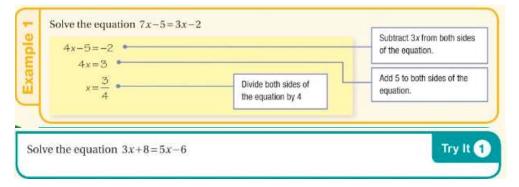
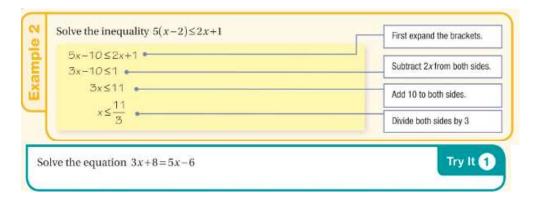
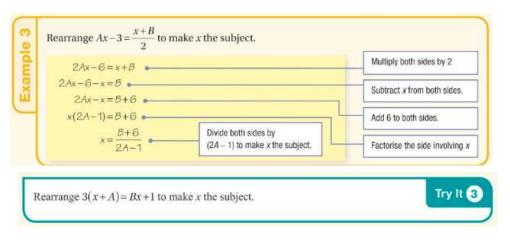
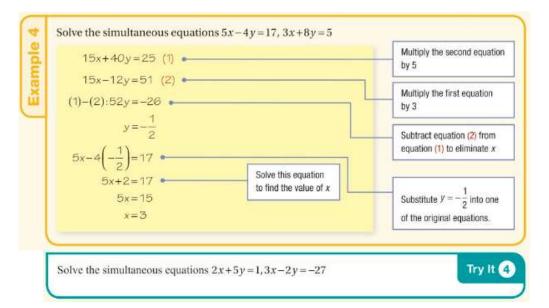

MATHS GCSE To ALevel Bridging Booklet

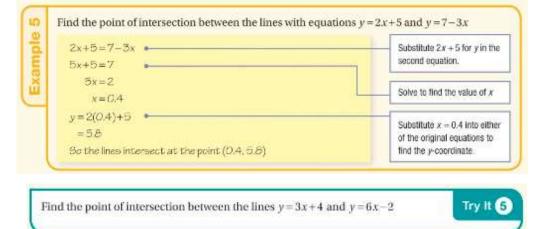
Please read through the examples and then try the questions, showing your working clearly.

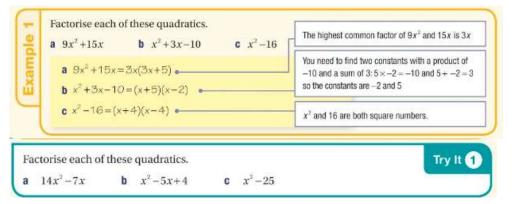


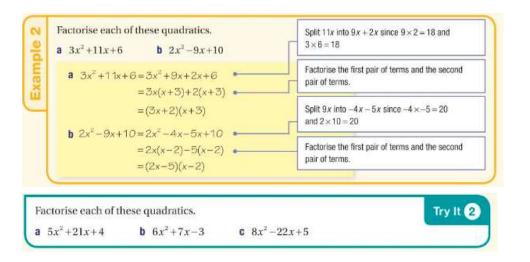


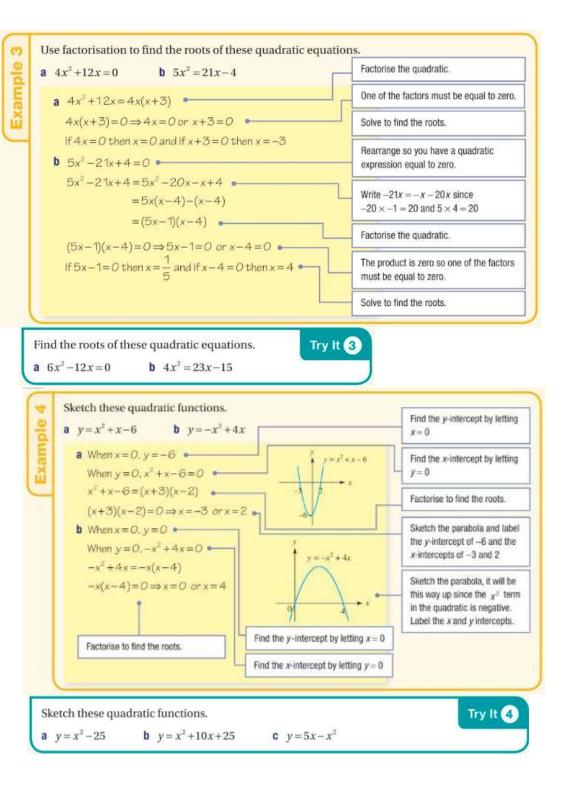



e 9 ² 1	27 ³ 16 ³ 9	5 ⁻¹ d 125 ⁻² /3 h	$ \begin{array}{c} 64^{\frac{-1}{3}} \\ \left(\frac{1}{2}\right)^3 \\ \left(\frac{27}{8}\right)^{\frac{2}{3}} \end{array} $	Exercise	a e	$(1+\sqrt{2})(3+\sqrt{2})$ $(\sqrt{3}+2)(4+\sqrt{3})$	b f	$(\sqrt{3}+2)(4-\sqrt{3})$	h expression. c $(1-\sqrt{2})(3+\sqrt{2})$ g $(\sqrt{3}-2)(4+\sqrt{3})$ k $(\sqrt{6}-1)(\sqrt{2}+3)$	h	
e √20+√5 f	$\sqrt{75}$ c $\sqrt{27} - \sqrt{12}$ g	$2\sqrt{24}$ d $5\sqrt{32}-3\sqrt{8}$ h	$3\sqrt{48}$ $\sqrt{50} + 3\sqrt{125}$ $6\sqrt{5} + \sqrt{50}$	ιl	a	$x^3 \times x^2$	b 7		c $5x^4 \times 8x^7$		$\chi^{8} + \chi^{2}$
3 Simplify these express a $\frac{1}{\sqrt{7}}$ b e $\frac{1}{1+\sqrt{3}}$ f i $\frac{\sqrt{2}}{2+\sqrt{3}}$ j	$\frac{2}{\sqrt{8}}$ c $\frac{2}{1+\sqrt{2}}$ g	$\begin{array}{cc} \frac{12}{\sqrt{3}} & \text{d} \\ \frac{8}{1-\sqrt{5}} & \text{h} \end{array}$	$ \frac{\sqrt{8}}{\sqrt{12}} $ $ \frac{2}{\sqrt{5}-1} $ $ \frac{3+\sqrt{5}}{\sqrt{5}-3} $]	i m q	$(3x^2)^4$ $\frac{5\sqrt{x}}{x}$ $x^3(\sqrt{x}+2)$	j (6 n 2 r <u>x</u>	$\frac{(x^3)^2}{2x\sqrt{x}}$	$g (x^5)^T$ $k \sqrt{x^3}$ $0 \frac{x^2}{3\sqrt{x}}$ $s \frac{\sqrt{x+3}}{x}$ $w \frac{1-x}{2\sqrt{x}}$	l p t	$ (x^{2})^{-5} \sqrt[4]{x^{3}} x^{3}(x^{3}-1) \frac{(3-x^{3})}{\sqrt{x}} \frac{\sqrt{x}+2}{3x^{3}} $
2+√3	√6-2	1-√2	√5−3								


Solving Linear Equations and Rearranging Formulae

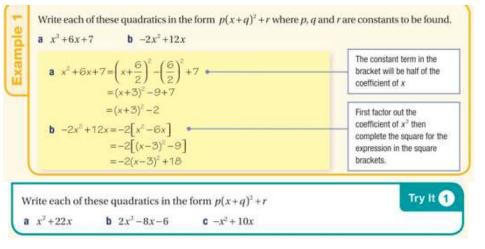


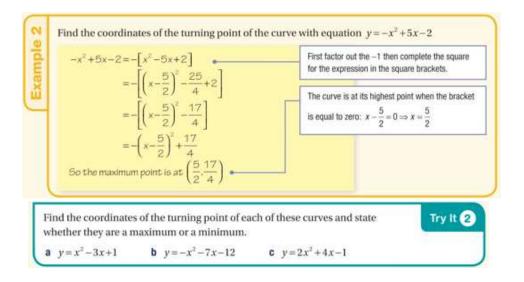


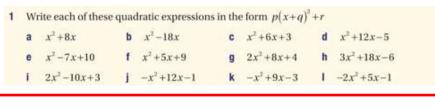


				Exercise	Use algebra to solve each of th	nese pairs of simultaneous equa	tions
Solve each of these line $3(2x+9)=7$	the $7-3x-12$	x + 4 - 7	d $2x+7-5x-6$			b $7x+5y=14$, $3x+4y=19$	
3(2x+3)=7	b $7-3x=12$ f $\frac{2x+9}{12}=x-1$	5 2(2, 5) 1	b $2x+1=3x=0$				f $8x+5y=-0.5, -6x+4y=-3$
8x-3=2(3x+1)	$1 \frac{12}{12} = x - 1$	g $2(3x-i)=4x$	1 (-2x = 3(4 - 5x))				
2 Solve each of these li x + 7 > 5	near inequalities.	0 5(x 1)>10	d x+1 > 2				
$a = \frac{-+725}{2}$ $a = \frac{8r-1}{2}$	$\int \frac{3-4x}{15} \frac{x-3}{15}$	5(x-1) > 12+x	d $\frac{x+1}{3} > 2$ h $x-(3+2x) \ge 2(x+1)$				
6 0x-132x-3	$1 - 3(x+1) = -\frac{1}{2}$	y 5(2x-5)(1-x	$\prod_{x \to 0} x^{-1} (3 + 2x) \leq 2(x + 1)$				
				5	Use algebra to find the point of		
					a $y=8-3x, y=2-5x$	b $y = 7x - 4, y = 3x - 2$	c $y = 2x + 3, y = 5 - x$
					d $y+5=3x, y=-5x+7$	$y = \frac{1}{2}x + 3, y = 5 - 2x$	f $y=3(x+2), y=7-2x$
Rearrange each of the	ese formulae to make x t	he subject.					
a $2x+5=3A-1$	b $x+u=vx+3$	$\frac{3x-1}{k} = 2x$	d $5(x-3m)=2nx-4$				
e $(1-3x)^2 = t$	$\mathbf{f} \frac{1}{x} = \frac{1}{p} + \frac{1}{q}$	g $\frac{1}{2} - 6 = 4$	h $\sqrt{x+A} = 2B$				
	x p q	$x + \kappa$					

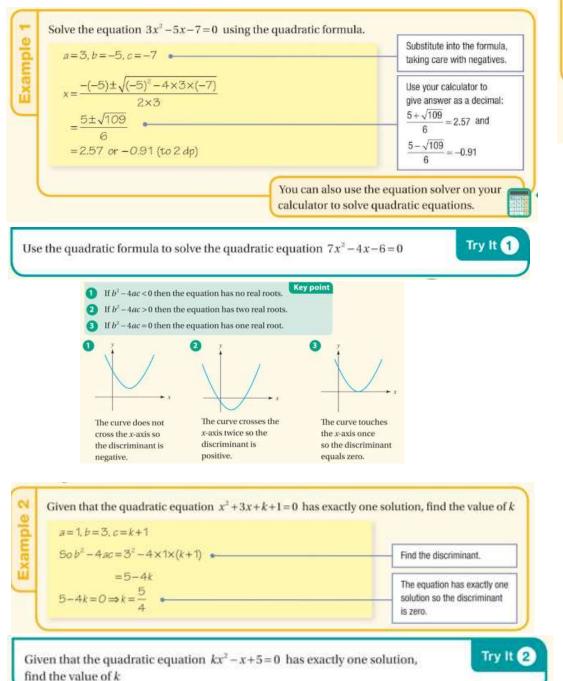
Factorising Quadratics and Simple Cubics



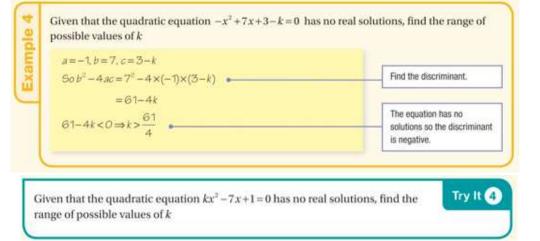


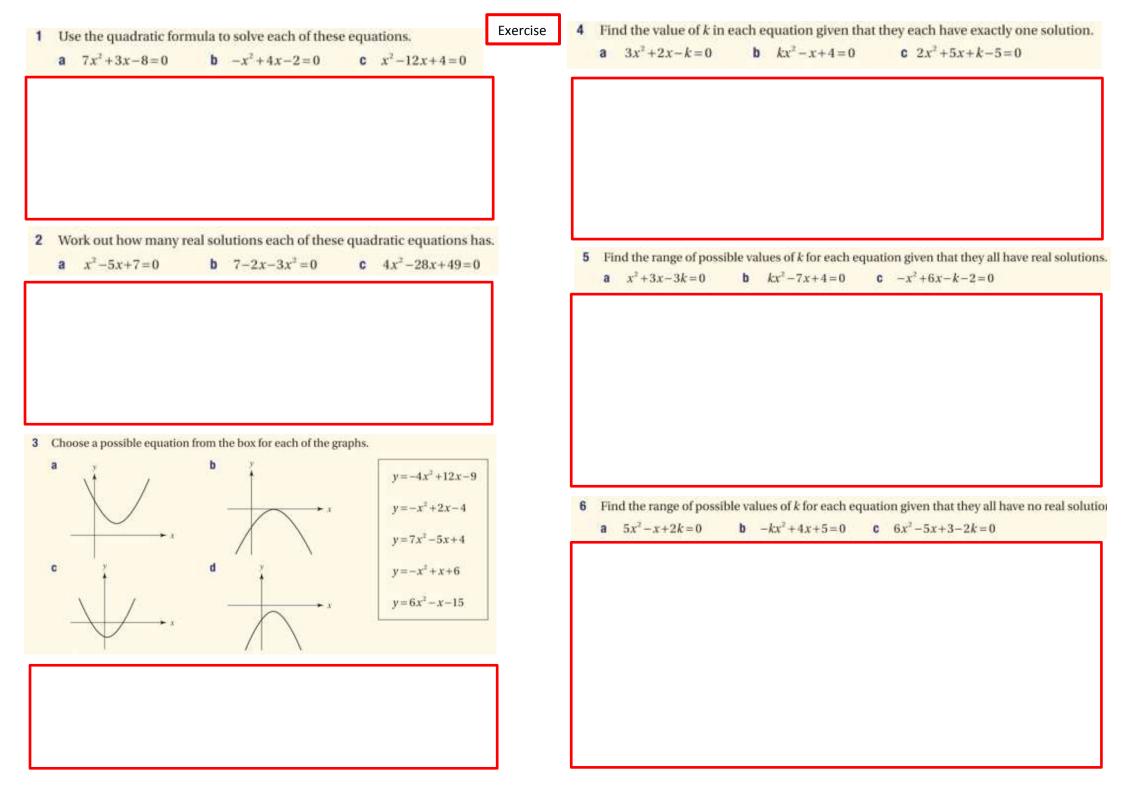

			Exercise				
1 Fully factorise each of these quadratics.			5	Fully factorise each	of these quadratics.		
a $3x^2 + 5x$ b $8x^2 - 4x$	c $17x^2 + 34x$	d $18x^2 - 24x$		a $16x^2 - 25$	b $4x^2 - 16x$	c $x^2 + 13x + 12$	d $3x^2 + 16x - 35$
				$x^2 + x - 12$	f $100-9x^2$	g $2x^2 - 14x$	h $20x^2 - 3x - 2$
			6	Liso factorisation to	o find the roots of these	mudratic equations	
2 Factorise each of these quadratics.				a $21x^2 - 7x = 0$	b $x^2 - 36 = 0$	c $17x^2 + 34x = 0$	d $6x^2 + 13x + 5 = 0$
a $x^2 + 5x + 6$ b $x^2 - 7x + 10$	c $x^2 - 5x - 6$	d $x^2 + 3x - 28$		e $4x^2 - 49 = 0$	b $x - 36 = 0$ f $x^2 = 7x + 18$	g $x^2 - 7x + 6 = 0$	h $21x^2 = 2 - x$
e $x^2 - x - 72$ f $x^2 + 2x - 48$	g $x^2 - 12x + 11$	h $x^2 - 5x - 24$			j $16x^2 + 24x + 9 = 0$	g $x - 7x + 6 = 0$ k $9x^2 + 4 = 12x$	$\begin{array}{c} 1 \\ 21x = 2 - x \\ 1 \\ 40x^2 + x = 6 \end{array}$
 Factorise each of these quadratics. 			7		-	abelling where they cross	
a $x^2 - 100$ b $x^2 - 81$	c $4x^2 - 9$	d $64-9x^2$		a $y = x(x-3)$ e $y = (x+4)^2$	b $y = -x(3x+2)$ f $y = -(2x+5)^2$	c $y = x(3-x)$ g $y = (x-5)(x+2)$	d $y = (x+2)(x-x)$ h $y = (x+1)(5-x)$
4 Factorise each of these quadratics.							
a $3x^2 + 7x + 2$ b $6x^2 + 17x + 12$	c $4x^2 - 13x + 3$	d $2x^2 - 7x - 15$					
e $2x^2 + 3x - 5$ f $7x^2 + 25x - 12$	g $8x^2 - 22x + 15$	h $12x^2 + 17x - 5$	5 8	Sketch each of thes	e quadratic functions, la	abelling where they cross	s the <i>x</i> and <i>y</i> axes.
			1	a $y = x^2 + 6x$	b $y=3x^2-12x$	c $y = x^2 - 121$	$d \qquad y = x^2 - 3x - 10$
				$e y = -x^2 + 3x$	$f y = 15x - 10x^2$	$g y = 49 - x^2$	$h y = -x^2 + 2x + 3$
				$\mathbf{i} \qquad y = x^2 - 4x + 4$	j $y = -x^2 + 14x - 49$	$k y = 3x^2 + 4x + 1$	$y = -2x^2 + 11x -$

Completing the Square

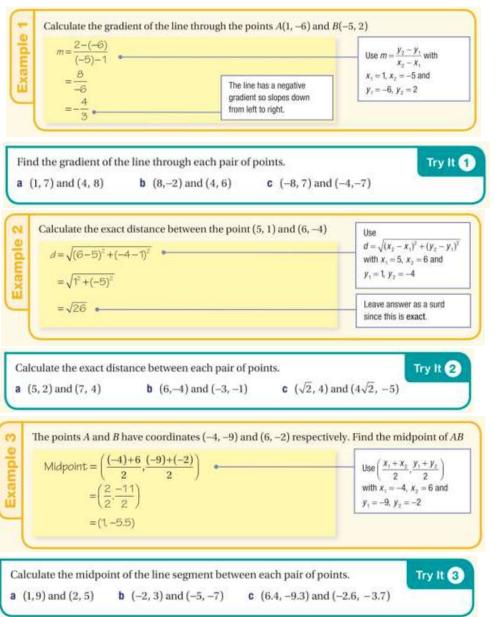


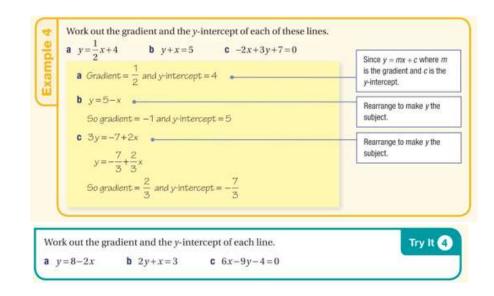
Exercise

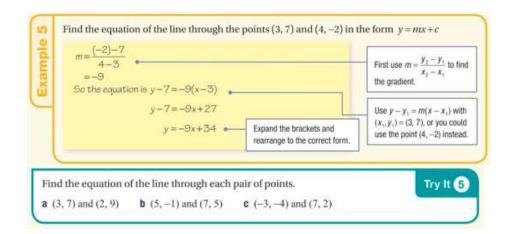


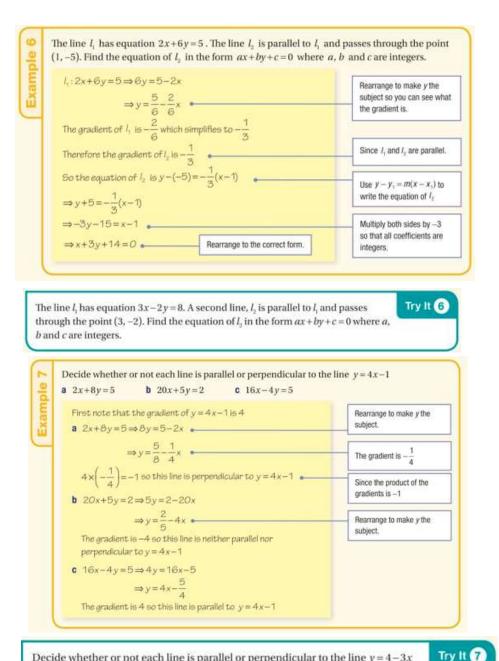

- 2 Use completing the square to find the turning point of each of these curves and state whether it is a maximum or a minimum.
 - **a** $y = x^2 + 14x$ **b** $y = x^2 18x + 3$ **c** $y = x^2 9x$ **d** $y = -x^2 + 4x$
 - e $y = x^2 + 11x + 30$ f $y = -x^2 + 6x 7$ g $y = 2x^2 + 16x 5$ h $y = -3x^2 + 15x 2$

The Quadratic Formula

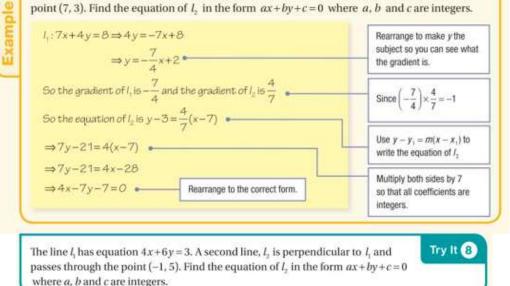


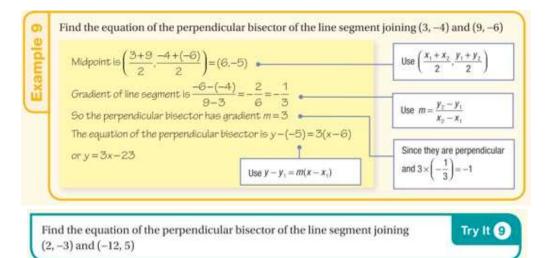

a=5, b=3, c=-k $5c b^2 - 4ac = 5^2 - 4 \times 5 \times (-k)$	Find the discriminant.
$=25+20k$ $25+20k \ge 0 \Rightarrow k \ge -\frac{5}{4}$	The equation has real solutions so the discriminan is greater than or equal to zero.





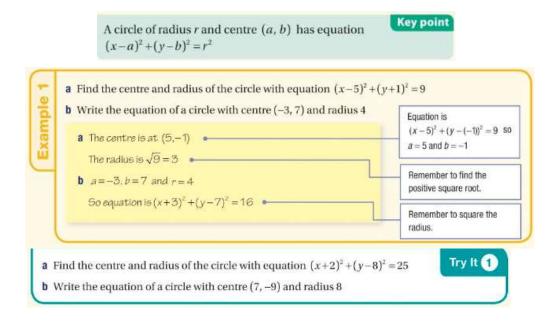
Line Graphs

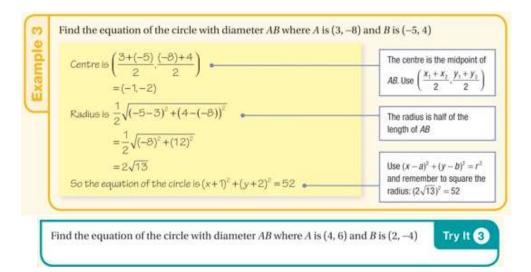


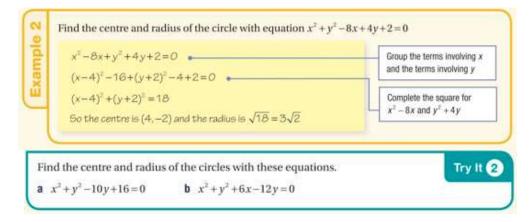


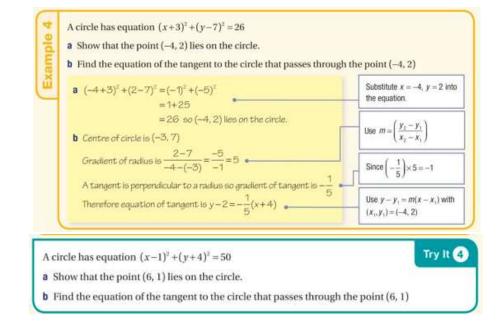
Decide whether or not each line is parallel or perpendicular to the line y = 4 - 3x

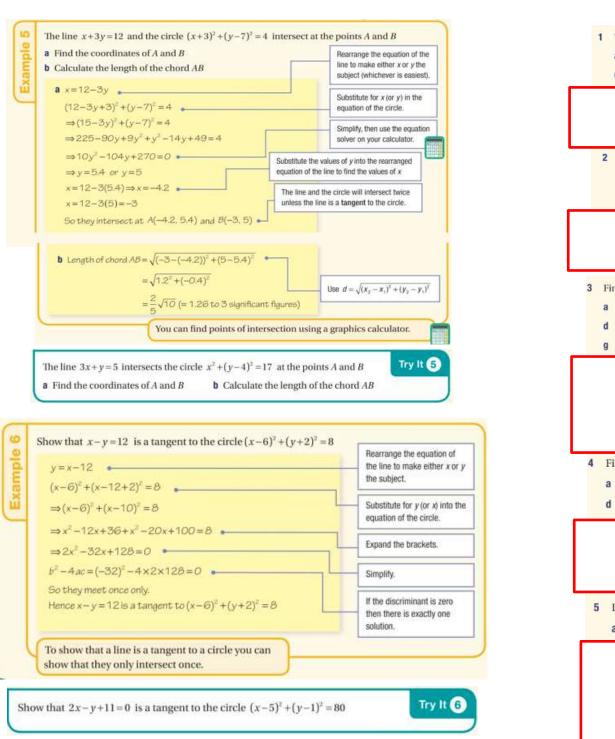
a 3x+6y=2**b** 5x - 15y = 7c 18x+6y+5=0

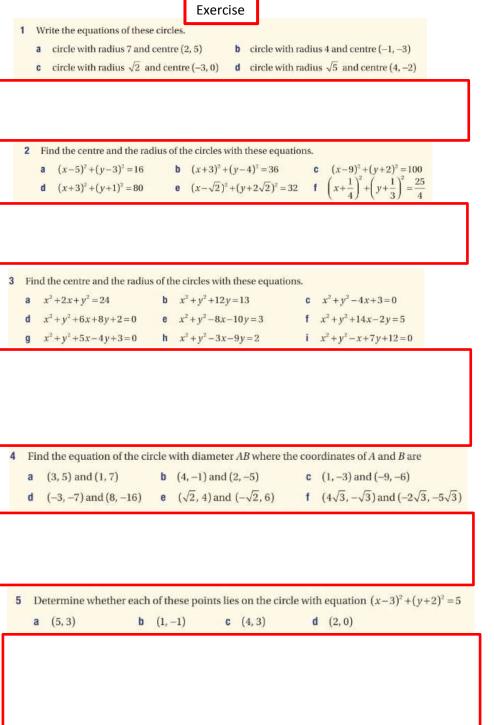

The line l, has equation 7x+4y=8 The line l, is perpendicular to l, and passes through the point (7, 3). Find the equation of *l*, in the form ax+by+c=0 where *a*, *b* and *c* are integers.






1 Find the gradient of the line through each pair of points. a (3,7) and (2,8) b (5,2) and (-4, -6) c (1.3, 4.7) and (2.6, -3.1) d $\left(\frac{1}{2}, \frac{1}{3}\right)$ and $\left(\frac{3}{4}, \frac{2}{3}\right)$ e $(\sqrt{3}, 2)$ and $(2\sqrt{3}, 5)$ f (3 <i>a</i> , <i>a</i>) and (<i>a</i> , 5 <i>a</i>)	Exercise 5 Find the equation of the line through each pair of points. a $(2, 5)$ and $(0, 6)$ b $(1, -3)$ and $(2, -5)$ c $(4, 4)$ and $(7, -7)$ d $(8, -2)$ and $(4, -3)$ e $(-3, -7)$ and $(5, 9)$ f $(\sqrt{2}, -\sqrt{2})$ and $(3\sqrt{2}, 4\sqrt{2})$
2 Calculate the exact distance between each pair of points. a (8, 4) and (1, 3) b (-3, 9) and (12, -7) c (5.9, 6.2) and (-8.1, 3.8) d $\left(\frac{1}{5}, -\frac{1}{5}\right)$ and $\left(\frac{3}{5}, -\frac{4}{5}\right)$ e (5, $-3\sqrt{2}$) and (2, $\sqrt{2}$) f (k, $-3k$) and (2k, $-6k$)	6 Which of these lines is either parallel or perpendicular to the line with equation $y=6x+5$? a $2x+12y+3=0$ b $18x+3y=2$ c $3x-\frac{1}{2}y+5=0$ 7 Which of these lines is either parallel or perpendicular to the line with equation $y=\frac{2}{3}x-4$? a $24x+16y+3=0$ b $6x+9y+2=0$ c $2x-3y=7$ 8 Which of these lines is either parallel or perpendicular to the line with equation $6x+12y=1$? a $2y=5-x$ b $9x=18y+4$ c $10x-5y+3=0$
3 Find the coordinates of the midpoint of each pair of points. a (3, 9) and (1, 7) b (2, -4) and (-3, -9) c (2.1, 3.5) and (6.3, -3.7) d $\left(\frac{2}{3}, -\frac{1}{2}\right)$ and $\left(-\frac{5}{3}, -\frac{3}{2}\right)$ e (6 $\sqrt{5}, 2\sqrt{5}$) and (- $\sqrt{5}, \sqrt{5}$) f (m, 2n) and (3m, -2n)	 9 The line l₁ has equation y = 5x+1 a Find the equation of the line l₂ which is parallel to l₁ and passes through (3, -3) b Find the equation of the line l₂ which is perpendicular to l₁ and passes through (-4, 1)
4 Work out the gradient and the <i>y</i> -intercept of these lines.	 14 Find the equation of the perpendicular bisector of the line segment joining each pair of points. a (5, -7) and (-3, 5) b (-5, -9) and (5, 5) c (-6, 2) and (4, 12) d (2, -7) and (-1, 2) e (-13, -5) and (15, -12)
a $y=7x-4$ b $y+2x=3$ c $x-y=4$ d $3x+2y=7$ e $5x-2y=9$ f $5y-3x=0$ g $x+6y+3=0$ h $3(y-2)=4(x-1)$	15 Find the point of intersection between these pairs of lines. a $y=5x-4$ and $y=3-2x$ b $y=8x$ and $y=3x-10$ c $y=7x-5$ and $y=-\frac{1}{2}x+5$ d $y=\frac{1}{4}x+7$ and $y=5x-\frac{5}{2}$


<u>Circles</u>



6 Determine which of these circles the point (-3, 2) lies on.

b $(x+2)^2 + (y+1)^2 = 8$ a $(x-5)^2 + y^2 = 68$ c $(x-6)^2+(y-2)^2=81$

7 A circle has equation $(x-1)^2 + (y+1)^2 = 10$. Find the equation of the tangent to the circle through the point (2, -4). Write your answer in the form ax + by + c = 0 where *a*, *b* and *c* are integers.

8 A circle has equation $(x+3)^2 + (y+7)^2 = 34$. Find the equation of the tangent to the circle through the point (0, -2). Write your answer in the form ax + by + c = 0 where *a*, *b* and *c* are integers.

9 A circle has equation $x^{2} + (y-8)^{2} = 153$. Find the equation of the tangent to the circle through the point (3, -4). Write your answer in the form y = mx + c

- 11 Find the points of intersection, A and B, between these pairs of lines and circles.

 - **a** x+y=5, $x^3+y^2=53$ **b** y+1=0, $(x-1)^2+(y+2)^3=17$
 - **c** 2x-y+7=0, $(x-2)^2+(y+1)^2=36$ **d** y=2x+1, $(x+4)^2+(y+6)^2=10$

- 12 The line 3x-9y=6 intersects the circle $(x+7)^2 + (y+3)^2 = 10$ at the points A and B
 - b Calculate the length of the chord AB a Find the coordinates of A and B

14 Show that the line y = x - 3 is a tangent to the circle $(x - 3)^2 + (y + 2)^2 = 2$

17 Show that the line y = 2x+3 does not intersect the circle $(x-1)^2 + (y+4)^2 = 1$

18 Show that the line 3x+4y+2=0 does not intersect the circle $(x+3)^2+(y-6)^2=9$