[image:]Characteristics of Computing

· Competence in coding for a variety of practical and inventive purposes, including the application of ideas within other subjects.

· The ability to connect with others safely and respectfully, understanding the need to act within the law and with moral and ethical integrity.

· An understanding of the connected nature of devices.

· [bookmark: _GoBack]The ability to communicate ideas well by using applications and devices throughout the curriculum.

· The ability to collect, organise and manipulate data effectively.

[image: N:\A Final Logo\Laceby_Logo.jpg]
[image:]ICT Intent and Implementation🔩
🏹

Intent
At the Laceby Acres we believe that our students should have the opportunity to follow an IT and Computing curriculum that prepares them for life in modern Britain and take advantage of opportunity this can offer them in both Britain and the wider world. Good quality IT skills enable student to engage positively within the modern work place, while Computer Science skills enable students to take an active part in the design, development and creation of new technologies to be used in the world in which they live.
In line with the 2014 National Curriculum for Computing, our aim is to provide a high-quality computing education, which equips children to use computational thinking and creativity to understand and change the world. The curriculum will teach children key knowledge about how computers and computer systems work, and how they are designed and programmed. Learners will have the opportunity to gain an understanding of computational systems of all kinds, whether or not they include computers.
It is our intention to enable children to find, explore, analyse, exchange and present information in a safe, responsible and respectful manner. We also focus on developing the skills necessary for children to be able to use information in a discriminating and effective way. Our computing curriculum enables children to develop their problem solving and reasoning abilities. It enables children to understand and apply the essential principles and concepts of Computer Science, including logic, algorithms and data representation, analyse problems in computational term, and have repeated practical experience of writing computer programs in order to solve such problems.

[image: N:\A Final Logo\Laceby_Logo.jpg]
[image:]Computing Intent and Implementation🔩
🏹

[image:]Implementation How we teach computing is underpinned by our 12 principles of Computing Pedagogy (NCCE)
image1.png

image2.jpeg
Laceby

cres
Academy 3
TReach for the Stars

image3.jpeg
o

Laceby

cres
Academy .3
Reach for the Stars

image4.png
Lead with concepts
Support pupils i the acquisition of
knowledge, through the use of key
concepts, terms, and vocabulary,
providing opportunities to build a
shared and consistent understanding.
Glossaries, concept maps, and displays,
along with regular recall and revision,
can support this approach.

Unplug, unpack, repack
Teach new concepts by first unpacking
complex terms and ideas, exploring
these ideas in unplugged and familiar
contexts, then repacking this new
understanding into the original concept.
“This approach (semantic waves) can
help pupils develop a secure
understanding of complex concepts.

Create projects
Use project-based learning activities to
provide pupils with the opportunity to
apply and consolidate their knowledge
and understanding. Design is an
important, often overlooked aspect of
computing. Pupils can consider how to
develop an artefact for a particular user
or function, and evaluate it against a set
of crteria

Challenge misconceptions
Use formative questioning to uncover
misconceptions and adapt teaching to
address them as they occur. Awareness
of common misconceptions alongside
discussion, concept mapping, peer
instruction, or simple quizzes can help
identify areas of confusion.

Structure lessons
Use supportive frameworks when
planning lessons, such as PRIMM
(Predict, Run, Investigate, Modify,
Make) and Use-Modify-Create. These
frameworks are based on research and
ensure that differentiation can be built
in at various stages of the lesson,

Work together
Encourage collaboration, specifically
using pair programming and peer
instruction, and also structured group
tasks. Working together stimulates
classroom dialogue, articulation of
concepts, and development of shared
understanding,

Model everything
Model processes or practices —
everything from debugging code to
binary number conversions — using
techniques such as worked example s
and live coding g. Modelling is
particularly beneficial to novices,
providing scaffolding that can be
gradually taken away.

Add variety
Provide activities with different levels of
direction, scaffolding, and support that
promote active learning, ranging from
highly structured to more exploratory
tasks. Adapting your instruction to suit
different objectives will help keep all
pupils engaged and encourage greater
independence.

Make concrete
Bring abstract concepts to ife with rel-
world, contextual examples and a focus
oninterdependencies with other
curriculum subjects. This can be
achieved through the use of unplugged
activites, proposing analogies,
storytelling around concepts, and
finding examples of the concepts in
pupils’lives.

Laceby
"Academy ;

Read and explore code first
when teaching programming, focus first
on code ‘reading activites, before code
writing. With both block-based and
text-based programming, encourage
pupils to review and interpret blocks of
code. Research has shown that being
able to read, trace, and explain code
augments pupils’ ability to write code.

Get hands-on
Use physical computing and making
activities that offer tactile and sensory
experiences to enhance learning.
Combining electronics and
programming with arts and crafts
(especially through exploratory
projects) provides pupils with a
creative, engaging context to explore
and apply computing concepts.

Foster program comprehension
Use a variety of activities to consolidate
knowledge and understanding of the
function and structure of programs,
including debugging, tracing. Regular
comprehension activities will help
secure understanding and build
connections with new knowledge.

