

MATHS

GCSE To A Level

Bridging Booklet ANSWERS

1. Indices and Surds

<u>1. I</u>	ndi	ces and Surd	<u>s</u>	
	100			1 1
1	a	7	b 3	c $\frac{1}{5}$ d $\frac{1}{4}$ g $\frac{1}{25}$ h $\frac{1}{8}$
	e	27	f 8	$g \frac{1}{-}$ $h \frac{1}{-}$
	i	81	$j = \frac{2}{3}$	g $\frac{1}{25}$ h $\frac{1}{8}$ k $\frac{4}{3}$ l $\frac{4}{9}$
2	a	$2\sqrt{2}$	b 5√3	c 4√6
		$12\sqrt{3}$		f $\sqrt{3}$
		$14\sqrt{2}$	h $5\sqrt{2} + 15\sqrt{5}$	i 5√17
	j	$14\sqrt{2}$	$k 12\sqrt{2} - 2\sqrt{3}$	1 $6\sqrt{5} + 5\sqrt{2}$
3	a	$\frac{\sqrt{7}}{7}$	b $\frac{\sqrt{2}}{2}$	c 4√3
			e $\frac{1}{2}(\sqrt{3}-1)$	f $2(\sqrt{2}-1)$ i $2\sqrt{2}-\sqrt{6}$
	g	$-2(1+\sqrt{5})$	$h^{\frac{1}{2}}(\sqrt{5}+1)$	i $2\sqrt{2}-\sqrt{6}$
		$3\sqrt{2}+2\sqrt{3}$		$1 -\frac{3}{2}\sqrt{5} -\frac{7}{2}$
4	a	$5+4\sqrt{2}$		b $1+2\sqrt{2}$
		$1 - 2\sqrt{2}$		d $5-4\sqrt{2}$
	e	$6\sqrt{3} + 11$		f $2\sqrt{3} + 5$
	g	$2\sqrt{3}-5$		h $6\sqrt{3}-11$
	i	$2\sqrt{3} + 3\sqrt{6} +$	$\sqrt{2} + 3$	$j 2\sqrt{3} - 3\sqrt{6} + \sqrt{2} - 3$
	k	$2\sqrt{3} + 3\sqrt{6} -$	$\sqrt{2}-3$	1 $2\sqrt{3} - 3\sqrt{6} - \sqrt{2} + 3$
5	a	x^{10}	b $21x^{11}$	c 40x ¹¹
	d	x^6	e $4x^{-2}$	$f = \frac{1}{4}x$
	g	x^{35}	h x^{-10}	i 81x8
	j	$36x^{10}$	$k x^{\frac{3}{2}}$	$1 x^{\frac{5}{4}}$
	m	$5x^{-\frac{1}{2}}$	$n \ 2x^{\frac{3}{2}}$	$o = \frac{1}{3}x^{\frac{3}{2}}$
	p	x^8-x^3	$q x^{\frac{7}{2}} + 2x^3$	$\mathbf{r} = x^{-2} + 2x^{-3}$
	S	$x^{-\frac{1}{2}} + 3x^{-1}$	$t 3x^{-\frac{1}{2}} - x^{\frac{3}{2}}$	
	v	$3x^{-2} + x^{-\frac{3}{2}}$	$w \frac{1}{2} x^{-\frac{1}{2}} - \frac{1}{2} x$	$\frac{1}{2}$ $x \frac{1}{3}x^{-\frac{5}{2}} + \frac{2}{3}x^{-3}$
1500			2 4	3

EXERCISE ANSWERS

2. Linear equations and rearranging formulae

2. LI	icai	equations a	ila rearranging it	Jilliale	<u>1C</u>
1	a	$x = -\frac{10}{3}$	b $x = -\frac{5}{3}$	c	x = 31
	d	$x = \frac{13}{3}$	$e \ x = 2.5$	f	x = 2.1
	g	x = 7	$h x = \frac{5}{13}$		17
2	a	$x \ge -4$	b $x > -3$	c	$x > \frac{17}{4}$
	d	x > 5	e $x \le -\frac{2}{3}$	f	$x \ge -1.8$
	g	$x < \frac{16}{7}$	h $x \le -\frac{5}{3}$		

3 a
$$x = \frac{3A-6}{2}$$
 b $x = \frac{3-u}{1}$ c $x = \frac{1}{2}$

3 a
$$x = \frac{3A-6}{2}$$
 b $x = \frac{3-u}{1-v}$ c $x = \frac{1}{3-2k}$
d $x = \frac{15m-4}{5-2n}$ e $x = \frac{1 \pm \sqrt{t}}{3}$ f $x = \frac{pq}{p+q}$

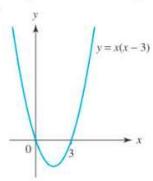
g
$$x = \pm \sqrt{\frac{1}{10} - k}$$
 h $x = 4B^2 - A$

4 a
$$y=2, x=-6$$
 b $x=-3, y=7$ c $y=2, x=7$

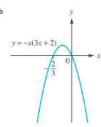
d =
$$\frac{3}{5}$$
, $y = -\frac{1}{10}$ e $y = 12$, $x = 7$ f $y = -\frac{1}{2}$, $x = \frac{1}{4}$

5 a (-3, 17) b
$$\left(\frac{1}{2}, -\frac{1}{2}\right)$$
 c $\left(\frac{2}{3}, \frac{13}{3}\right)$

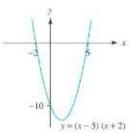
EXERCISE ANSWERS

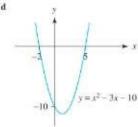

3. Factorising quadratics and simple cubics

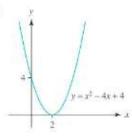
- 1 a x(3x+5)
- **b** 4x(2x-1)
- c 17x(x+2)
- **d** 6x(3x-4)
- 2 a (x+2)(x+3)
- **b** (x-5)(x-2)
- c (x-6)(x+1)
- d (x+7)(x-4)
- e(x-9)(x+8)
- f(x+8)(x-6)
- g(x-11)(x-1)
- h (x-8)(x+3)
- 3 a (x+10)(x-10)
- **b** (x+9)(x-9)
- c (2x+3)(2x-3)
- d (8+3x)(8-3x)
- 4 a (3x+1)(x+2)
- **b** (3x+4)(2x+3)
- c (4x-1)(x-3)
- d (2x+3)(x-5)
- e (2x+5)(x-1)
- f(7x-3)(x+4)
- h (4x-1)(3x+5)
- g(4x-5)(2x-3)5 a (4x+5)(4x-5)
- **b** 4x(x-4)
- c (x+12)(x+1)
- d (3x-5)(x+7)
- e (x+4)(x-3)
- f (10+3x)(10-3x)
- g 2x(x-7)
- h (5x-2)(4x+1)
- 6 a x = 0 or $x = \frac{1}{3}$

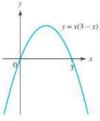

- **b** x = -6 or x = 6
- **c** x = 0 or x = -2 **d** $x = -\frac{1}{2}$ or $x = -\frac{5}{3}$
- e $x = -\frac{7}{2}$ or $x = \frac{7}{2}$ f x = 9 or x = -2
- **g** x = 6 or x = 1 **h** $x = \frac{2}{7}$ or $x = -\frac{1}{3}$
- i $x = \frac{2}{5}$ or x = 3

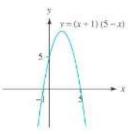
- 1 $x = \frac{3}{8}$ or $x = -\frac{2}{5}$

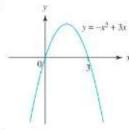

7 a

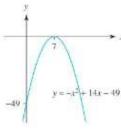


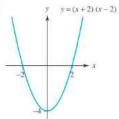

7 ^b

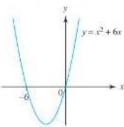


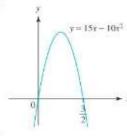

7

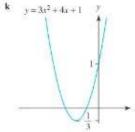




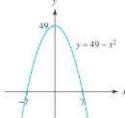


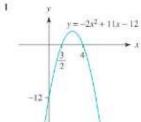


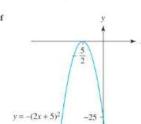


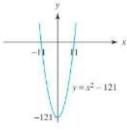


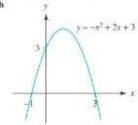
 $y = (x+4)^2$


8 a









EXERCISE ANSWERS

4. Completing the square

1 a
$$(x+4)^2-16$$

b
$$(x-9)^2-81$$

$$(x+3)^2-6$$

d
$$(x+6)^2-41$$

e
$$\left(x-\frac{7}{2}\right)^2-\frac{9}{4}$$
 f $\left(x+\frac{5}{2}\right)^2+\frac{11}{4}$

$$f \left(x + \frac{5}{2}\right)^2 + \frac{11}{4}$$

$$g = 2(x+2)^2 - 4$$

g
$$2(x+2)^2-4$$
 h $3(x+2)^2-33$

i
$$2\left(x-\frac{5}{2}\right)^2-\frac{19}{2}$$
 j $-(x-6)^2+3$

$$\mathbf{k} = \left(x - \frac{9}{2}\right)^2 + \frac{69}{4} = 1 = -2\left(x - \frac{5}{4}\right)^2 + \frac{17}{8}$$

- 2 a (-7, -49) is a minimum point
 - b (9, -78) is a minimum point
 - $c \left(\frac{9}{2}, -\frac{81}{4}\right)$ is a minimum point
 - d (2, 4) is a maximum point
 - e $\left(-\frac{11}{2}, -\frac{1}{4}\right)$ is a minimum point
 - f (3, 2) is a maximum point
 - g (-4, -37) is a minimum point
 - $h\left(\frac{5}{2},\frac{67}{4}\right)$ is a maximum point.

5. The Quadratic Formula

- 1 a x = 0.88 or x = -1.30
 - **b** x = 3.41 or x = 0.59
 - x = 11.66 or x = 0.34
- 2 a No real solutions.
 - Two (distinct) real solutions.
 - C One real solution (coincidental solutions).
- 3 a $y=7x^2-5x+4$ b $y=-4x^2+12x-9$
- c $y = 6x^2 x 15$ d $y = -x^2 + 2x 4$

- 6 a $k > \frac{1}{40}$ b $k < -\frac{4}{5}$ c $k < \frac{47}{40}$

6. Line Graphs

- 2 a 5\sqrt{2}
- b √481
- c 14.2

- e √41
- $f k\sqrt{10}$

- 3 a (2,8) c (4.2, -0.1)
- b (-0.5, -6.5) d (-0.5, -1)
- e $\left(\frac{5}{2}\sqrt{5}, \frac{3}{2}\sqrt{5}\right)$
- f (2m, 0)
- 4 a gradient is 7, y-intercept is -4
 - b gradient is -2, y-intercept is 3
 - c gradient is 1, y-intercept is -4
 - d gradient is $-\frac{3}{2}$, y-intercept is $\frac{7}{2}$
 - e gradient is $\frac{5}{2}$, y-intercept is $-\frac{9}{2}$
 - f gradient is $\frac{3}{5}$, y-intercept is 0
 - g gradient is $-\frac{1}{6}$, y-intercept is $-\frac{1}{2}$
 - **h** gradient is $\frac{4}{3}$, y-intercept is $\frac{2}{3}$
- 5 a $y = -\frac{1}{2}x + 6$ b y = -2x 1

 - c 11x + 3y 56 = 0 d $y = \frac{1}{4}x 4$
 - e y=2x-1
- $f y = \frac{5}{2}x \frac{7}{2}\sqrt{2}$
- 6 a perpendicular
 - b neither parallel nor perpendicular
 - c parallel
- 7 a perpendicular
 - b neither parallel nor perpendicular
 - c parallel
- 8 a parallel
 - b neither parallel nor perpendicular
 - c perpendicular

9 a
$$5x-y-18=0$$
 b $x+5y-1=0$

10 a
$$x-2y+11=0$$
 b $2x+y-14=0$

11 a
$$3x+y-22=0$$
 b $x-3y-2=0$

12 a
$$6x+5y-24=0$$
 b $5x-6y-42=0$
13 a $6x-2y-1=0$ b $2x+6y+5=0$

14 a
$$2x - 3y - 5 = 0$$

b
$$5x + 7y + 14 = 0$$

$$c y = -x + 6$$

d
$$x - 3y - 7 = 0$$

e
$$8x - 2y - 25 = 0$$

$$c \left(\frac{4}{3}, \frac{13}{3}\right)$$
 $d\left(2, \frac{15}{2}\right)$

$$\left(\frac{5}{6}, \frac{1}{6}\right)$$
 $d\left(-\frac{1}{3}, -\frac{1}{3}\right)$

7. Circles

1 a
$$(x-2)^2 + (y-5)^2 = 49$$

b
$$(x+1)^2 + (y+3)^2 = 16$$

$$(x+3)^2 + y^2 = 2$$

d
$$(x-4)^2 + (y+2)^2 = 5$$

d centre
$$(-3, -1)$$
, radius $4\sqrt{5}$

e centre
$$(\sqrt{2}, -2\sqrt{2})$$
, radius $4\sqrt{2}$

f centre
$$\left(-\frac{1}{4}, -\frac{1}{3}\right)$$
, radius $\frac{5}{2}$

d centre
$$(-3, -4)$$
, radius is $\sqrt{23}$

e centre (4, 5), radius
$$2\sqrt{11}$$

f centre (-7, 1), radius
$$\sqrt{55}$$

g centre
$$\left(-\frac{5}{2}, 2\right)$$
, radius $\frac{1}{2}\sqrt{29}$

h centre
$$\left(\frac{3}{2}, \frac{9}{2}\right)$$
, radius $\frac{7}{2}\sqrt{2}$

i centre
$$\left(\frac{1}{2}, -\frac{7}{2}\right)$$
, radius $\frac{\sqrt{2}}{2}$

4 a
$$(x-2)^2 + (y-6)^2 = 2$$

b
$$(x-3)^2 + (y+3)^2 = 5$$

c
$$(x+4)^2 + (y+4.5)^2 = 27.25$$

d
$$(x-2.5)^2 + (y+11.5)^2 = 50.5$$

$$e x^2 + (y-5)^2 = 3$$

$$f(x-\sqrt{3})^2+(y+3\sqrt{3})^2=39$$

$$7 \quad x-3y-14=0$$

8
$$3x+5y+10=0$$

9 $y=\frac{1}{x}-\frac{19}{x}$

10
$$y = 9x - 5$$

EXERCISE ANSWERS

$$b = \frac{16}{5} \sqrt{5}$$

14
$$(x-3)^2 + (x-3+2)^2 = 2 \Rightarrow (x-3)^2 + (x-1)^2 = 2$$

 $\Rightarrow x^2 - 6x + 9 + x^2 - 2x + 1 = 2$

$$\Rightarrow 2x^2 - 8x + 8 = 0$$

$$b^2 - 4ac = (-8)^2 - 4 \times 2 \times 8 = 0$$
 so only one solution
hence a tangent

15
$$y = 34 - 4x \Rightarrow (x+1)^2 + (34 - 4x - 4)^2 = 68$$

 $\Rightarrow (x+1)^2 + (30 - 4x)^2 = 68$
 $\Rightarrow x^2 + 2x + 1 + 900 - 240x + 16x^2 = 68$

$$\Rightarrow 17x^2 - 238x + 833 = 0$$

$$b^2 - 4ac = (-238)^2 - 4 \times 17 \times 833 = 0$$
 so only one solution
hence a tangent

16
$$x = 25 - 3y \Rightarrow (25 - 3y)^2 + (y - 5)^2 = 10$$

 $\Rightarrow 625 - 150y + 9y^2 + y^2 - 10y + 25 = 10$

$$\Rightarrow 625 - 150y + 9y^{-} + y^{-} - 10y + 25 = 1$$

$$\Rightarrow 10y^{2} - 160y + 640 = 0$$

 $b^2 - 4ac = (-160)^2 - 4 \times 10 \times 640 = 0$ so only one solution hence a tangent

17
$$(x-1)^2 + (2x+3+4)^2 = 1$$

$$\Rightarrow (x-1)^2 + (2x+7)^2 = 1$$

$$\Rightarrow x^2 - 2x + 1 + 4x^2 + 28x + 49 = 1$$

$$\Rightarrow 5x^2 + 26x + 49 = 0$$

$$b^2 - 4ac = 26^2 - 4 \times 5 \times 49 = -304$$
 negative so no solutions hence they do not intersect

18
$$3x = -2 - 4y \Rightarrow x = -\frac{2}{3} - \frac{4}{3}y$$

 $\Rightarrow \left(-\frac{2}{3} - \frac{4}{3}y + 3\right)^2 + (y - 6)^2 = 9$

$$\Rightarrow \left(-\frac{2}{3} - \frac{4}{3}y + 3\right) + (y - 6)^2 =$$

$$\Rightarrow \left(\frac{7}{3} - \frac{4}{3}y\right)^2 + (y - 6)^2 = 9$$

$$\Rightarrow \frac{49}{9} - \frac{56}{9}y + \frac{16}{9}y^2 + y^2 - 12y + 36 = 9$$

$$\Rightarrow \frac{25}{9}y^2 - \frac{164}{9}y + \frac{292}{9} = 0$$

$$b^2 - 4ac = \left(-\frac{164}{9}\right)^2 - 4 \times \frac{25}{9} \times \frac{292}{9} = -\frac{256}{9}$$
 negative so no

solutions hence they do not intersect

1. Indices and Surds

c
$$16x^{24}$$

$$d \frac{x^6}{9}$$

$$c \frac{1}{8}$$

$$\frac{1}{16}$$

3 a
$$x^{\frac{2}{5}}$$

b
$$3x^{-\frac{1}{2}}$$

c
$$3x^{\frac{3}{2}}$$

d
$$\frac{1}{3}x^{-\frac{1}{2}}$$

$$\frac{4\sqrt{3}}{3}$$

d
$$5 + 2\sqrt{5}$$

2. Linear equations and rearranging formulae

1
$$x = 7$$

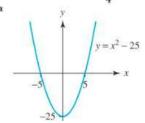
$$3 \quad x = \frac{1 - 3A}{3 - B}$$

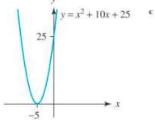
4
$$y=3, x=-7$$

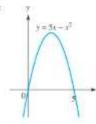
3. Factorising Quadratics and simple cubics

1 a
$$7x(2x-1)$$

1 a
$$7x(2x-1)$$
 b $(x-4)(x-1)$ c $(x+5)(x-5)$


2 a
$$(5x+1)(x+4)$$


b
$$(3x-1)(2x+3)$$


c
$$(2x-5)(4x-1)$$

3 **a**
$$x = 0$$
 or $x = 2$ **b** $x = \frac{3}{4}$ or $x = 5$

4 a

TRY IT ANSWERS

4. Completing The Square

1 a
$$(x+11)^2-121$$
 b $2(x-2)^2-14$

b
$$2(x-2)^2-14$$

$$c -(x-5)^2 + 25$$

2 a
$$\left(\frac{3}{2}, -\frac{5}{4}\right)$$
 is a minimum

$$\mathbf{b} \left(-\frac{7}{2}, \frac{1}{4}\right)$$
 is a maximum

$$c$$
 $(-1, -3)$ is a minimum

5. The Quadratic Formula

1
$$x = 1.25$$
 or $x = -0.68$

$$2 \frac{1}{20}$$

$$3 \ k \ge -\frac{9}{4}$$

$$4 k > \frac{49}{4}$$

6. Line Graphs

1 a
$$\frac{1}{3}$$

$$c - \frac{7}{2}$$

$$a 2\sqrt{2}$$

b gradient is
$$-\frac{1}{2}$$
, y-intercept is $\frac{3}{2}$

c gradient is
$$\frac{2}{3}$$
, y-intercept is $-\frac{4}{9}$

5 **a**
$$y = -2x + 13$$
 b $y = 3x - 16$ **c** $5y = 3x - 11$

b
$$y = 3x - 16$$

$$5y = 3x - 11$$

6
$$3x-2y-13=0$$

- b perpendicular
- c parallel

8
$$3x-2y+13=0$$

9
$$7x - 4y + 39 = 0$$

7. Circles

b
$$(x-7)^2 + (y+9)^2 = 64$$

b centre
$$(-3, 6)$$
, radius $3\sqrt{5}$

$$3(x-3)^2+(y-1)^2=26$$

4 a
$$(6-1)^2 + (1+4)^2 = 5^2 + 5^2 = 50$$
 so $(6, 1)$ lies on the circle

b
$$y = -x + 7$$

$$b = \frac{13}{5}\sqrt{10}$$

6
$$y = 2x + 11 \Rightarrow (x - 5)^2 + (2x + 11 - 1)^2 = 80$$

 $\Rightarrow (x - 5)^2 + (2x + 10)^2 = 80$
 $\Rightarrow x^2 - 10x + 25 + 4x^2 + 40x + 100 = 80$
 $\Rightarrow 5x^2 + 30x + 45 = 0$

exactly one solution

Therefore the line and the circle touch once, hence the line is a tangent to the circle.