)

- Facts and concepts about computing, e.g., what an algorithm is, how binary works, principles of networks.

Procedural Knowledge (“Knowing How”)

- Skills and processes, e.g., writing code, debugging, using software tools.


Why Both Matter:

When declarative and procedural knowledge are sequenced and connected, pupils can:

- Move from theory to practice (apply concepts in real tasks).
- Develop mental models for problem-solving.
- Progress from simple tasks (predicting program behaviour) to complex projects (designing modular systems).

Impact of Embedding Both Together

- Builds computational thinking: breaking problems into logical steps.
- Supports creativity and innovation: designing systems and digital artefacts.
- Prepares pupils for future careers and active participation in a digital world.
- Reduces misconceptions (e.g., writing code without understanding its purpose).



## National Curriculum Content

### Key stage 1

Pupils should be taught:

- understand what algorithms are; how they are implemented as programs on digital devices; and that programs execute by following precise and unambiguous instructions
- create and debug simple programs
- use logical reasoning to predict the behaviour of simple programs
- use technology purposefully to create, organise, store, manipulate and retrieve digital content
- recognise common uses of information technology beyond school
- use technology safely and respectfully, keeping personal information private; identify where to go for help and support when they have concerns about content or contact on the internet or other online technologies.

### Key stage 2

Pupils should be taught to:

- design, write and debug programs that accomplish specific goals, including controlling or simulating physical systems; solve problems by decomposing them into smaller parts

- use sequence, selection, and repetition in programs; work with variables and various forms of input and output
- use logical reasoning to explain how some simple algorithms work and to detect and correct errors in algorithms and programs
- understand computer networks including the internet; how they can provide multiple services, such as the world wide web; and the opportunities they offer for communication and collaboration
- use search technologies effectively, appreciate how results are selected and ranked, and be discerning in evaluating digital content
- select, use and combine a variety of software (including internet services) on a range of digital devices to design and create a range of programs, systems and content that accomplish given goals, including collecting, analysing, evaluating and presenting data and information
- use technology safely, respectfully and responsibly; recognise acceptable/unacceptable behaviour; identify a range of ways to report concerns about content and contact.

## Pedagogy

Computing is a broad discipline, and computing teachers require a range of strategies to deliver effective lessons to their learners. Our pedagogical approach consists of 12 key principles underpinned by research: each principle has been shown to contribute to effective teaching and learning in computing.

It is recommended that computing teachers use their professional judgement to review, select, and apply relevant strategies for their learners.

These 12 principles are embodied by The Computing Curriculum, and you can find examples of their application throughout the units of work at every key stage. Beyond delivering these units, you can learn more about these principles and related strategies in *The Big Book of Computing Pedagogy* we have collated ([the-cc.io/pedagogy](https://the-cc.io/pedagogy)).

### Lead with concepts

Support learners in the acquisition of knowledge, through the use of key concepts, terms, and vocabulary, providing opportunities to build a shared and consistent understanding. Glossaries, concept maps ([the-cc.io/gr02](https://the-cc.io/gr02)), and displays, along with regular recall and revision, can support this approach.

### Work together

Encourage collaboration, specifically using pair programming ([the-cc.io/gr03](https://the-cc.io/gr03)) and peer instruction ([the-cc.io/gr04](https://the-cc.io/gr04)), and also structured group tasks. Working together stimulates classroom dialogue, articulation of concepts, and development of shared understanding.

### Get hands-on

Use physical computing and making activities that offer tactile and sensory experiences to enhance learning. Combining electronics and programming with arts and crafts (especially through exploratory projects) provides learners with a creative, engaging context to explore and apply computing concepts.

### Unplug, unpack, repack

Teach new concepts by first unpacking complex terms and ideas, exploring these ideas in unplugged and familiar contexts, then repacking this new understanding into the original concept. This approach, called 'semantic waves' ([the-cc.io/gr06](https://the-cc.io/gr06)), can help learners develop a secure understanding of complex concepts.

### Model everything

Model processes or practices – everything from debugging code to binary number conversions – using techniques such as worked examples ([the-cc.io/gr02](https://the-cc.io/gr02)) and live coding ([the-cc.io/gr05](https://the-cc.io/gr05)). Modelling is particularly beneficial to novices, providing scaffolding that can be gradually taken away.

### Foster program comprehension

Use a variety of activities to consolidate knowledge and understanding of the function and structure of programs ([the-cc.io/gr12](https://the-cc.io/gr12)), including debugging, tracing, and Parson's Problems. Regular comprehension activities will help secure understanding and build connections with new knowledge.

### Create projects

Use project-based learning activities to provide learners with the opportunity to apply and consolidate their knowledge and understanding. Design is an important, often overlooked aspect of computing. Learners can consider how to develop an artefact for a particular user or function, and evaluate it against a set of criteria.

### Add variety

Provide activities with different levels of direction, scaffolding, and support that promote learning, ranging from highly structured to more exploratory tasks. Adapting your instruction to suit different objectives will help keep all learners engaged and encourage greater independence.

### Challenge misconceptions

Use formative questioning to uncover misconceptions and adapt teaching to address them as they occur. Awareness of common misconceptions alongside discussion, concept mapping, peer instruction, or simple quizzes can help identify areas of confusion.

### Make concrete

Bring abstract concepts to life with real-world, contextual examples, and a focus on interdependencies with other curriculum subjects. This can be achieved through the use of unplugged activities, proposing analogies, storytelling around concepts, and finding examples of the concepts in pupils' lives.

### Structure lessons

Use supportive frameworks when planning lessons, such as PRIMM (Predict, Run, Investigate, Modify, Make – [the-cc.io/gr11](https://the-cc.io/gr11)) and UMC (Use-Modify-Create). These frameworks are based on research and ensure that differentiation can be built in at various stages of the lesson.

### Read and explore code first

When teaching programming, focus first on code 'reading' activities, before code writing. With both block-based and text-based programming, encourage pupils to review and interpret blocks of code. Research has shown that being able to read, trace, and explain code augments pupils' ability to write code.

# EARLY Years

The EYFS does not treat computing as a separate subject; instead, it embeds technology and computational thinking across seven areas of learning, particularly:

- Understanding the World – exploring how things work, using technology in everyday contexts.
- Expressive Arts and Design – using digital tools creatively (e.g., drawing apps, photography).
- Personal, Social and Emotional Development – resilience, independence, and sensible screen time.
- Physical Development – fine motor skills for using devices and tools confidently.

## Examples of in practice:

- Children use programmable toys (e.g., Bee-Bots) to develop sequencing and directional language.
- Access to age-appropriate software for drawing, sorting, and problem-solving.
- Incorporating technology into role play (e.g., phones, cameras) to make learning meaningful.
- Using interactive whiteboards and apps like Purple Mash for creative and exploratory tasks.

## Characteristics of Effective Learning

### EYFS promotes:

- Playing and exploring – experimenting with digital tools and devices.
- Active learning – persisting with challenges (e.g., completing a simple program).
- Creating and thinking critically – making links, solving problems, and developing strategies


## Research Review Insights

### Ofsted emphasizes:

- Early exposure matters: Young children can grasp core computing concepts like algorithms and problem-solving when taught through play and exploration.
- Vocabulary development: Introduce terms like sequence, pattern, algorithm in everyday contexts.
- Cross-domain integration: Computing should not be siloed; link it with maths (patterns, sequencing), literacy (story sequencing), and physical development (fine motor control for devices).
- Knowledge building: Even in EYFS, start developing declarative knowledge (knowing what technology is and how it works) and procedural knowledge (knowing how to use it). These underpin later computational thinking.

### When embedded effectively:

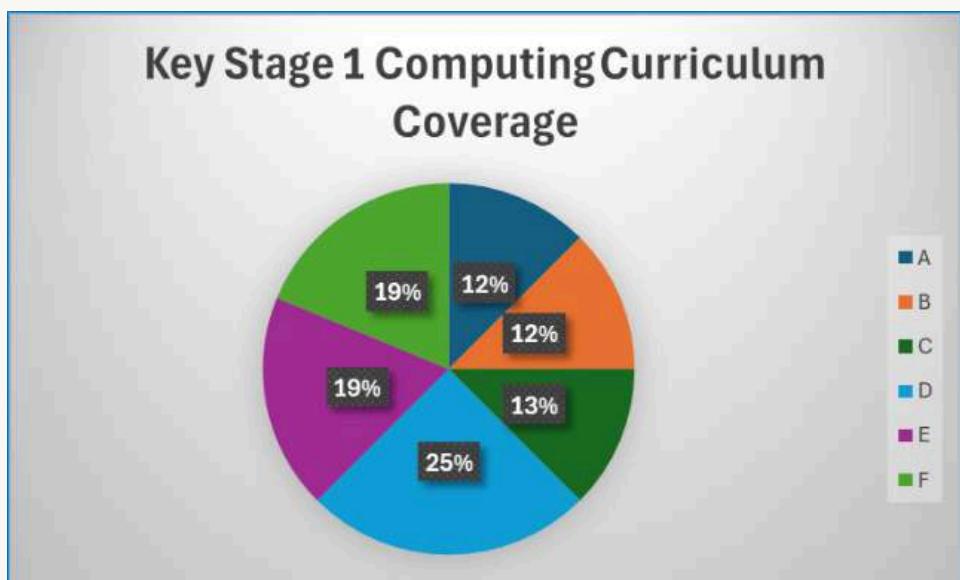
- Children develop problem-solving and logical reasoning early.
- They gain confidence with technology, preparing for KS1 computing.
- They learn safe and purposeful use of devices, supporting digital literacy.
- Builds a foundation for computational thinking, which is essential for progression.



# The National Curriculum Coverage and Compliance

## Key Stage 1

**A- understand what algorithms are; how they are implemented as programs on digital devices; and that programs execute by following precise and unambiguous instructions**


**B- create and debug simple programs**

**C- use logical reasoning to predict the behaviour of simple programs**

**D- use technology purposefully to create, organise, store, manipulate and retrieve digital content**

**E- recognise common uses of information technology beyond school and IT**

**F- use technology safely and respectfully, keeping personal information private; identify where to go for help and support when they have concerns about content or contact on the internet or other online technologies**



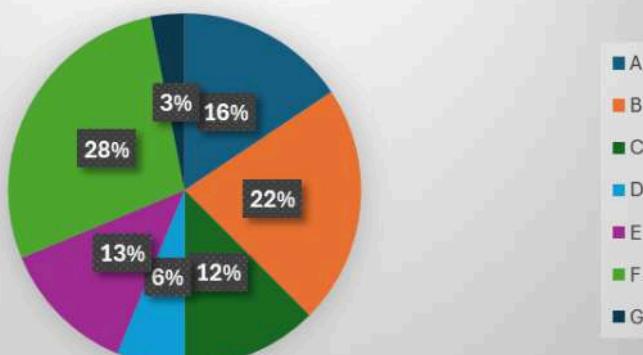
# The National Curriculum Coverage and Compliance

## Key Stage 2

**A - design, write and debug programs that accomplish specific goals, including controlling or simulating physical systems; solve problems by decomposing them into smaller parts**

**B - use sequence, selection, and repetition in programs; work with variables and various forms of input and output**

**C - use logical reasoning to explain how some simple algorithms work and to detect and correct errors in algorithms and programs**


**D - understand computer networks, including the internet; how they can provide multiple services, such as the World Wide Web, and the opportunities they offer for communication and collaboration**

**E - use search technologies effectively, appreciate how results are selected and ranked, and be discerning in evaluating digital content**

**F - select, use and combine a variety of software (including internet services) on a range of digital devices to design and create a range of programs, systems and content that accomplish given goals, including collecting, analysing, evaluating and presenting data and information**

**G - use technology safely, respectfully and responsibly; recognise acceptable/unacceptable behaviour; identify a range of ways to report concerns about content and contact**

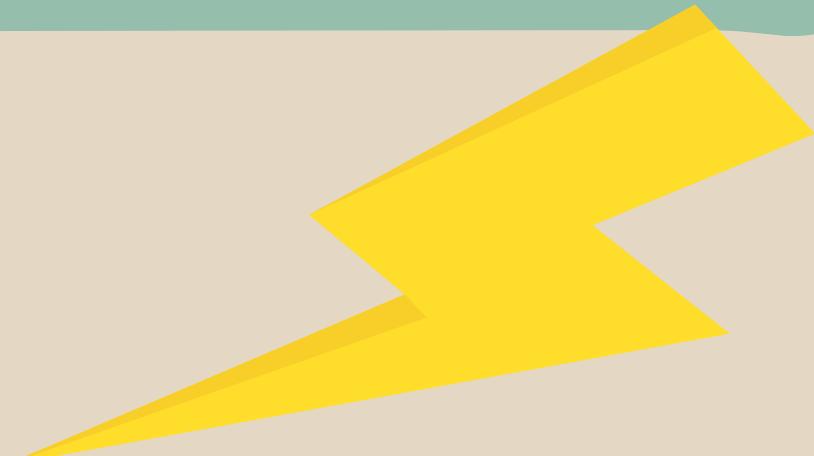
**Key Stage 2 Computing Curriculum Coverage**



# How we support the learning of Computing

At Harper Bell SDA School, our Computing curriculum adopts a spiral model; this is where key knowledge and skills are revisited and built on at a level appropriate to children's development.

A spiral curriculum enables teachers to introduce complex topics to children in a way that is both accessible and engaging. This method builds a strong pedagogical foundation, which can be developed further as children progress through primary school. Children have multiple opportunities to master new skills and gain confidence in their abilities as they revisit and build upon previously taught concepts. Our 3 key areas rotate termly:


Autumn - Computer Systems and Networks or Data Handling

Spring - Programming

Summer - Creating Media

## The use of Flashbacks

Research indicates that students must review information regularly to move it into long-term memory and form connections between ideas. At Harper Bell SDA, we are developing the consistent use of Flashbacks at the start of lessons. The Flashbacks provide an opportunity for children to revisit key learning from last lesson, last term, last year or last Key Stage. Teachers use this as an opportunity to check retention of knowledge and skills and select an appropriate action to close any gaps emerging.



# OVERVIEW OF THEMES

Year 1

**Computer Systems and Networks: Technology around us - cover Y1 and y2 (12 lessons)**

**Programming B: Programming animations**

**Creating Media: Digital writing**

Year 2

**Data and Information: Pictograms**

**Programming B: Programming Quizzes**

**Creating Media: Digital Music**

Year 3

**Computer Systems and Networks: Connecting Computers**  
**Data and Information: Databases**

**Programming: Sequencing Sounds**

**Creating Media: Stop Frame Animation**

Year 4

**Data and Information: Data Logging**

**Programming: Repetition in Games**

**Creating Media: Audio Production**

# OVERVIEW OF THEMES

## Year 5

**Computer Systems and Networks: The Internet (y4) and Systems and Searching (12 lessons)**

**Programming: Selection in Physical Computing**

**Creating Media: Video Production**

## Year 6

**Data and Information: Flat File Databases (y5) and Spreadsheets**

**Programming: Variables in Games**

**Creating Media: 3D Modelling**

### Computing Narrative: Spiral Approach from EYFS to Year 6

Our computing curriculum follows a spiral structure, ensuring that concepts introduced in EYFS are revisited and deepened through KS1 and KS2. This approach builds control, proficiency, and confidence over time.

#### EYFS Foundation

- Focus: Exploration through play (e.g., programmable toys, simple apps).
- Declarative Knowledge: Understanding what technology is and its purpose.
- Procedural Knowledge: Using devices to take photos, move a robot, or draw digitally.
- Goal: Develop curiosity and basic vocabulary (e.g., “algorithm,” “sequence”).

#### KS1 (Years 1–2)

- Autumn: Computer Systems & Networks – understanding technology around us.
- Spring: Programming – creating and debugging simple programs (Scratch Jr.).
- Summer: Creating Media – digital painting and photography.
- Declarative: What algorithms are, how programs follow instructions.
- Procedural: Writing simple code, using tools to create digital content.
- Progression: Move from recognition to purposeful use of technology.

#### KS2 (Years 3–6)

- Year 3–4: Networks, data logging, stop-motion animation, repetition in code.
- Year 5–6: Search engines, variables, 3D modelling, video editing.
- Declarative: Understanding networks, data structures, programming concepts (sequence, selection, repetition, variables).
- Procedural: Designing, writing, and debugging increasingly complex programs; creating multimedia projects.
- Goal: Combine knowledge types to enable computational thinking and creativity.

# ASSESSMENT

## Two Main Types of Assessment in Computing

### 1. Formative Assessment

- Occurs before and during learning.
- Raspberry Pi recommends:
  - Flashbacks / Retrieval Practice: Revisiting prior concepts at the start of lessons (e.g., “What is an algorithm?” or “How do we debug a program?”).
  - Live Questioning & Feedback: Teachers use probing questions during programming tasks and adapt instruction based on misconceptions.
  - Peer Discussion: Pupils explain their code or reasoning to others, reinforcing understanding.
  - Observation of Practical Tasks: Watching pupils use Scratch or micro:bits to identify gaps in procedural knowledge.

### 2. Summative Assessment

- Occurs at the end of a unit or project.
- Raspberry Pi uses:
  - Unit Markers / End-of-Unit Quizzes: Short, focused questions to check declarative knowledge (e.g., “What does a variable do?”).
  - Project Outcomes: Completed programs or digital artefacts demonstrate procedural knowledge.
  - Teacher Judgement: Based on evidence from coding tasks and media projects.

## Flashbacks in Computing:

### Computing flashbacks revisit:

- Key vocabulary (algorithm, sequence, variable).
- Prior skills (e.g., debugging, using loops).
- Previous tools (Scratch Jr → Scratch → micro:bits).

### Digital Portfolios:

- Pupils maintain:
  - Coding Journals: Screenshots of code, reflections on debugging.
  - Media Logs: Notes on design choices for animations, videos, or 3D models.
  - Self-Assessment: Pupils annotate what worked and what they would improve.

### Unit Markers:

### Computing unit markers include:

- Knowledge Checks: Multiple-choice or short-answer questions on concepts.
- Expected Outcomes: Example programs or media artefacts for comparison.

## Declarative vs Procedural Assessment

- Declarative Knowledge:
- Assessed through quizzes, oral questioning, and flashbacks.
- Procedural Knowledge:
- Evident in projects, coding tasks, and portfolio entries.

# KEY STAGE 1 DETAILED OVERVIEW

# YEAR 3 / 4 OVERVIEW

| Year Group | Suggested Order | Unit Name                                             | Lesson | Learning Objectives                                                                  | Success Criteria                                                                                                                                                                                                                                                                                                                                                       | National Curriculum Links                     | RPF Computing Taxonomy                                   | Cross Curricular Links | Education for a Connected World                            |
|------------|-----------------|-------------------------------------------------------|--------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------------------|------------------------|------------------------------------------------------------|
| 3          | 1               | Computing systems and networks – Connecting computers | 1      | -To explain how digital devices function                                             | -I can explain that digital devices accept inputs<br>-I can explain that digital devices produce outputs<br>-I can follow a process                                                                                                                                                                                                                                    | 2.1<br>2.2<br>2.3<br>2.4<br>2.5<br>2.6<br>2.7 | AL<br>CM<br>CS<br>DD<br>DI<br>ET<br>IT<br>NW<br>PG<br>SS |                        |                                                            |
| 3          | 1               | Computing systems and networks – Connecting computers | 2      | -To identify input and output devices                                                | -I can classify input and output devices<br>-I can describe simple processes<br>-I can follow a process<br>-I can explain how I use digital devices for different activities<br>-I can recognise similarities between using digital devices and physical objects                                                                                                       |                                               |                                                          |                        |                                                            |
| 3          | 1               | Computing systems and networks – Connecting computers | 3      | -To recognise how digital devices can change the way we work                         | -I can recognise how messages are passed through multiple devices<br>-I can recognise different connections<br>-I can recognise how multiple devices are connected together<br>-I can recognise how networked devices can make my life easier<br>-I can identify the benefits of computer networks<br>-I can identify two groups of objects separated by one attribute |                                               |                                                          |                        |                                                            |
| 3          | 1               | Computing systems and networks – Connecting computers | 4      | -To explain how a computer network can be used to share information                  | -I can recognise how digital devices for different activities                                                                                                                                                                                                                                                                                                          |                                               |                                                          |                        |                                                            |
| 3          | 1               | Computing systems and networks – Connecting computers | 5      | -To recognise the physical components of a network                                   | -I can investigate questions with yes/no answers<br>-I can recognise questions about a collection of objects<br>-I can group objects into a tree structure<br>-I can create a group of objects within an existing group<br>-I can select an attribute to separate objects into groups                                                                                  |                                               |                                                          |                        |                                                            |
| 3          | 4               | Data and information – Branching databases            | 1      | -To create questions with yes/no answers                                             | -I can group objects using my own yes/no questions<br>-I can select objects to arrange in a branching database                                                                                                                                                                                                                                                         |                                               |                                                          |                        |                                                            |
| 3          | 4               | Data and information – Branching databases            | 2      | -To identify the attributes needed to collect data about an object                   | -I can test my branching database to see if it works                                                                                                                                                                                                                                                                                                                   |                                               |                                                          |                        |                                                            |
| 3          | 4               | Data and information – Branching databases            | 3      | -To create a branching database                                                      |                                                                                                                                                                                                                                                                                                                                                                        |                                               |                                                          |                        |                                                            |
| 3          | 4               | Data and information – Branching databases            | 4      | -To explain why it is helpful for a database to be well structured                   | -I can compare two branching database structures<br>-I can create yes/no questions using given attributes<br>-I can identify that questions need to be ordered correctly to split into initially created groups<br>-I can create a physical version of a branching database                                                                                            |                                               |                                                          |                        |                                                            |
| 3          | 4               | Data and information – Branching databases            | 5      | -To plan the structure of a branching database                                       | -I can create questions that will enable objects to be uniquely identified<br>-I can independently create questions to use in a branching database                                                                                                                                                                                                                     |                                               |                                                          |                        |                                                            |
| 3          | 4               | Data and information – Branching databases            | 6      | -To independently create an identification tool                                      | -I can create a branching database that reflects my plan<br>-I can suggest real-world uses for branching databases<br>-I can work with a partner to test my identification tool                                                                                                                                                                                        |                                               |                                                          |                        |                                                            |
| 3          | 3               | Programming A - Sequencing sounds                     | 1      | -To explore a new programming environment                                            | -I can explain that objects in Scratch have attributes (linked to)<br>-I can identify the objects in a Scratch project that have attributes<br>-I can recognise that commands in Scratch are represented as text<br>-I can identify a word which describes an on-screen action for my plan                                                                             |                                               |                                                          |                        |                                                            |
| 3          | 3               | Programming A - Sequencing sounds                     | 2      | -To identify that commands have an outcome                                           | -I can create a sequence of connected commands<br>-I can explain that the objects in my project will respond exactly to the code                                                                                                                                                                                                                                       |                                               |                                                          |                        |                                                            |
| 3          | 3               | Programming A - Sequencing sounds                     | 3      | -To explain that a program has a start                                               | -I can identify different ways<br>-I can combine sound commands                                                                                                                                                                                                                                                                                                        |                                               |                                                          |                        |                                                            |
| 3          | 3               | Programming A - Sequencing sounds                     | 4      | -To recognise that a sequence of commands can have an order                          | -I can order notes into a sequence<br>-I can identify and name the objects I will need for my project<br>-I can implement my algorithm as code                                                                                                                                                                                                                         |                                               |                                                          |                        |                                                            |
| 3          | 3               | Programming A - Sequencing sounds                     | 5      | -To create a project from a task description                                         | -I can relate a task description to a design                                                                                                                                                                                                                                                                                                                           |                                               |                                                          |                        |                                                            |
| 3          | 2               | Creating media - Stop-frame animation                 | 1      | -To explain that animation is a sequence of drawings or photographs                  | -I can create an effective flip book-style animation<br>-I can draw a sequence of pictures<br>-I can explain how an animation/flip book works                                                                                                                                                                                                                          |                                               |                                                          |                        | - Copyright and ownership<br>- Managing online information |
| 3          | 2               | Creating media - Stop-frame animation                 | 2      | -To relate animated movement with a sequence of images                               | -I can create a sequence of connected frames<br>-I can identify what an animation will look like<br>-I can break down a story in settings, characters and events<br>-I can create a storyboard                                                                                                                                                                         |                                               |                                                          |                        | - Copyright and ownership<br>- Managing online information |
| 3          | 2               | Creating media - Stop-frame animation                 | 3      | -To plan an animation                                                                | -I can evaluate the quality of my animation<br>-I can review a sequence of frames to check my work                                                                                                                                                                                                                                                                     |                                               |                                                          |                        | - Copyright and ownership<br>- Managing online information |
| 3          | 2               | Creating media - Stop-frame animation                 | 4      | -To identify the need to work consistently and carefully                             | -I can use onion skinning to help me make small changes between frames<br>-I can evaluate the quality of my animation                                                                                                                                                                                                                                                  |                                               |                                                          |                        | - Copyright and ownership<br>- Managing online information |
| 3          | 2               | Creating media - Stop-frame animation                 | 5      | -To review and improve an animation                                                  | -I can explain how to make my animation better<br>-I can evaluate my final film<br>-I can evaluate my animation<br>-I can evaluate the impact of adding other media to my animation                                                                                                                                                                                    |                                               |                                                          |                        | - Copyright and ownership<br>- Managing online information |
| 3          | 2               | Creating media - Stop-frame animation                 | 6      | -To evaluate the impact of adding other media to an animation                        |                                                                                                                                                                                                                                                                                                                                                                        |                                               |                                                          |                        | - Copyright and ownership<br>- Managing online information |
| 4          | 4               | Data and information – Data logging                   | 1      | -To explain that data gathered over time can be used to answer questions             | -I can choose a data set to answer a given question<br>-I can identify data that can be gathered over time<br>-I can suggest questions that can be answered using a data set<br>-I can explain what data can be collected using sensors                                                                                                                                |                                               |                                                          |                        |                                                            |
| 4          | 4               | Data and information – Data logging                   | 2      | -To use a digital device to collect data automatically                               | -I can identify that data from sensors can be recorded<br>-I can use data from a sensor to answer a given question<br>-I can identify the intervals used to collect data<br>-I can recognise that a data logger collects data at regular intervals                                                                                                                     |                                               |                                                          |                        |                                                            |
| 4          | 4               | Data and information – Data logging                   | 3      | -To explain that a data logger collects 'data points' from sensors over time         | -I can talk about the data that I have captured<br>-I can explain that there are different ways to view data                                                                                                                                                                                                                                                           |                                               |                                                          |                        |                                                            |
| 4          | 4               | Data and information – Data logging                   | 4      | -To recognise how a computer can help us analyse data                                | -I can sort data to find information<br>-I can view data at different levels of detail                                                                                                                                                                                                                                                                                 |                                               |                                                          |                        |                                                            |
| 4          | 4               | Data and information – Data logging                   | 5      | -To identify the data needed to answer questions                                     | -I can plan how to collect data using a data logger<br>-I can propose a question that can be answered using logged data                                                                                                                                                                                                                                                |                                               |                                                          |                        |                                                            |
| 4          | 6               | Programming B – Repetition in games                   | 1      | -To develop the use of count-controlled loops in a different programming environment | -I can list an everyday task as a set of instructions repeated over and over again<br>-I can predict the outcome of a snippet of code<br>-I can choose when to use a count-controlled and an infinite loop                                                                                                                                                             |                                               |                                                          |                        |                                                            |
| 4          | 6               | Programming B – Repetition in games                   | 2      | -To explain that in programming there are infinite loops and count controlled loops  | -I can predict what programming language is capable of more than one process to be run at once<br>-I can choose which action will be repeated for each object<br>-I can evaluate the effectiveness of the repeated sequences in my program                                                                                                                             |                                               |                                                          |                        |                                                            |
| 4          | 6               | Programming B – Repetition in games                   | 3      | -To develop a design that includes two or more loops which run at the same time      | -I can explain the effect of my changes<br>-I can use a loop to change a loop<br>-I can re-use existing code when on new sprites                                                                                                                                                                                                                                       |                                               |                                                          |                        |                                                            |
| 4          | 6               | Programming B – Repetition in games                   | 4      | -To modify an infinite loop in a given program                                       | -I can develop my own design explaining what my program does<br>-I can evaluate the use of repetition in a project                                                                                                                                                                                                                                                     |                                               |                                                          |                        |                                                            |
| 4          | 6               | Programming B – Repetition in games                   | 5      | -To design a project that includes repetition                                        | -I can select key parts of a given project to use in my own design<br>-I can define the algorithm in my design                                                                                                                                                                                                                                                         |                                               |                                                          |                        |                                                            |
| 4          | 6               | Programming B – Repetition in games                   | 6      | -To create a project that includes repetition                                        | -I can choose appropriate edits to improve my podcast<br>-I can listen to an audio recording to identify its strengths                                                                                                                                                                                                                                                 |                                               |                                                          |                        |                                                            |
| 4          | 2               | Creating media - Audio production                     | 5      | -To evaluate the effective use of audio                                              |                                                                                                                                                                                                                                                                                                                                                                        |                                               |                                                          |                        | - Copyright and ownership                                  |

# YEAR 5 / 6 DETAILED OVERVIEW

|   |   |                                            |   |                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |                        |
|---|---|--------------------------------------------|---|----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|------------------------|
| 6 | 3 | Programming A – Variables in games         | 1 | <ul style="list-style-type: none"> <li>-To define a 'variable' as something that is changeable</li> </ul>                              | <ul style="list-style-type: none"> <li>-I can explain that the way a variable changes can be defined</li> <li>-I can identify examples of information that is variable</li> <li>-I can identify that variables can hold numbers or letters</li> <li>-I can explain that a variable has a name and a value</li> <li>-I can identify a program variable as a placeholder in memory for a value</li> <li>-I can recognise that the value of a variable can be changed</li> <li>-I can decide where in a program to change a variable</li> <li>-I can make use of an event in a program to set a variable</li> <li>-I can recognise that the value of a variable can be used by a program</li> <li>-I can use a variable in my project</li> <li>-I can create algorithms for my project</li> <li>-I can explain my design choices</li> <li>-I choose a variable and identifies the role of a variable</li> <li>-I can test the code that I have written</li> <li>-I can identify ways that my game could improve</li> <li>-I can share my game with others</li> <li>-I can use variables to extend my game</li> <li>-I can use variables to store data</li> <li>-I can explain how information can be recorded</li> <li>-I can order, sort, and group my data cards</li> <li>-I can choose a variable and record data by its answer</li> </ul> |  |  |                        |
| 6 | 3 | Programming A – Variables in games         | 2 | <ul style="list-style-type: none"> <li>-To explain why a variable is used in a program</li> </ul>                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |                        |
| 6 | 3 | Programming A – Variables in games         | 3 | <ul style="list-style-type: none"> <li>-To choose how to improve a game by using variables</li> </ul>                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |                        |
| 6 | 3 | Programming A – Variables in games         | 4 | <ul style="list-style-type: none"> <li>-To design a project that builds on a given example</li> </ul>                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |                        |
| 6 | 3 | Programming A – Variables in games         | 5 | <ul style="list-style-type: none"> <li>-To use my design to create a project</li> </ul>                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |                        |
| 6 | 3 | Programming A – Variables in games         | 6 | <ul style="list-style-type: none"> <li>-To evaluate my project</li> </ul>                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |                        |
| 6 | 4 | Data and information – Flat-file databases | 1 | <ul style="list-style-type: none"> <li>-To use a form to record information</li> </ul>                                                 | <ul style="list-style-type: none"> <li>-I can identify what a field and a record is in a database</li> <li>-I can navigate a flat-file database to compare different types of information</li> <li>-I can combine grouping and sorting to answer questions</li> <li>-I can identify that data can be grouped using multiple criteria</li> <li>-I can group information using a database</li> <li>-I can choose multiple criteria to answer a given question</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |                        |
| 6 | 4 | Data and information – Flat-file databases | 2 | <ul style="list-style-type: none"> <li>-To compare paper and computer-based databases</li> </ul>                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |                        |
| 6 | 4 | Data and information – Flat-file databases | 3 | <ul style="list-style-type: none"> <li>-To put the following questions by <b>grouping</b> and <b>answering</b> questions by</li> </ul> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |                        |
| 6 | 4 | Data and information – Flat-file databases | 4 | <ul style="list-style-type: none"> <li>-To explain that tools can be used to select specific data</li> </ul>                           | <ul style="list-style-type: none"> <li>-I can choose which field and value are required to answer a given question</li> <li>-I can identify that 'AND' and 'OR' can be used to refine data selection</li> <li>-I can explain the benefits of using a computer to create charts</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |                        |
| 6 | 4 | Data and information – Flat-file databases | 5 | <ul style="list-style-type: none"> <li>-To explain how computer programs can be used to answer questions</li> </ul>                    | <ul style="list-style-type: none"> <li>-I can refine a chart by selecting a particular filter to compare data</li> <li>-I can explain situations that will need more than one field to answer</li> <li>-I can present my findings to a group</li> <li>-I can refine a search in a real-world context</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |                        |
| 6 | 4 | Data and information – Flat-file databases | 6 | <ul style="list-style-type: none"> <li>-To use a real-world database to answer questions</li> </ul>                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |                        |
| 6 | 5 | Creating media – 3D Modelling              | 1 | <ul style="list-style-type: none"> <li>-To understand how we can work in three dimensions</li> </ul>                                   | <ul style="list-style-type: none"> <li>-I can add 3D shapes to a project</li> <li>-I can move 3D shapes relative to one another</li> <li>-I can rotate 3D shapes in different perspectives</li> <li>-I can resize a 3D object</li> <li>-I can recolour a 3D object</li> <li>-I can resize an object in three dimensions</li> <li>-I can identify that objects have three dimensions</li> <li>-I can accurately size 3D objects</li> <li>-I can combine a number of 3D objects</li> <li>-I can explain how 3D objects can be rotated in 3D space</li> <li>-I can analyse a 3D model</li> <li>-I can choose objects to use in a 3D model</li> <li>-I can combine objects in a design</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  | - Privacy and security |
| 6 | 5 | Creating media – 3D Modelling              | 2 | <ul style="list-style-type: none"> <li>-To identify that digital 3D objects can be modified</li> </ul>                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  | - Privacy and security |
| 6 | 5 | Creating media – 3D Modelling              | 3 | <ul style="list-style-type: none"> <li>-To recognise that objects can be combined in a design</li> </ul>                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  | - Privacy and security |
| 6 | 5 | Creating media – 3D Modelling              | 4 | <ul style="list-style-type: none"> <li>-To create a 3D model for a given purpose</li> </ul>                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  | - Privacy and security |
| 6 | 5 | Creating media – 3D Modelling              | 5 | <ul style="list-style-type: none"> <li>-To plan my own 3D model</li> </ul>                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  | - Privacy and security |
| 6 | 5 | Creating media – 3D Modelling              | 6 | <ul style="list-style-type: none"> <li>-To create my own digital 3D model</li> </ul>                                                   | <ul style="list-style-type: none"> <li>-I can construct a 3D model based on a design</li> <li>-I can explain how my 3D model could be improved</li> <li>-I can modify my 3D model to improve it</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  | - Privacy and security |

# VOCABULARY DEVELOPMENT

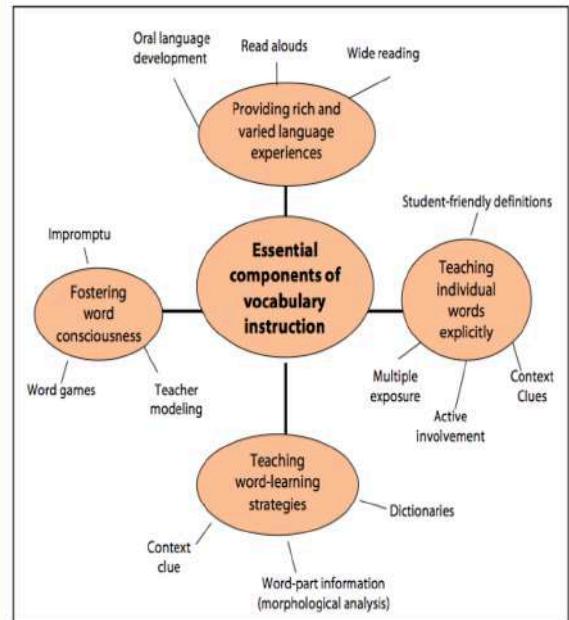



Figure 1. The four essential components of vocabulary instruction. Adapted from Graves, 2006.

## The Three Pillars of Vocabulary Teaching

1. Explicit vocabulary teaching
2. Incidental vocabulary learning
3. Cultivating 'word consciousness'

### Explicit vocabulary teaching

Explicit vocabulary teaching can provide a vital boost to our pupils' vocabulary development. At Harper Bell SDA School, our tier overview explicitly outlines vocabulary to be taught, retrieved and deeply embedded into the learning of our pupils. This vocabulary forms part of the vocabulary schemas developed across our Art curriculum. The Curriculum has been carefully aligned to promote opportunities for explicit vocabulary teaching.

### Incidental vocabulary learning

We are aware that not all words can be taught! In Computing, we have carefully selected subject specific vocabulary and tier 2 words to enrich the language development of our pupils. To support this, we have developed a reading overview which links to the development of Computing knowledge and skills, whilst also providing a wealth of vocabulary to further develop and reinforce the vocabulary introduced within lessons. Reading rich texts, both in the classroom and beyond the school gates, is critical for language and vocabulary development. Our teachers flood their classrooms with vocabulary alongside the explicit teaching of vocabulary.

### Cultivating 'word consciousness'

Our aim is to develop a curiosity about words and how they have developed by exploring them. We aim for our pupils to make connections between words and roots of words.

“Education is the process of preparing us for the big world and the big world has big words. The more big words I know, the better I will survive in it. Because there are hundreds of thousands of big words in English, I cannot learn them all. But this does not mean that I shouldn't try to learn some.”

David Crystal, ‘Words, Words, Words’

# VOCABULARY OVERVIEW

**\* VOCABULARY FROM PREVIOUS UNITS ARE REVISITED AND RETRIEVED TO PROMOTE THESE BEING EMBEDDED IN THE LONG TERM MEMORY AND TO FURTHER DEVELOP THE SCHEMA BETWEEN LEARNING**

| <b>Year 1</b>                                                                  |                                                                          |                                                                                                                                                                                          |                                                                                                                                                                                                              |
|--------------------------------------------------------------------------------|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Computing systems and networks - Technology around us</b>                   | <b>Computing systems and networks - Information technology around us</b> | <b>Programming B - Programming animations</b>                                                                                                                                            | <b>Creating media - Digital writing</b>                                                                                                                                                                      |
| technology, computer, mouse, trackpad, keyboard, screen, double-click, typing. | Information technology (IT), computer, barcode, scanner/scan             | ScratchJr, command, sprite, compare, programming, area, block, joining, start, run, program, background, delete, reset, algorithm, predict, effect, change, value, instructions, design. | word processor, keyboard, keys, letters, type, numbers, space, backspace, text cursor, capital letters, toolbar, bold, italic, underline, mouse, select, font, undo, redo, format, compare, typing, writing. |

| <b>Year 2</b>                                       |                                                                                                                                |                                                                                                                                             |
|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Data and information - Pictograms</b>            | <b>Programming B - Programming quizzes</b>                                                                                     | <b>Creating media - Digital music</b>                                                                                                       |
| more than, less than, most, least, common, popular, | sequence, command, program, run, start, outcome, predict, blocks, design, actions, sprite, project, modify, change, algorithm, | music, quiet, loud, feelings, emotions, pattern, rhythm, pulse, pitch, tempo, rhythm, notes, create, emotion, beat, instrument, open, edit. |

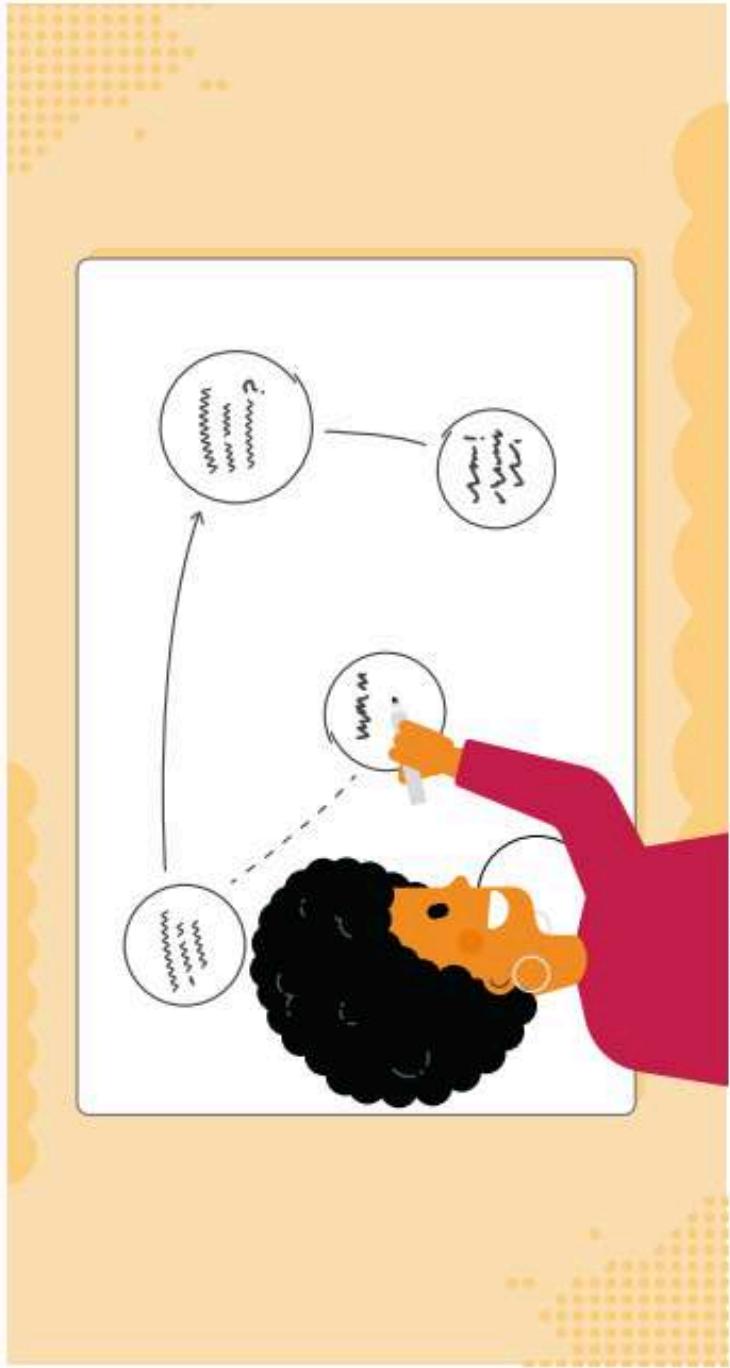
## Year 3

| <b>Computing systems and networks – Connecting computers</b>                                                                                                                  | <b>Programming A – Sequencing sounds</b>                                                                                                                                                                                    | <b>Creating Media – Stop-frame animation</b>                                                                                                                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| digital device, input, process, output, program, digital, non-digital, connection, network, switch, server, wireless access point, cables, sockets                            | Scratch, programming, blocks, commands, code, sprite, costume, stage, backdrop, motion, turn, point in direction, go to, glide, sequence, event, task, design, runthecode, order, note, chord, algorithm, bug, debug, code. | animation, flip book, stop-frame, frame, sequence, image, photograph, setting, character, events, onion skinning, consistency, evaluation, delete, media, import, transition. |
| <b>Data and Information – Branching databases</b>                                                                                                                             |                                                                                                                                                                                                                             |                                                                                                                                                                               |
| attribute, value, questions, table, objects, branching, database, objects, equal, even, separate, structure, compare, order, organise, selecting, information, decision tree. |                                                                                                                                                                                                                             |                                                                                                                                                                               |

## Year 4

| <b>Data and Information – Data logging</b>                                                                                                                  | <b>Year 4 Creating Media – Audio production</b>                                                                                                                                                  | <b>Programming B – Repetition in games</b>                                                                                                                                                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| data, table, layout, input device, sensor, logger, logging, data point, interval, analyse, dataset, import, export, logged, collection, review, conclusion. | audio, microphone, speaker, headphones, input device, output device, sound, podcast, edit, trim, align, layer, import, record, playback, selection, load, save, export, MP3, evaluate, feedback. | Scratch, programming, sprite, blocks, code, loop, repeat, value, infinite loop, count-controlled loop, costume, repetition, forever, animate, event block, duplicate, modify, design, algorithm, debug, refine, evaluate. |

| <b>Computing systems and networks – systems and searching</b>                                                                                                                                                                                                                                       | <b>Computing systems and networks – Connecting computers – The internet</b><br>internet, network, router,                                                                                                                                         | <b>Creating Media – Video production</b>                                                                                                                                                                                                                                                                        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| system, connection, digital, input, process, storage, output, search, search engine, refine, index, bot, ordering, links, algorithm, search engine optimisation (SEO), web crawler, content creator, selection, ranking.                                                                            | security, switch, server, wireless access point (WAP), website, web page, web address, routing, web browser, WorldWide Web, content, links, files, use, download, sharing, ownership, permission, information, accurate, honest, content, adverts | video, audio, camera, talking head, panning, close up, video camera, microphone, lens, mid-range, long shot, moving subject, side by side, angle (high, low, normal), static, zoom, pan, tilt, storyboard, filming, review, import, split, trim, clip, edit, reshoot, delete, reorder, export, evaluate, share. |
| <b>Programming A – Selection in physical computing</b>                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                 |
| microcontroller, USB, components, connection, infinite loop, output component, motor, repetition, count-controlled loop, Crumble controller, switch, LED, Sparkle, crocodile clips, connect, battery box, program, condition, Input, output, selection, action, debug, circuit, power, cell, buzzer |                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                 |


# Year 6

|                                                                                                                                                                                                                        | <b>Data and Information</b><br><b>- Flat-file databases</b>                                                                                                                                                                                                                                                                     | <b>Creating Media 3D</b><br><b>Modelling</b>                                                                                                                                                                                                           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| database, data, information, record, field, sort, order, group, search, value, criteria, graph, chart, axis, compare, filter, presentation.                                                                            | <b>-Introduction to spreadsheets</b><br><br>data, collecting, table, structure, spreadsheet, cell, cell reference, data item, format, formula, calculation, spreadsheet, input, output, operation, range, duplicate, sigma, propose, question, data set, organised, chart, evaluate, results, sum, comparison, software, tools. | TinkerCAD, 2D, 3D, shapes, select, move, perspective, view, handles, resize, lift, lower, recolour, rotate, duplicate, group, cylinder, cube, cuboid, sphere, cone, prism, pyramid, placeholder, hollow, choose, combine, construct, evaluate, modify. |
| <b>Programming -</b><br><b>Variables in games</b><br>variable, change, name, value, set, design, event, algorithm, code, task, artwork, program, project, code, test, debug, improve, evaluate, share, assign, declare |                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                        |

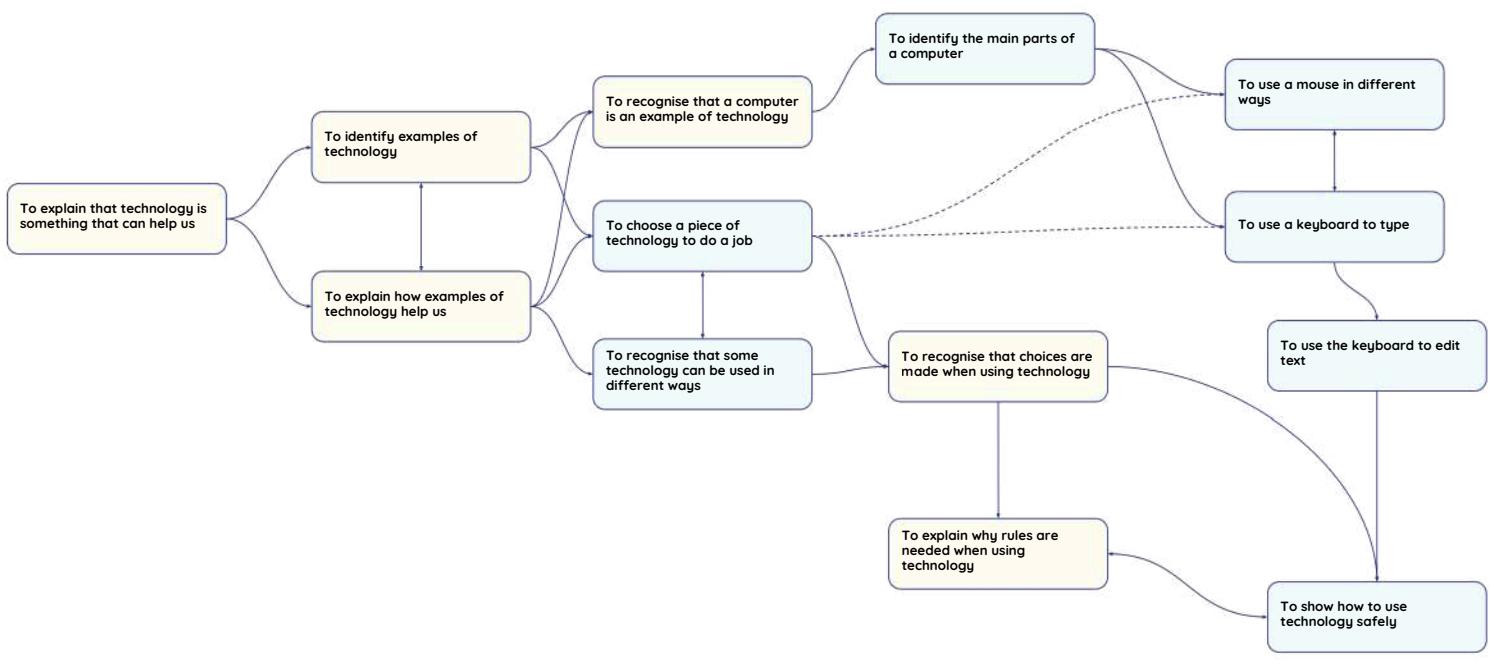
## Progression within a unit – learning graphs

Learning graphs are provided as part of each unit and demonstrate progression through concepts and skills. In order to learn some of those concepts and skills, learners need prior knowledge of others, so the learning graphs show which concepts and skills need to be taught first and which could be taught at a different time.

The learning graphs often show more statements than there are learning objectives. All of the skills and concepts learnt are included in the learning graphs. Some of these skills and concepts are milestones, which form learning objectives, while others are smaller steps towards these milestones, which form success criteria. **Please note** that the wording of the statements may be different in the learning graphs than in the lessons, as the learning graphs are designed for teachers, whereas the learning objectives and success criteria are age-appropriate so that they can be understood by learners. In each



In the first 'Programming' unit so closely that there is no specific divide where one ends and the other begins.


year group, there are two 'Programming' units of work, but only one 'Programming' learning graph. The second 'Programming' unit builds on the content

# LEARNING GRAPHS

## COMPUTER SYSTEMS AND NETWORKS



Learning graph  
Year 1 –Technology around us

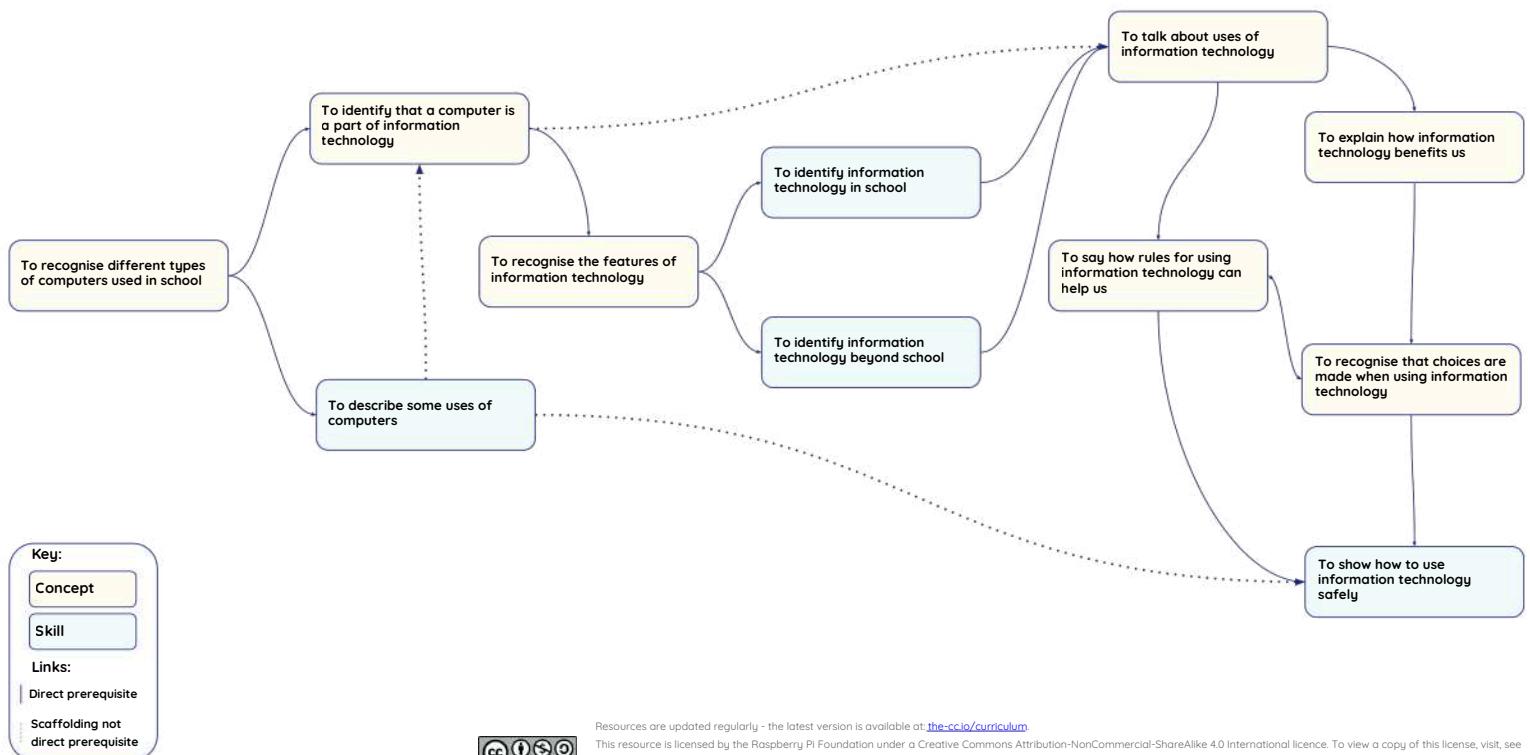


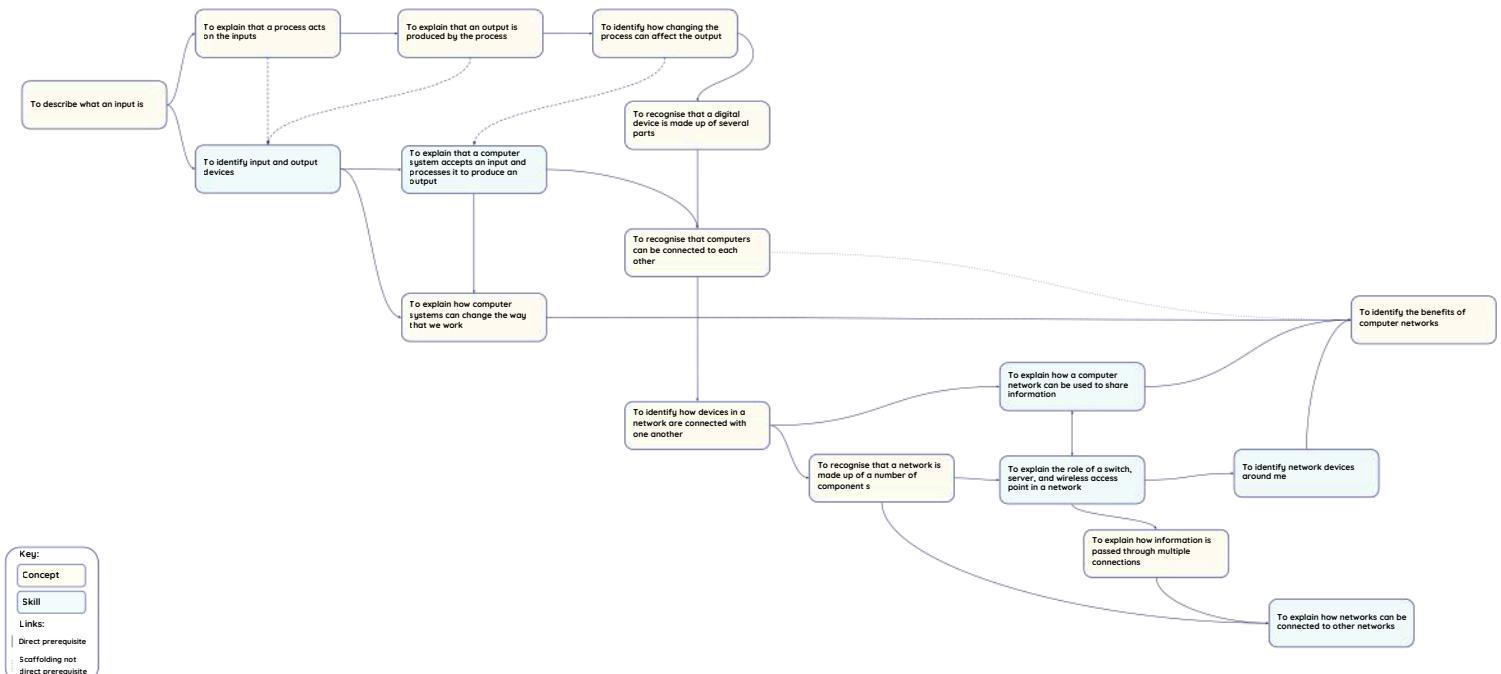
Key:

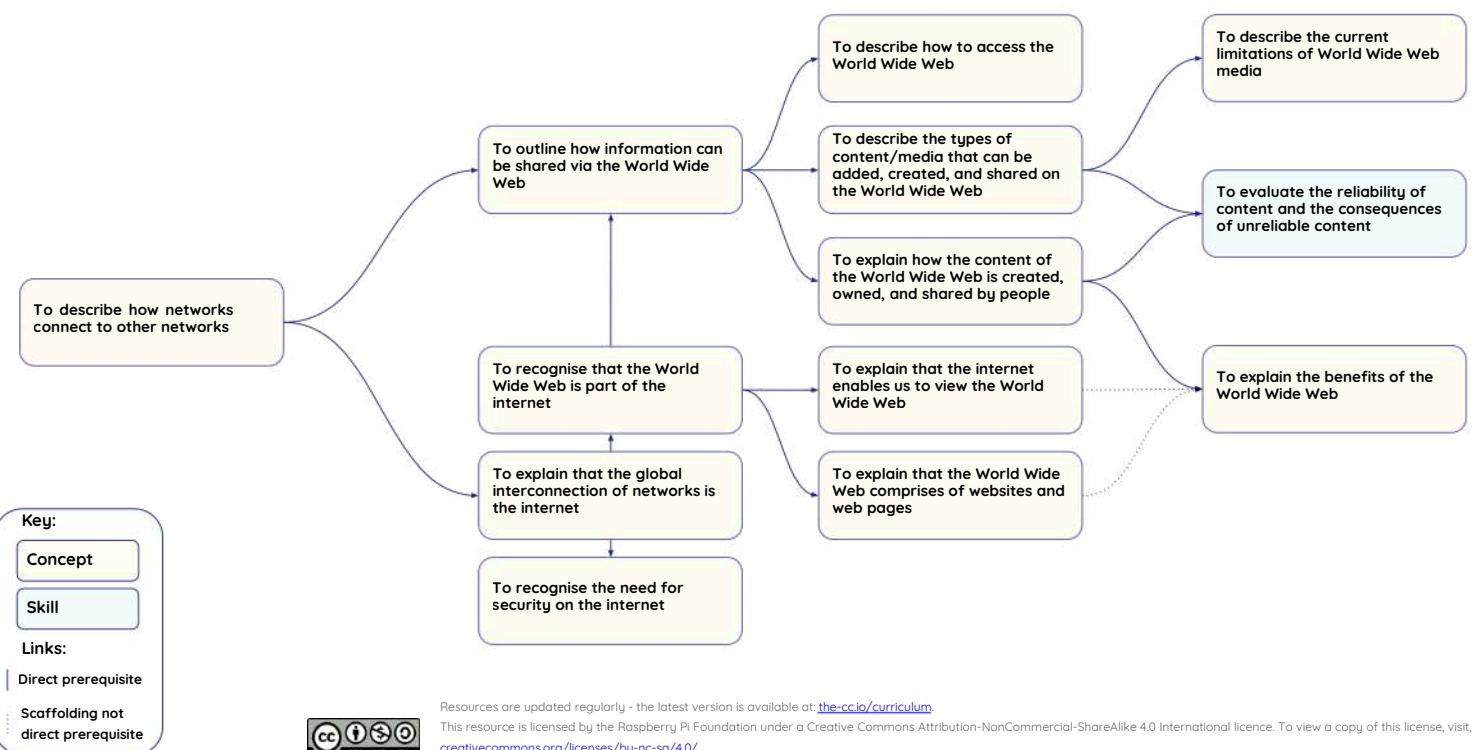
Concept

Skill

Links:


Direct prerequisite

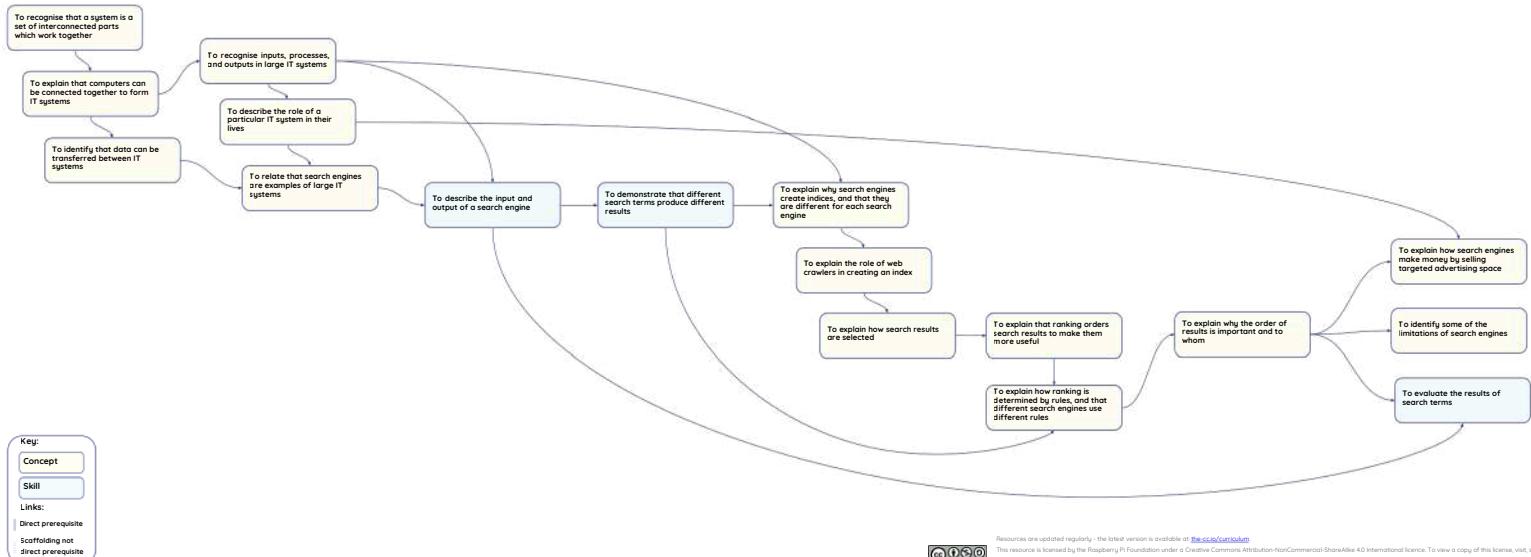

Scaffolding not direct prerequisite


Resources are updated regularly - the latest version is available at: [the-ccio.org/curriculum](https://the-ccio.org/curriculum)



This resource is licensed by the Raspberry Pi Foundation under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International licence. To view a copy of this license, visit, see [creativecommons.org/licenses/by-nc-sa/4.0/](https://creativecommons.org/licenses/by-nc-sa/4.0/)



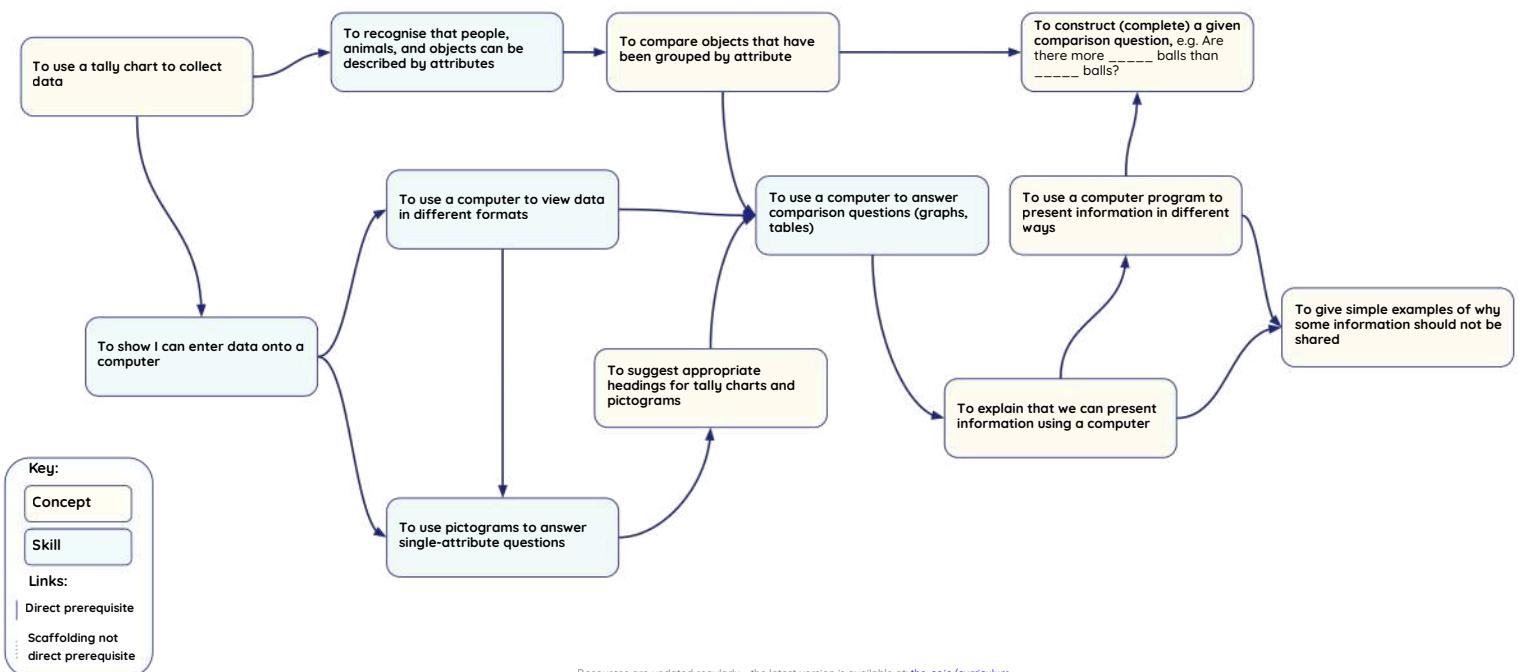


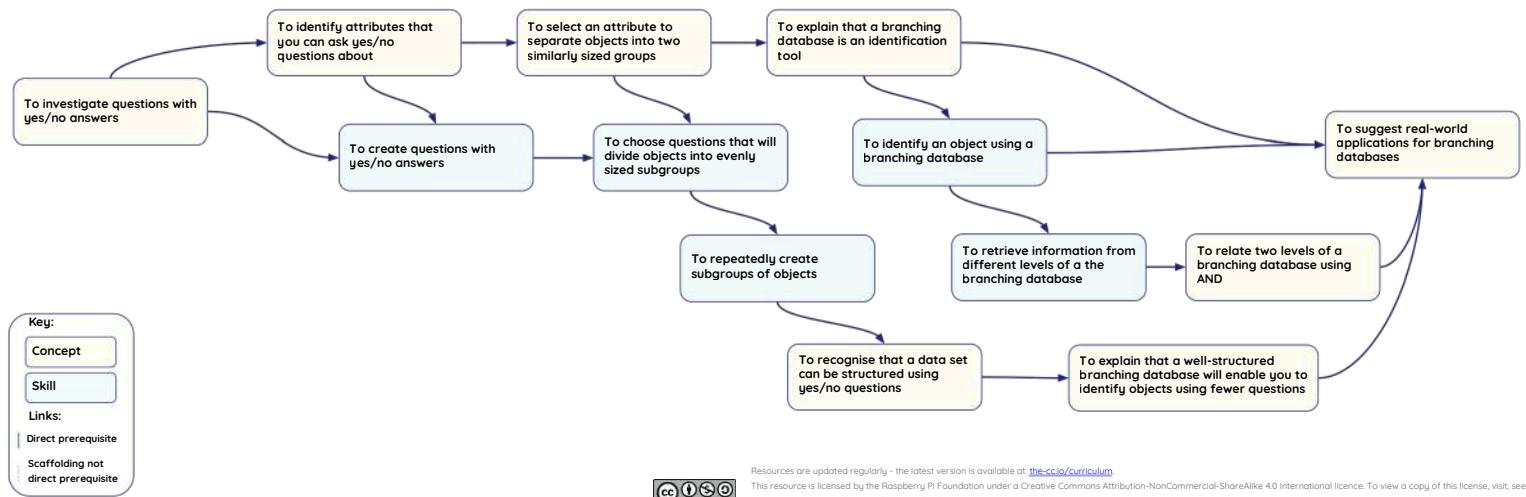


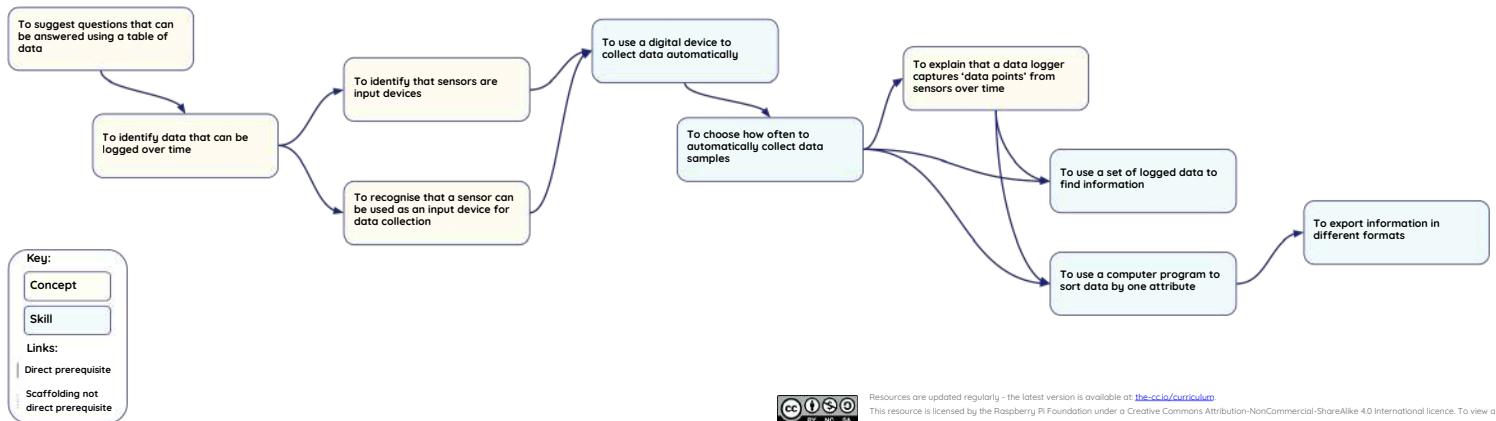

Resources are updated regularly - the latest version is available at: [the-cc.io/curriculum](https://the-cc.io/curriculum)

This resource is licensed by the Raspberry Pi Foundation under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International licence. To view a copy of this license, visit, see [creativecommons.org/licenses/by-nc-sa/4.0/](https://creativecommons.org/licenses/by-nc-sa/4.0/)

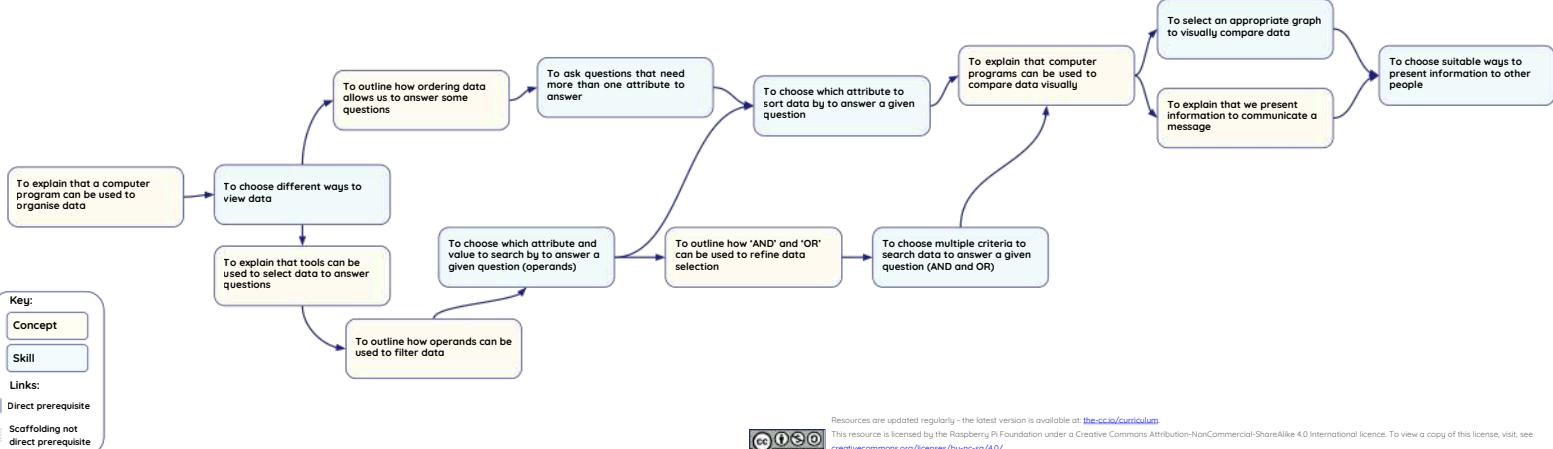


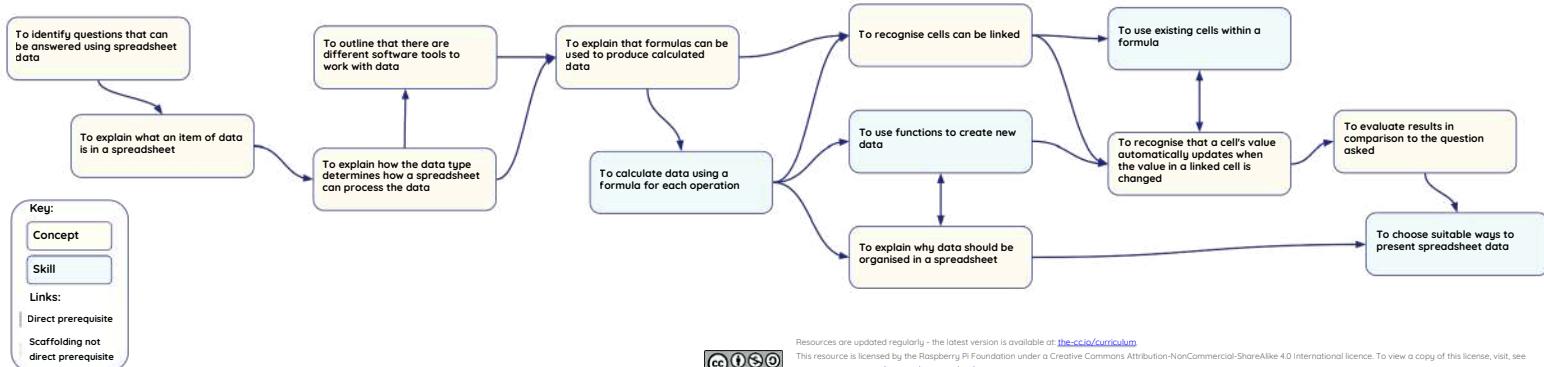




# LEARNING GRAPHS


## DATA AND INFORMATION




Learning graph  
Year 2 – Pictograms







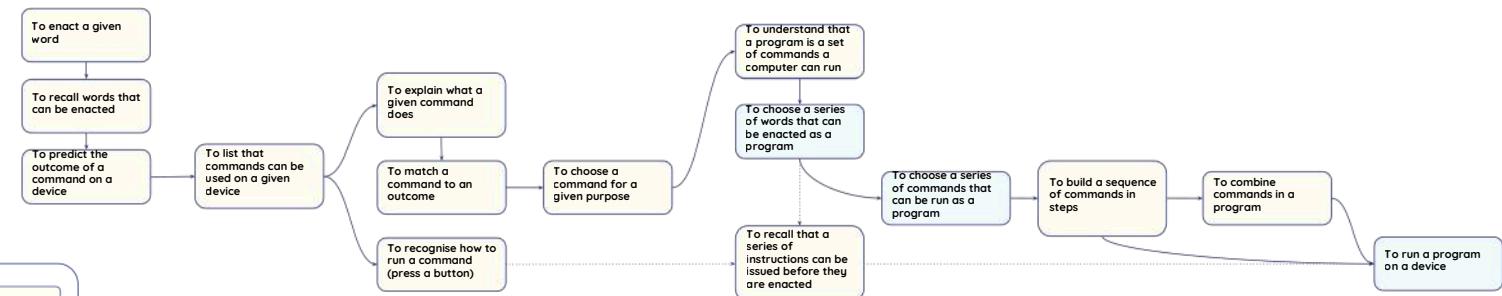

Resources are updated regularly - the latest version is available at [the-ccp.io/curriculum](https://the-ccp.io/curriculum).  
This resource is licensed by the Raspberry Pi Foundation under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International licence. To view a copy of this license, visit [creativecommons.org/licenses/by-nc-sa/4.0/](https://creativecommons.org/licenses/by-nc-sa/4.0/).





Resources are updated regularly - the latest version is available at: [the-cc.io/curriculum](https://the-cc.io/curriculum)  
 This resource is licensed by the Raspberry Pi Foundation under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International licence. To view a copy of this license, visit, see [creativecommons.org/licenses/by-nc-sa/4.0/](https://creativecommons.org/licenses/by-nc-sa/4.0/)

# LEARNING GRAPHS


## PROGRAMMING

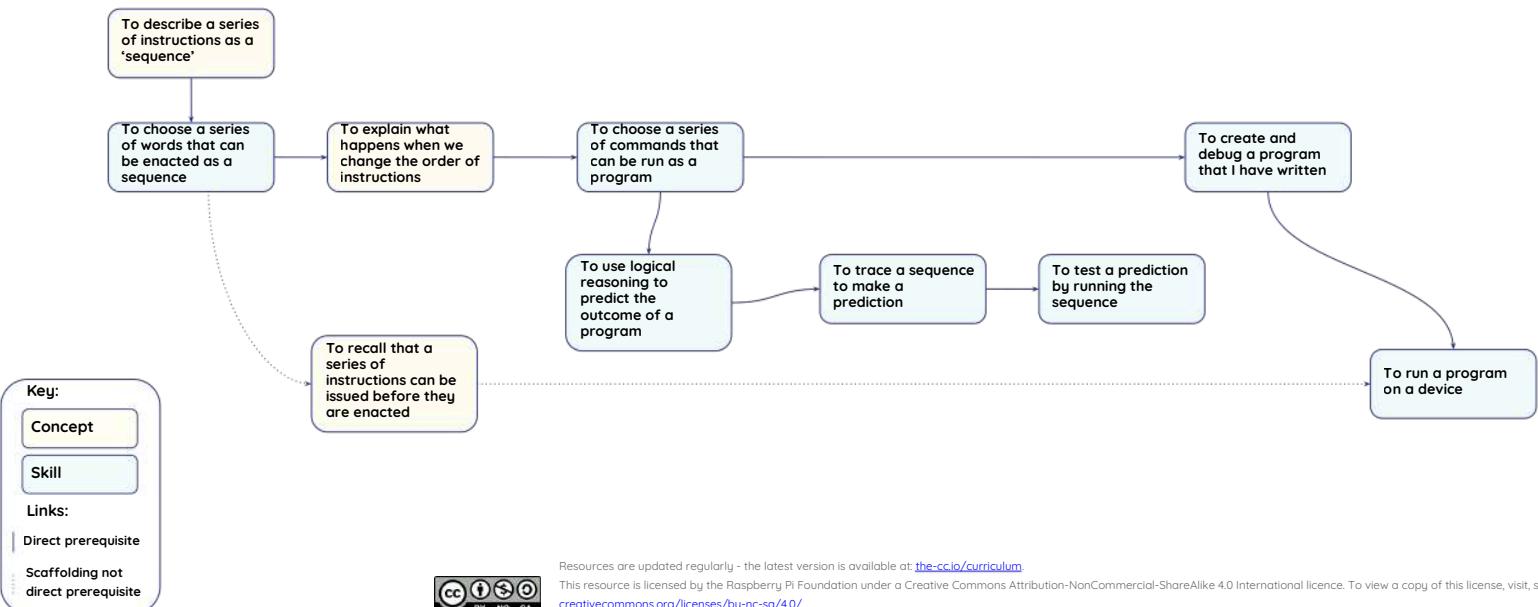


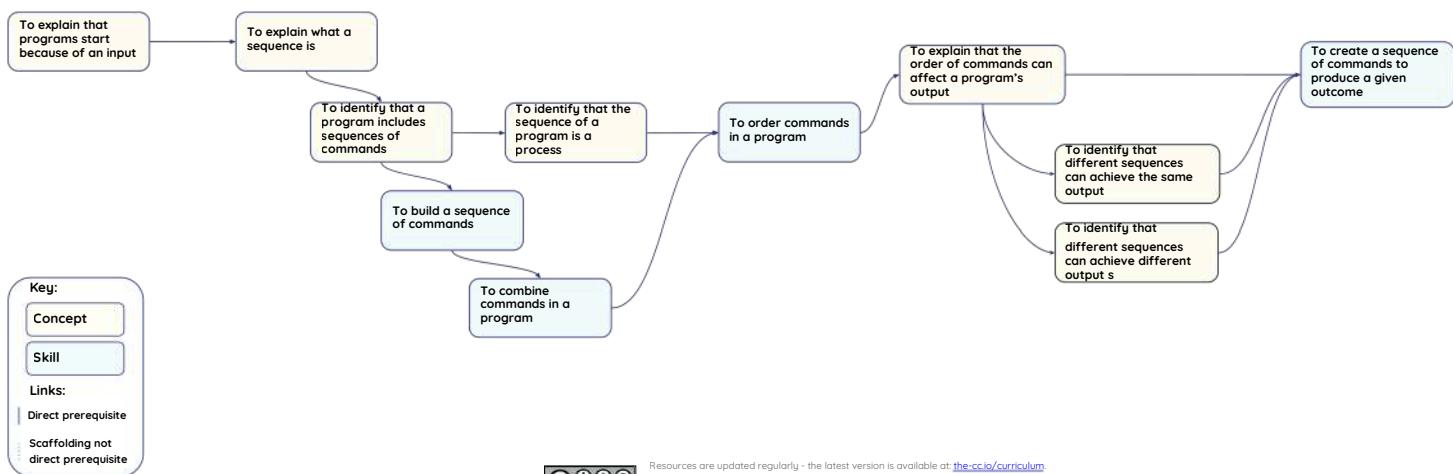
Learning graph  
Year 1 - Programming animations

Pre-sequence - single command

Sequence

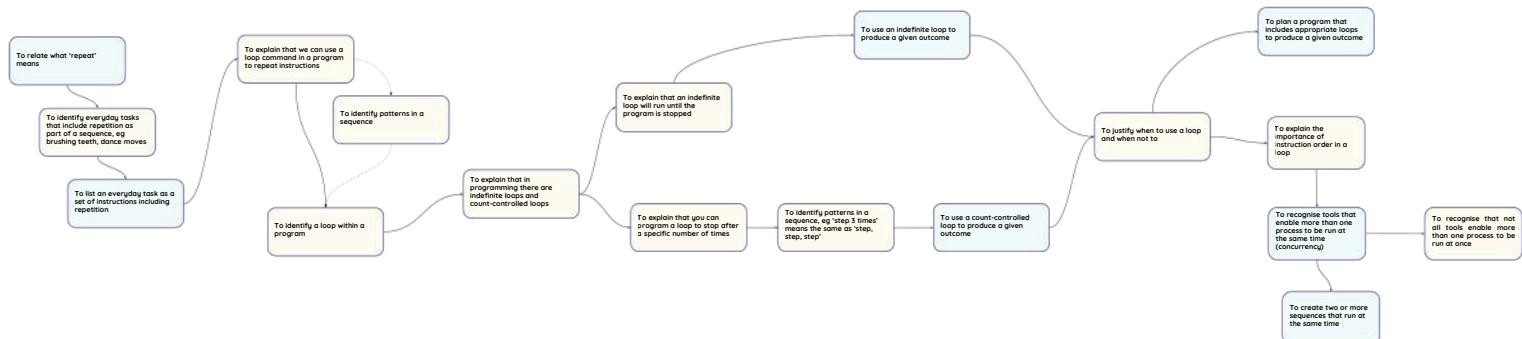


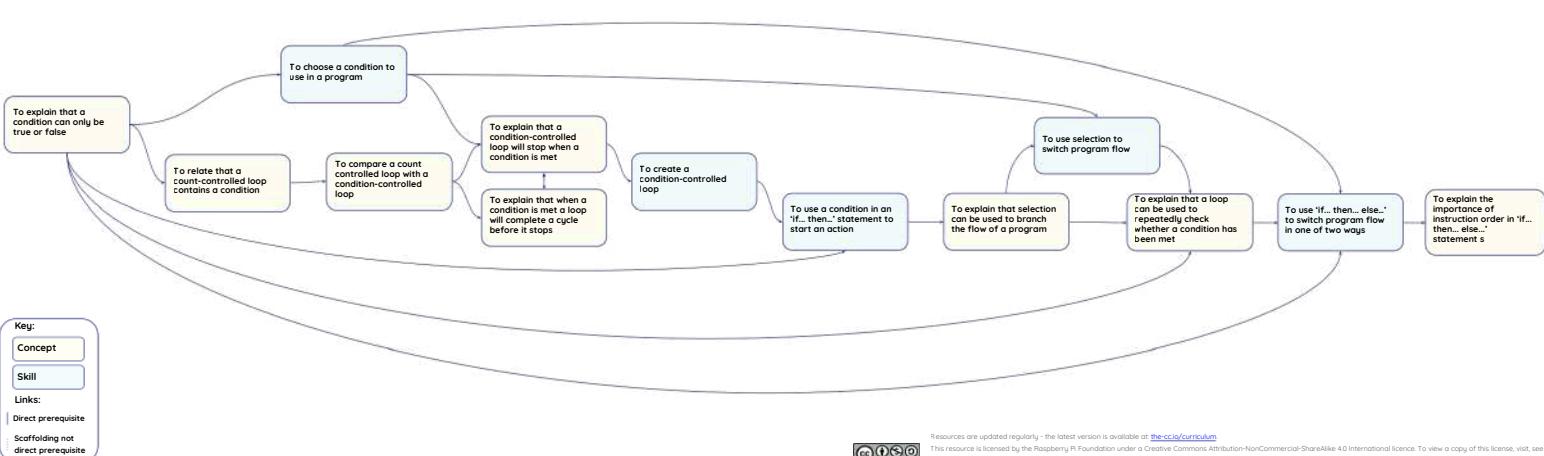

Resources are updated regularly - the latest version is available at: [the-ccio.org/curriculum](https://the-ccio.org/curriculum)

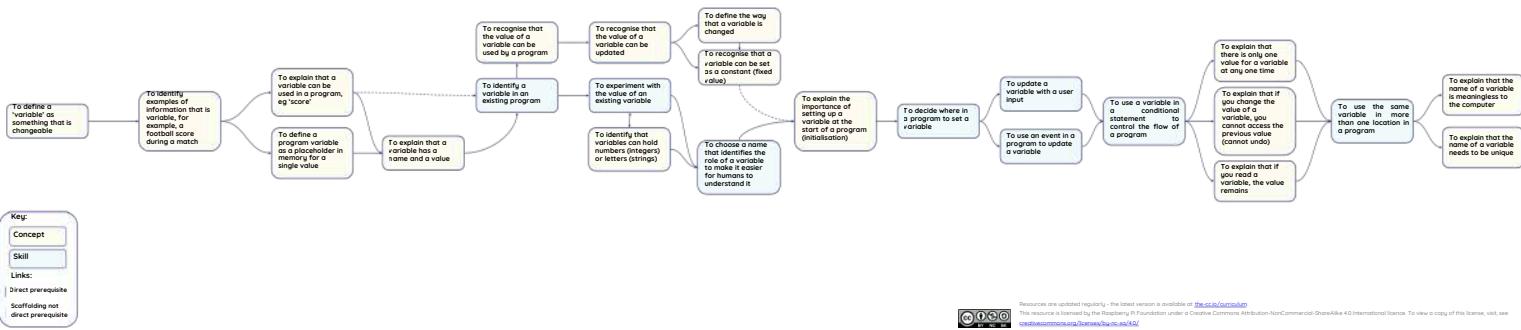

This resource is licensed by the Raspberry Pi Foundation under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International licence. To view a copy of this license, visit, see

[creativecommons.org/licenses/by-nc-sa/4.0/](https://creativecommons.org/licenses/by-nc-sa/4.0/)




## Learning graph Year 2 - Programming quizzes



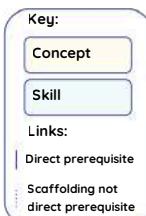
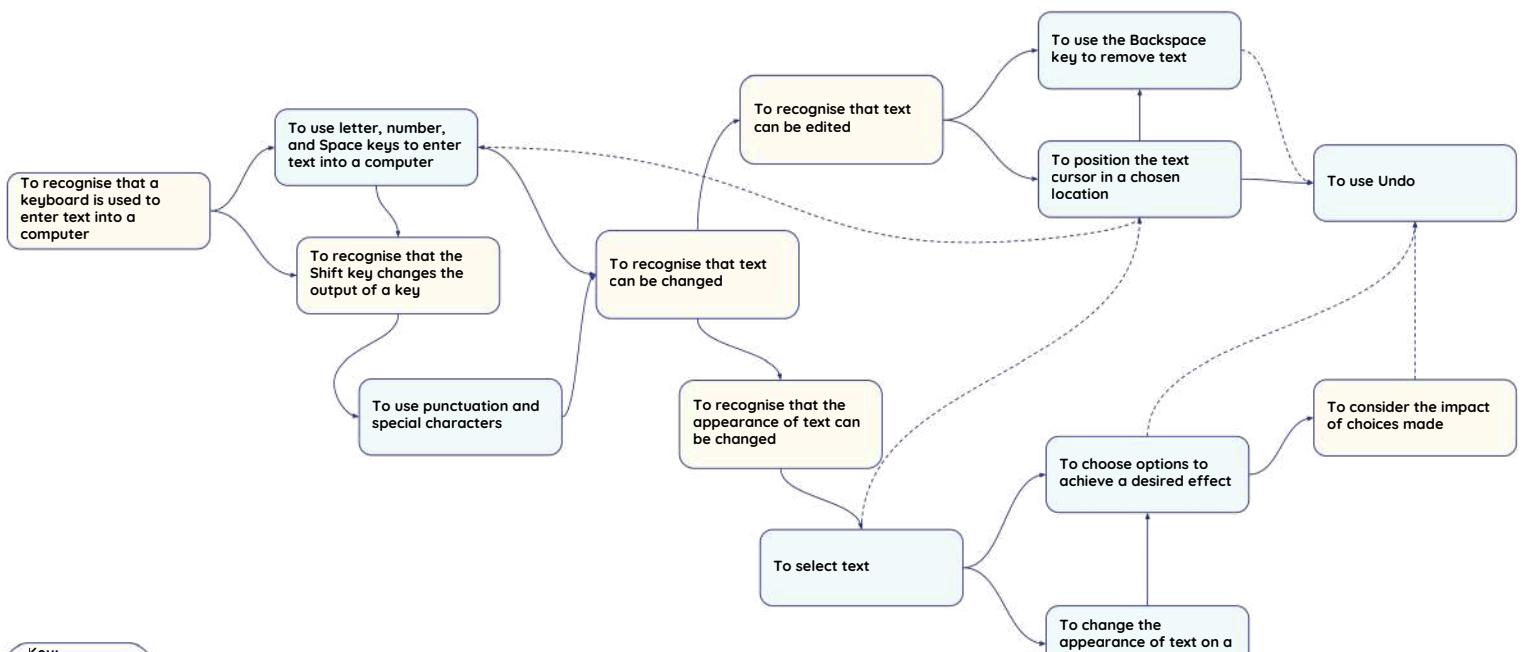
 Resources are updated regularly - the latest version is available at: [the-ccio.org/curriculum](https://the-ccio.org/curriculum)

This resource is licensed by the Raspberry Pi Foundation under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International licence. To view a copy of this license, visit, see

[creativecommons.org/licenses/by-nc-sa/4.0/](https://creativecommons.org/licenses/by-nc-sa/4.0/)




 Resources are updated regularly - the latest version is available at: [the-cslo.org/curriculum](https://the-cslo.org/curriculum)  
 This resource is licensed by the Raspberry Pi Foundation under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International licence. To view a copy of this license, visit: <https://creativecommons.org/licenses/by-nc-sa/4.0/>

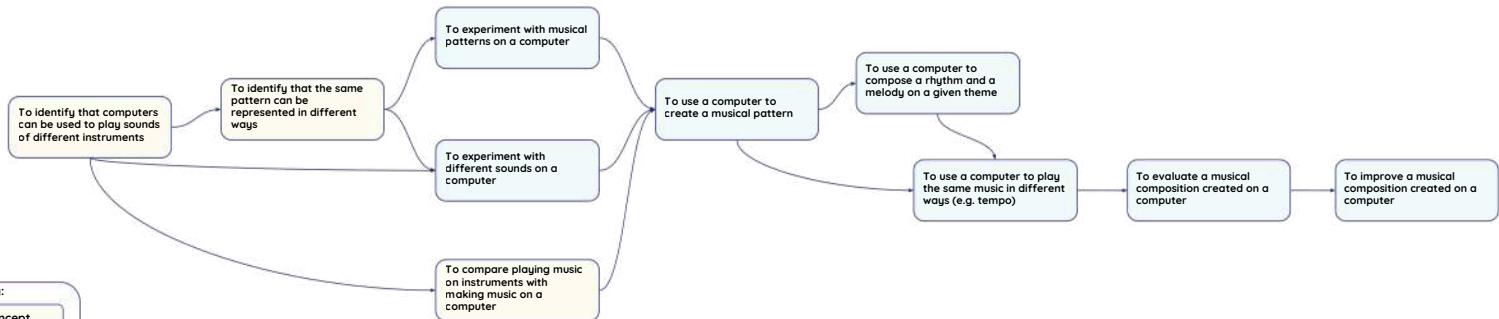

# LEARNING GRAPHS

## CREATING MEDIA

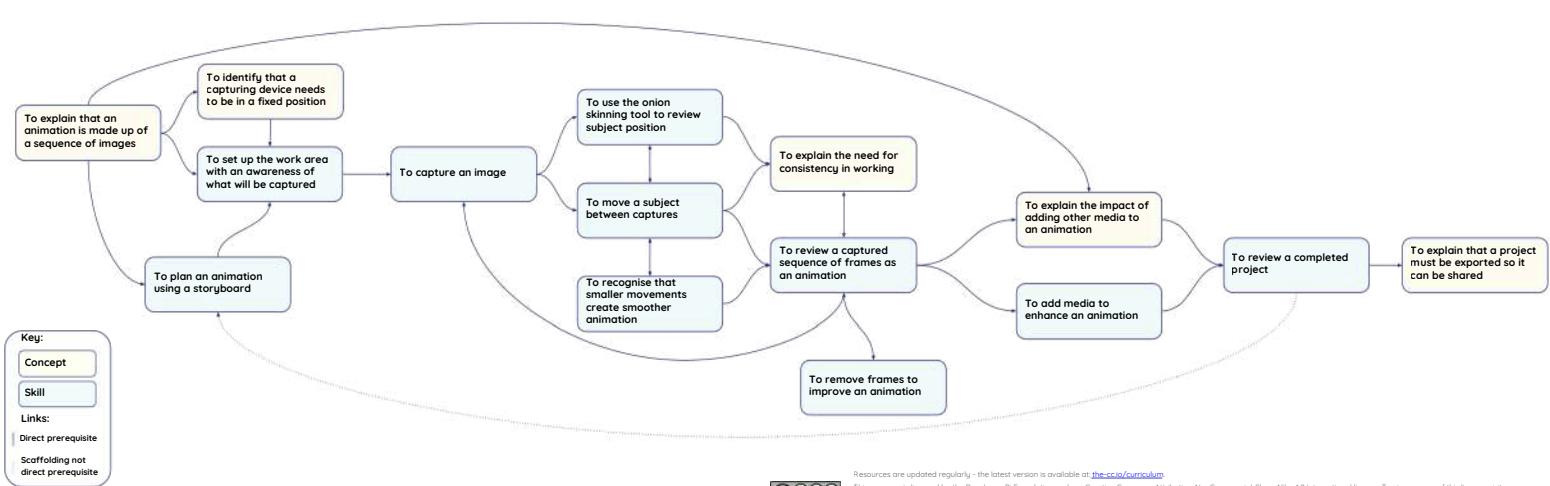


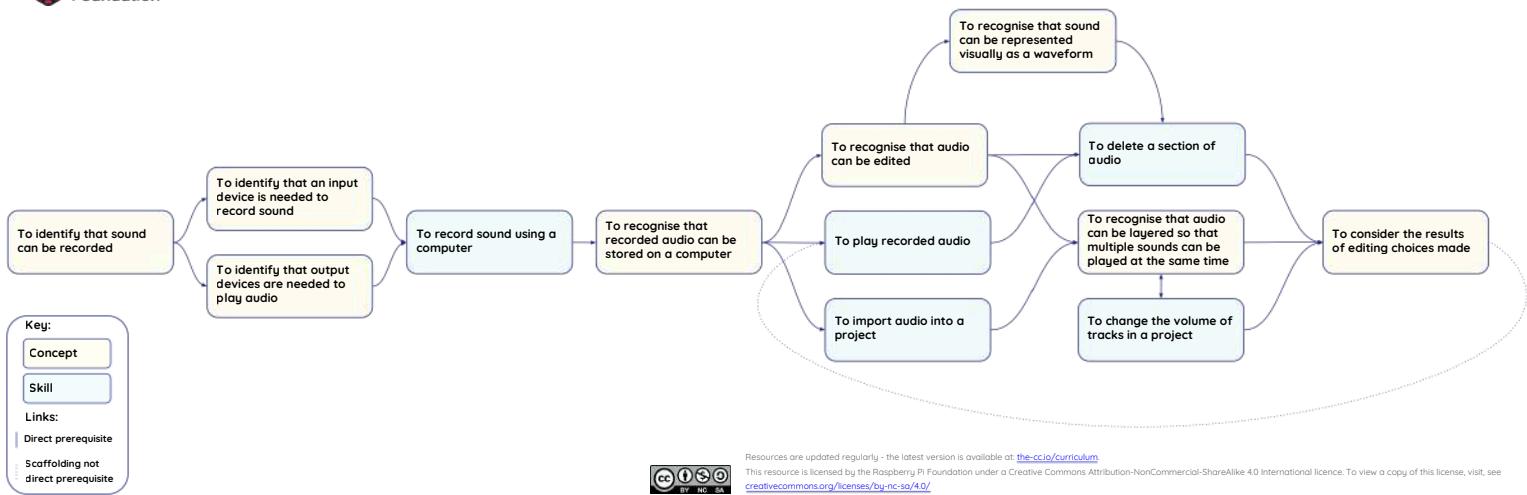
Learning graph  
Year 1 - Creating media - Digital writing

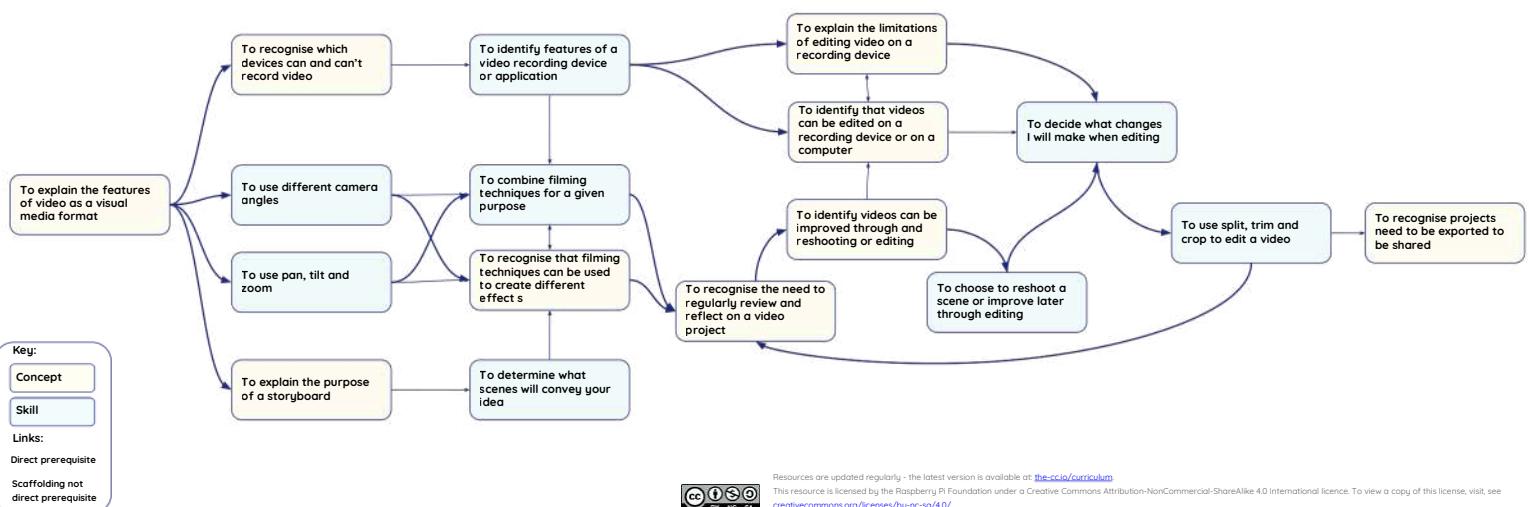



Resources are updated regularly - the latest version is available at: [the-ccio/curriculum](https://the-ccio/curriculum)

This resource is licensed by the Raspberry Pi Foundation under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International licence. To view a copy of this license, visit see


[creativecommons.org/licenses/by-nc-sa/4.0/](https://creativecommons.org/licenses/by-nc-sa/4.0/)





| Key:                                   |
|----------------------------------------|
| Concept                                |
| Skill                                  |
| Links:                                 |
| Direct prerequisite                    |
| Scaffolding not<br>direct prerequisite |


 Resources are updated regularly - the latest version is available at: [the-ccio.org/curriculum](https://the-ccio.org/curriculum)

 This resource is licensed by the Raspberry Pi Foundation under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International licence. To view a copy of this license, visit [creativecommons.org/licenses/by-nc-sa/4.0/](https://creativecommons.org/licenses/by-nc-sa/4.0/)









Learning graph  
Year 6 - Creating media - 3D modelling

To explain that 3D models can be created on a computer

To position 3D shapes relative to one another

To recognise that a 3D environment can be viewed from different perspectives

To use digital tools to modify 3D objects

To recognise that digital tools can be used to manipulate 3D objects

To combine objects to create a 3D digital artefact

To show how placeholders can create holes in 3D objects

To use digital tools to accurately size 3D objects

To recognise that artefacts can be broken down into a collection of 3D objects

To construct a 3D model which reflects a real world object

Key:

Concept

Skill

Links:

Direct prerequisite

Scaffolding not direct prerequisite

Resources are updated regularly - the latest version is available at: [the-cc.io/curriculum](https://the-cc.io/curriculum).

This resource is licensed by the Raspberry Pi Foundation under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International licence. To view a copy of this license, visit, see [creativecommons.org/licenses/by-nc-sa/4.0/](https://creativecommons.org/licenses/by-nc-sa/4.0/)



## Software and hardware overview

Requirements for pupils – below

✓ Used for the unit – reflected in screenshots   ● Could be used as an alternative

|                                      | Desktop or laptop | Chromebook | Tablet | Software or hardware                                   |
|--------------------------------------|-------------------|------------|--------|--------------------------------------------------------|
| 1.1 Technology around us             | ✓                 | ✓          | ●      | <a href="#">paintz app</a>                             |
| 1.2 Digital painting                 | ✓                 | ✓          | ●      | Microsoft Paint or similar                             |
| 1.3 Moving a robot                   |                   |            |        | Bee-Bot, Blue-Bot, or other fixed-movement floor robot |
| 1.4 Grouping data                    | ✓                 | ✓          |        | Google Slides or Microsoft PowerPoint                  |
| 1.5 Digital writing                  | ✓                 | ✓          | ●      | Google Docs or Microsoft Word                          |
| 1.6 Programming animations           | ●                 | ●          | ✓      | ScratchJr                                              |
| 2.1 Information technology around us | ✓                 | ✓          |        | Google Slides or Microsoft PowerPoint                  |
| 2.2 Digital photography              | ✓                 |            | ●      | Digital camera                                         |
| 2.3 Robot algorithms                 |                   |            |        | Bee-Bot, Blue-Bot, or other fixed-movement floor robot |
| 2.4 Pictograms                       | ✓                 | ✓          | ●      | <a href="#">j2data Pictogram</a>                       |
| 2.5 Digital music                    | ✓                 | ✓          | ●      | <a href="#">Chrome Music Lab</a>                       |
| 2.6 Programming quizzes              | ●                 | ●          | ✓      | ScratchJr                                              |

## Software and hardware overview

Requirements for learners – below

|                                    | Desktop or laptop | Chromebook | Tablet | Software or hardware                        |
|------------------------------------|-------------------|------------|--------|---------------------------------------------|
| 3.1 Connecting computers           | ✓                 | ●          | ●      | Painting program (any)                      |
| 3.2 Stop-frame animation           | ●                 | ●          | ✓      | iMotion (app for iOS)                       |
| 3.3 Sequencing sounds              | ✓                 | ✓          | ●      | Scratch                                     |
| 3.4 Branching databases            | ✓                 | ✓          | ●      | <a href="#">j2data Branch and Pictogram</a> |
| 3.5 Desktop publishing             | ✓                 | ●          | ●      | Canva.com                                   |
| 3.6 Events and actions in programs | ✓                 | ✓          | ●      | Scratch                                     |
| 4.1 The internet                   | ✓                 | ✓          | ✓      | Various websites                            |
| 4.2 Audio production               | ✓                 |            |        | Audacity                                    |
| 4.3 Repetition in shapes           | ✓                 | ●          | ●      | FMSLogo                                     |
| 4.4 Data logging                   | ✓                 | +          | +      | Data logger and associated software         |
| 4.5 Photo editing                  | ✓                 | ●          |        | Paint.NET (for Microsoft Windows)           |
| 4.6 Repetition in games            | ✓                 | ✓          | ●      | Scratch                                     |

✓ Used for the unit – reflected in screenshots   ● Could be used as an alternative   + Data loggers that work with Chromebooks or tablets are available. Check with suppliers.

## Software and hardware overview, cont.

Requirements for learners – below

|                                     | Desktop or laptop | Chromebook | Tablet | Software or hardware                        |
|-------------------------------------|-------------------|------------|--------|---------------------------------------------|
| 5.1 Systems and Searching           | ✓                 | ✓          |        | Google Slides                               |
| 5.2 Video production                | ✓                 | ●          | ●      | Microsoft Photos (for Microsoft Windows 10) |
| 5.3 Selection in physical computing | ✓                 | ✓          |        | Crumble controller + starter kit + motor    |
| 5.4 Flat-file databases             | ✓                 | ✓          | ●      | <a href="#">j2data Database</a>             |
| 5.5 Introduction to vector graphics | ✓                 | ●          |        | Google Drawings                             |
| 5.6 Selection in quizzes            | ✓                 | ✓          |        | Scratch                                     |
| 6.1 Communication and collaboration | ✓                 | ✓          |        | Google Slides                               |
| 6.2 Webpage creation                | ✓                 | ✓          |        | Google Sites                                |
| 6.3 Variables in games              | ✓                 | ✓          |        | Scratch                                     |
| 6.4 Introduction to spreadsheets    | ✓                 | ✓          | ●      | Google Sheets or Microsoft Excel            |
| 6.5 3D modelling                    | ✓                 | ✓          | ●      | Tinkercad                                   |
| 6.6 Sensing movement                | ✓                 | ✓          | ●      | micro:bit and Microsoft MakeCode            |

✓ Used for the unit – reflected in screenshots   ● Could be used as an alternative

# READING OPPORTUNITIES

## For Key Stage 1 (Years 1–2, Ages 5–7)

My First Coding Book – DK

Interactive lift-the-flap book introducing loops, conditionals, and sequencing without screens.

Great for unplugged activities and early logic skills.

I Can Code: If/Then – Vicky Fang

Simple board book teaching basic logic through everyday examples.

Perfect for Reception and Year 1 learners.

Lift-the-Flap Computers and Coding – Rosie Dickins

Explains computing concepts in a fun, visual way.

Ideal for introducing vocabulary and ideas.

## For Lower Key Stage 2 (Years 3–4, Ages 7–9)

Hello Ruby: Adventures in Coding – Linda Liukas

Story-based approach to coding concepts with creative activities.

Encourages problem-solving and imagination.

Coding for Kids: Scratch – Matthew Highland

Step-by-step guide to creating games in Scratch.

Aligns with block-based programming in the Raspberry Pi curriculum.

Help Your Kids with Computer Coding – DK

Uses Scratch and Python with clear visuals and projects.

Great for bridging block-based to text-based coding.

## For Upper Key Stage 2 (Years 5–6, Ages 9–11)

Coding Projects in Python – DK

Visual guide to creating Python projects.

Supports transition to text-based programming. Hello Raspberry Pi!: Python Programming for Kids and Other Beginners – Ryan Heitz

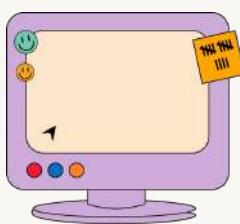
Introduces Raspberry Pi setup, Python basics, and fun projects.

Perfect for physical computing and creative tasks.

Raspberry Pi Projects for Kids – Dan Aldred

Hands-on projects like LED night-lights, Minecraft mods, and home automation.

Encourages creativity and links to real-world applications.


## Why These Books?

They match progression in the Raspberry Pi Foundation curriculum:

KS1 → unplugged logic → Scratch → Python → physical computing.

They combine fun, storytelling, and hands-on projects to keep engagement high.

They support computational thinking and digital literacy from early years.



# Computing - supporting the provision for pupils with SEND within the Wider Curriculum

SEND Code of Practice (DfE, 2015)

‘High quality teaching that is differentiated and personalised will meet the individual needs of the majority of children.’

At Harper Bell SDA School, the SEND Code of Practice is at the heart of our curriculum for all areas. For us, this means:

- ✓ Ensuring that all children are able to make the most of learning opportunities given to them in the Wider Curriculum.
- ✓ Children are able to develop their knowledge and skills within the Wider Curriculum through appropriate levels of curricular adaptations.
- ✓ Being cautious that:
  - There is not a ceiling being put on children’s learning.
  - Wider Curriculum differentiation and scaffolding is not always focused on writing expectations or level of adult support.
  - Differentiation by outcome is used minimally - not an effective strategy for long term learning and retention (Nasen Guidance).
  - There isn’t a reliance on using worksheets

## 1. Planning and Preparation

- Know your learners: Review individual education plans (IEPs) and language proficiency levels.
- Set clear, achievable objectives: Break down complex computing concepts into smaller, manageable steps.
- Use visual timetables and lesson outlines: Helps SEND and EAL learners anticipate what’s coming.

## 2. Language and Instruction

- Simplify language: Use short sentences and avoid jargon. Explain technical terms with visuals.
- Pre-teach key vocabulary: Provide word banks with images (e.g., “algorithm,” “debug”).
- Model instructions: Demonstrate tasks step-by-step before asking pupils to try.

## 3. Multi-Sensory Approaches

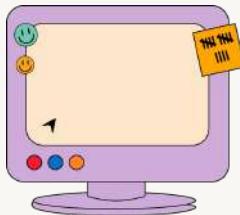
- Visual aids: Diagrams, flowcharts, and icons for coding concepts.
- Physical activities: Use unplugged computing (e.g., sequencing cards) to reinforce logic before coding.
- Audio support: Record instructions or use text-to-speech tools for learners with reading difficulties.

## 4. Scaffolded Learning

- Chunk tasks: Break activities into smaller stages with checkpoints.
- Provide templates: For coding tasks, give partially completed code or block-based environments (Scratch).
- Offer sentence starters: For EAL learners when explaining algorithms or reflecting on work.

## 5. Assistive Technology

- Screen readers and magnifiers: For visually impaired learners.
- Speech-to-text tools: For learners with writing difficulties.
- Translation tools: For EAL learners to access instructions in their home language.


## 6. Collaborative Learning

- Pair work or small groups: Mix abilities so peers can support each other.
- Role allocation: Assign roles like “coder,” “tester,” “explainer” to reduce cognitive load.

## Extra Tips

- Incorporate culturally relevant examples for EAL learners.
- Use color coding in code blocks for SEND learners with processing difficulties.
- Provide clear exit points for learners who may fatigue easily.





## What general strategies can we use to help support children with SEND to access the Wider Curriculum?

The EEF outlines five key principles for supporting children with SEND in mainstream settings.

### **Differentiated Learning Objectives:**

Learning objectives which are focused on the same learning concept, but are pitched at a different level can be effectively used, for example a lower year group objective or different key stage (depending on a child's level of ability).

### **Writing Supports:**

The following scaffolds can be used, however this shouldn't be the only source of differentiation for pupils:

- Word Banks to help support spellings of key words
- Using technology to record ideas - for example using Slides to record the different steps in a Science investigation or to create a presentation about a historical time period.
- Reducing writing demands - could verbal responses be scribed or recorded and captured through a QR code?
- Writing Frames to help structure written work

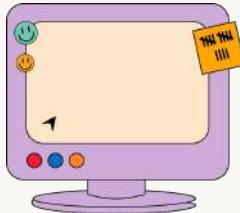
### **Use of Visuals and Dual Coding:**

Visual prompts and Dual Coding (presenting visual and written/verbal prompts together) can help to support children's understanding of learning concepts, task instructions, teacher modelling and independent work. When used effectively, visuals can help to reduce the reliance on a pupil's memory, for example using photographs to help support understanding of a task and the repetition of images to support learning

and recall. Helpful Dual Coding symbols can be found at: <https://thenounproject.com/term/code/>

### **Differentiated Knowledge Organisers:**

Knowledge Organisers and can be differentiated to help support children's engagement with this resource to deepen knowledge and recall. It could be that such resources draw on differentiated key vocabulary or learning concepts from lower year groups or Key Stages (as appropriate for a child's needs).


### **Pre-Tutoring:**

For certain topics or learning concepts, Pre-Tutoring may be helpful to build children's understanding of key topic words or tasks which involve more complex steps, for example a Science investigation or D.T. project.

### **Flexible Grouping and Active Learning Methods:**

Flexible Grouping is one of the key best-practice approaches for supporting children with SEND, as outlined by EEF. This approach involves children being grouped in different ways, according to the learning and tasks being focused on. Within the Wider Curriculum, this approach can be used as a layer of support for children with SEND, for example working in a group or partner to undertake a Science investigation or to find out more about a historical event.





## What general strategies can we use to help support children with SEND to access the Wider Curriculum?

### Preparing pupils for change:

Some Wider Curriculum lessons can be very practical, using novel equipment, with an emphasis on group work. For certain pupils, this can be overwhelming and prior preparation, perhaps through Pre-Tutoring, may be beneficial.

### Use of Additional Adult Support:

It is important that this support strategy is not always used within the Wider Curriculum and when used, is not just to facilitate task completion.

When adult support is provided, it is important that they:

- Are clear about what Learning Objectives are
- Know the sequence of the lesson
- Understand the lesson content
- Know how to break the lesson into manageable chunks and provide opportunities for independent learning
- Are provided with key questions to help support Formative Assessment
- Are familiar with how ICT can be used to enhance learning, if appropriate

### Differentiated Questioning:

Layers of questioning can be used to help support children with SEND's engagement and participation

in whole-class learning opportunities. Consider using the following Question Complexity Grid to help plan specific questions, targeted at certain pupil groups:

| Questioning Grid           |               |             |                    |                   |                      |                    |                      |
|----------------------------|---------------|-------------|--------------------|-------------------|----------------------|--------------------|----------------------|
| ?                          | Is? (present) | Did? (past) | Can? (possibility) | Should? (opinion) | Would? (probability) | Will? (prediction) | Might? (imagination) |
| What? (event)              | What is?      | What did?   | What can?          | What should?      | What would?          | What will?         | What might?          |
| Where? (location)          | Where is?     | Where did?  | Where can?         | Where should?     | Where would?         | Where will?        | Where might?         |
| When? (sequence, location) | When is?      | When did?   | When can?          | When should?      | When would?          | When will?         | When might?          |
| Which? (choice)            | Which is      | Which did?  | Which can?         | Which should?     | Which would?         | Which will         | Which might?         |
| Who? (person)              | Who is?       | Who did?    | Who can?           | Who should?       | Who would?           | Who will?          | Who might?           |
| Why? (reason)              | Why is?       | Why did?    | Why can?           | Why should?       | Why would?           | Why will?          | Why might?           |
| How? (meaning)             | How is?       | How did?    | How can?           | How should?       | How would?           | How will?          | How might?           |

**Knowledge**      **Understanding**      **Application**      **Analysis**      **Evaluation**      **Synthesis**


Entry      Advanced      Deep      Deeper still!

Don't Know - Embryo      Knowledge      Understanding      Ability      Creative Independent Exploration



# Supporting the provision for pupils with SEND within Computing

| Tier 1 Strategies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Tier 2 Strategies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Tier 3 Strategies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul style="list-style-type: none"> <li>Ensure that key vocabulary is shared and explained with class. Vocabulary is displayed. Practise saying vocabulary together.</li> <li>Unit markers at start of new topics to support key vocabulary and sticky knowledge questions (with images to support in EYFS/KS1).</li> <li>Instructions are clear and teachers use appropriate strategies to check understanding throughout the lesson.</li> <li>Questioning and AFL strategies used throughout the lesson for teacher to check understanding and then address misconceptions where and when they happen.</li> <li>Use of praise and verbal feedback given throughout lesson to support progress of all learners.</li> <li>Use of retrieval practise at start of lessons through use of Flashbacks. This will ensure that prior learning is activated and that questions accessed in the Flashback will also support learning that will happen in the coming lesson.</li> <li>Use of sentence stems to support verbalisation of key concepts.</li> <li>Use of visual aids to support children with knowledge of artists and works of art.</li> <li>Use of teacher sketchbooks and modelling, <u>demonstrating</u> and imitating where appropriate.</li> <li>Allow appropriate time for children to practise and develop skills.</li> <li>All chn to be encouraged to experiment and explore with a range of media and tools. Provide a range of scales for children to work on.</li> <li>Ensure that independence is encouraged in terms of selecting materials, but also in tidying equipment away.</li> </ul> | <ul style="list-style-type: none"> <li>Provide topical word cards and word banks with pictures where necessary to support learners.</li> <li>Additional staff support (where appropriate) to record key words with the child to support learning.</li> <li>Use of 'check in' with students who will benefit from use of name to ensure that they know instructions are for them.</li> <li>Teacher to target and scaffold questioning to support the needs of all learners.</li> <li>Adaptation of task where appropriate – subject matter of task may be adapted <u>as long as</u> skills are followed.</li> <li>Allow chn to use tools that enable them to create their art e.g. use of fingers instead of paintbrush, playdoh instead of clay, etc.</li> <li>Use of concrete resources where needed to support learning of abstract concepts.</li> <li>Ensure that children who need adapted tools (pencil size, larger / easy grip scissors, etc) have access to these and know where to get them.</li> <li></li> </ul> | <ul style="list-style-type: none"> <li>Pre-teaching of specific scientific vocabulary.</li> <li>Small group teaching activities (if possible).</li> <li>Providing students with worked examples to use as a model whilst completing independent work.</li> <li>Additional adult to scribe/note <u>take</u> to support recording of answers.</li> <li>Allow additional time for children to practise skills and build and develop fine motor skills e.g. use of modelling clay / playdough</li> </ul> |



# Our journey so far

## 2025

8. Close the gap focus days are being organised to bring pupils up to speed to relaunch the curriculum as appropriate to age.

9. Training and support for staff has been built in to the relaunch of the subject

7. Raspberry Pi Foundation lesson plans and curriculum have been mapped out ensuring NC coverage

6. STEM funding has been used for working with a Subject Matter Expert National Centre for Computing Education to discuss the best way forward with limited resources.

10. Initially, the curriculum is able to be taught from ipads as the only resource we have. This can be upgraded as IT resources are invested in.

5. The HT has taken leadership in the interim to ensure strategic oversight of the resources required.

4. IT resources have been reconfigured to support apps for computing which has not been taught for some years. Micro:bits have been purchased.

1. New IT support has been sought for the school from Bishop Challenor.

2. There is a clearer vision for IT from an action plan baseline undertaken with DRB Ignite MAT Support.

3. DFE Connect the Classroom funding is being used to improve the network and wifi speed.

# So what?

Raspberry Pi has been introduced as a curriculum mapping tool .



To ensure that the National Curriculum is planned for and have designed our units to allow children to build schemas. This will support children in being able to know more and do more.

Key domains and knowledge threads have been selected and mapped out



To ensure that pupils gain declarative and procedural knowledge in small sequenced steps. Teachers are clear about what to teach and when and know where their lesson fits in the wider schema.

Computing is now being taught each week ensuring compliance and coverage.



Opportunity to dedicate the learning time to the subject and to practise skills over time. Compliance and coverage is ensured.

Progression coverage checked for compliance



Progression should cover three pillars:

- Computer Science (core concepts like algorithms, data, programming)
- Information Technology (creating digital content, using tools)
- Digital Literacy (safe, responsible, effective technology use)

Progression coverage checked for compliance

## Programming in Primary

- Programming is central and appears throughout the curriculum.
- Pupils need structured progression:
  - Start with algorithms and simple programs.
  - Develop understanding of sequence, selection, repetition.
- Avoid rushing into coding without conceptual understanding to prevent misconceptions.

# So what?

MTPs are being created to support prior learning and next steps .



This ensures teachers are clear about what they are teaching and the prior knowledge the children should have to both check retention and build upon this.

Flasbacks are emerging into regular practice



Deeper learning happens when we transfer information from our short-term memory stores into our long-term memory stores. By planning for and providing retrieval practice we support this process because it requires pupils to recall previously-learned information.

The profile of computing has been raised across the school



This ensures a broad and balanced curriculum and pupils can explore both hobbies and career pathways which can come from their enjoyment of the subject. Pupil voice shows our pupils appreciate the mental health benefits of the subject.

Staff CPD has been held on the use of Raspberry Pi planning- this aids teacher development



Staff understand the purpose and support available in the planning documents to enable them to see the bigger picture, access training and get support with assessment

# Next steps

Reading material to support curriculum to be purchased and made available

Development of IT resources to further support opportunities and variety of hard/software - see 5 year plan

Specific work on development of AI and future tech within the Computing curriculum and other areas from policy to embedding

See plan for regular CPD for all staff to ensure high quality teaching over 5 year development

Detailed bridgeing activities to support transition from EYFS to KS1

New staff from September so assessment of knowledge base and training impact to be part of action plan

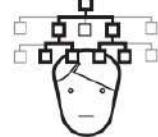
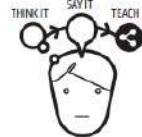
Ensure that transition between EYFS and KS1 is progressive

Consider how STEM themed opportunities can enhance the curriculum

Review and adapt vocabulary progression document to align with the needs of the pupils.

To look at opportunities to further embed digital safeguarding within the Computing curriculum and beyond

Develop cross curricular resources for Art and resources which can be accessed outside of Art lessons.



# How we support the development of schemas in Computing

Relate - linking to prior knowledge. This is what we are working so hard to create in our curriculum - the links to previous knowledge for children to "pin" their new knowledge on to.

Generate - generating information from our memories helps to consolidate knowledge.

Evaluate - checking the understanding of children and encouraging them to check their own understanding. A good way to check is to see if they can explain their knowledge to others for example.

 PROFESSOR ARTHUR SHIMAMURA'S  
A WHOLE-BRAIN LEARNING APPROACH FOR STUDENTS AND TEACHERS

| M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | R                                                                                                                                                                                                                                                                                                                                                                                                                          | G                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>MOTIVATE</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>ATTEND</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>RELATE</b>                                                                                                                                                                                                                                                                                                                                                                                                              | <b>GENERATE</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>EVALUATE</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| We need to be motivated to use energy to keep focused on the learning process. Designed well, motivation can be intrinsic to learning, for example, by generating curiosity, framing new material as a quest to answer big questions, organising ideas within a wider schema, story-telling and asking the "aesthetic question": "What do you think? How does it make you feel? Why is it good?". "The aesthetic question engages emotional brain circuits and forces us to attend to and organize our knowledge." | Academic learning is a 'top-down' activity whereby we consciously attend to the information needed to build our schema from all the stimuli we're exposed to. This is hard so 'mind wandering' is common and teachers need to expect it. Ideally students will consciously attend to the learning goals and consciously make connections – but sometimes an instructor needs grab attention, acting as their students' prefrontal cortex to direct their top-down processing. | Shimamura offers numerous biological insights about how we store and connect information through memory consolidation. The practical strategies include deploying elaborative-interrogative questioning – asking how and why – using mental images, analogies, constructing concept maps as schematic representations of sets of connected ideas and training students to make notes organised in hierarchical structures. | Shimamura suggests: " <i>Think it, say it, teach it! These are the simplest things to do to improve your memory</i> ". He details multiple ways in which our memories are strengthened when we generate information from our memory, not simply restating it but using our own words. If we tell someone what we've learned we can improve our memory by 30-50%. Explained in terms of brain functions, Generate reinforces the widely known retrieval practice concept. | This is the territory of metacognition with a nice metaphor of the prefrontal cortex acting as the conductor of the orchestra of brain functions. There's a problem with the illusion of knowing when we are familiar with information even when we cannot fully recollect it. We stop trying to learn more if we kid ourselves into thinking we already know it. Students should, therefore, be taught to check their understanding using spaced retrieval practice, generating information by explaining their learning to others as a form of self-test. |
|                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |