1 Here is part of a number sequence.
[2007]
The numbers increase by the same amount each time.

The sequence continues.

Circle all of the numbers below that would appear in the sequence.

| 『 | |
| :--- | :--- | :--- | :--- | :--- |
| 840 | $905 \quad 989 \quad 1000 \quad 2051$ |

2 Here is part of a number sequence.
[2011]
The numbers in the sequence increase by 25 each time.
$50 \quad 75 \quad 100 \quad 125$...

Circle all of the numbers below that will appear in the sequence.

* $255 \quad 650 \quad 735 \quad 900 \quad 995$

The numbers in this sequence increase by 75 each time.

Write in the two missing numbers.

4 The numbers in this sequence increase by 14 each time.
[2016]
Write the missing numbers.

The numbers in this sequence increase by 30 each time.
[2015]

$$
20 \quad 50 \quad 80 \quad 110 \ldots
$$

The sequence continues in the same way.

Which number in the sequence will be closest to $\mathbf{3 0 0}$?

The numbers in this sequence increase by 3 each time.
[2011]
3
6
9
12
. .

The numbers in this sequence increase by 5 each time.
5
10
15
20

Both sequences continue.

Write a number greater than 100 which will be in both sequences.

The numbers in this sequence increase by the same amount each time.

Write in the missing numbers.

$313 \quad 23$

The sequence continues in the same way.

Write two numbers from the sequence that add to make a total of 96

Explain why it is not possible to find three numbers from the sequence that add to make a total of 96

The numbers in this sequence increase by the same amount each time.
[2014]
Write the two missing numbers.

| $\\|$ |
| :--- | $650 \quad 690 \quad \square$

The rule for this sequence of numbers is 'add $\mathbf{3}$ each time'.
[2001]

$$
\begin{array}{lllllll}
1 & 4 & 7 & 10 & 13 & 16
\end{array}
$$

The sequence continues in the same way.

Mary says,
'No matter how far you go there will never be a multiple of 3 in the sequence'.
Is she correct?
Circle Yes or No.
《 Yes / No

Explain how you know.

11 Liam makes a sequence of numbers starting with 300
[2010]
He subtracts 125 each time.

Write the next two numbers in Liam's sequence.

A sequence starts at 500 and 80 is subtracted each time.
[2002]

$$
500 \quad 420 \quad 340 \ldots
$$

The sequence continues in the same way.

Write the first two numbers in the sequence which are less than zero.

This sequence of numbers goes up by 40 each time.
[2000]

$$
\begin{array}{llllll}
40 & 80 & 120 & 160 & 200 & \ldots
\end{array}
$$

This sequence continues.

Will the number 2140 be in the sequence?
Circle Yes or No. Circle Yes or No.
© Yes / No

Explain how you know.

15 The numbers in this sequence increase by 7 each time.
1
8
15
22
29

The sequence continues in the same way.

Will the number 777 be in the sequence? Circle Yes or No.

Yes / No

Explain how you know.

16 The numbers in this sequence increase by equal amounts each time.
[2015]
Write in the three missing numbers.
1

\square

17

Here is a sequence of patterns made from squares and circles.

	number of squares	number of circles
	1	3
	2	5
	3	7

The sequence continues in the same way.

Calculate how many squares there will be in the pattern which has $\mathbf{2 5}$ circles.

Paulo makes a sequence of numbers.
[2002]
He chooses a starting number and then subtracts equal amounts each time.

The third number in his sequence is 45
The tenth number is $\mathbf{- 3 2}$
$\square \square$
45 \square
\square
\square

\square
$\square$$-32$

What is the first number in the sequence?

19 Look at the sequence below.
[2000] To get the next term in the sequence, subtract 90 from the term before.

$$
500
$$ 320

Write the first two terms of the sequence that are less than zero.
\qquad , \qquad

Here is a sequence of patterns made from octagons and squares.

number of octagons (n)	number of squares (q)
1	4

The sequence continues.

How many squares will there be in the pattern that has 40 octagons?

q represents the number of squares.
n represents the number of octagons.

What is the rule connecting \mathbf{q} and \mathbf{n} ?
\qquad

pattern number 1

pattern number 2

pattern number 3

To find the number of hexagons in pattern number \boldsymbol{n} you can use these rules:

$$
\begin{aligned}
& \text { Number of grey hexagons }=n+1 \\
& \text { Number of white hexagons }=2 n
\end{aligned}
$$

Altogether, what is the total number of hexagons in pattern number 20 ?

