Exam Paper Overview:

 the novel question.

Dickens' Intentions and Ideas

Dickens' writing criticised economic, social, and moral issues in the Victorian era. He showed compassion and empathy towards the vulnerable and disadvantaged people in
English society, and help to bring about several important social reforms. Dickens' deep social commitment and awareness of social issues come from his traumatic childhood, where his father was imprisoned for debt, and he was forced to work in a shoe-blacking factory at 12 years old. In his adult life, Dickens developed a strong social conscience and empathised with the victims of social and economic injustice. Dickens' intention in A Christmas Carol is to draw readers' attention to the plight of the poor and to highlight the hypocrisy of Victorian society. He juxtaposes the wealth and greed of capitalists with the poorer classes and draws attention to the way in which the greed and selfishness of some impacts on the quality of the lives of others. His moral message appears to be that we should care for our fellow man. The transformation of Scrooge suggests that Dickens feels it is never too late for change and redemption. Dickens emphasises the importance of family, friendship and charity in bringing about this change.

2tave Summaries

1. Introduced to Ebenezer

Scrooge on Christmas Eve. He is
a lonely miser obsessed with
money. He won't pay to heat the office properly - meaning

Bob Cratchit is very cold.
2. We learn Jacob Marley,

Scrooge's business partner, died exactly 7 years earlier.
3. Scrooge is irritated that Christmas Day seems to be interrupting his business.
4. Scrooge is visited by his nephew Fred, who invites his uncle to Christmas dinner. Scrooge refuses.
5. Scrooge is visited by two charity workers, asking for donations. Scrooge refuses and exclaims he wants to be left alone.
6. Scrooge allows Bob to have Christmas Day off.
7. Scrooge, when he is home, is visited by the Ghost of Jacob Marley - warning him he will be visited by three more ghosts to help him change his ways.

Stave 2

1. Scrooge is visited by the Ghost of Christmas Past who takes him to witness his past. 2. Scrooge is taken first to his schoolboy years and he is reminded how his friends
would go home from
Christmas while he was left at school.
2. We see him with his sister, who one year took him
home for the holidays.
3. Next we are shown

Scrooge as a young
apprentice, working for Fezziwig. Dickens describes the Christmas ball Fezziwig organised for his employees.
5. Finally, Scrooge is taken to see his ex-fiancée, Belle. We see the scene when they break up, as money has taken over Scrooge's life.
6. Scrooge cannot bear to see any more and struggles with the spirit.

1. Scrooge is then visited by the Ghost of Christmas Present
2. The spirit shows Scrooge how the Cratchit family celebrate Christmas. Scrooge asked if Tiny Tim will life. The spirit explains unless there are changes, he will die. The spirit reminds Scrooge of his earlier words: 'If he is to die,
he had better do it, and decrease the surplus population' 3. Scrooge is then taken to see how others celebrate Christmas: miners, lighthouse workers, sailors on a ship.
3. He is then taken to Fred's house at Christmas, where they are playing games.
4. The spirit then begins to age, and see under the spirit's robes two children: Want and Ignorance.
5. The Ghost of Christmas Future then appears

Stave 4

Stave 5

1. The Ghost of Christmas Future is described.
2. The spirit takes Scrooge to see a group of businessmen discussing someone who has died.
3. Scrooge is then taken to see Old Joe, where he is in the process of buying property of the dead manwhich have been stolen.
4. Scrooge then returns to Bob Cratchit's house, where it is revealed Tiny Tim has died.
5. Scrooge is then taken to the graveyard and is shown a grave stone and realises this is for him. 6. Scrooge falls to his knees and begs that he will change his ways.
6. Scrooge wakes up in his own bed.
7. Scrooge wonders how much time has passed and calls to a boy. He then sends the boy to the poulterer for the prize turkey to give to Bob Cratchit
8. Scrooge meets one of the charity collectors from earlier and whispers to him that he will give a large donation. 4. Scrooge then goes to Fred's house and is welcomed in. He enjoys the dinner and party.
9. On Boxing Day, Scrooge arrives early to work, and plays a trick on Bob. Scrooge then tells him he is going to raise his salary and promises to help

Bob's struggling family.
6. Scrooge is described to have completely changed and becomes a 'second father' to Tiny Tim - 'who did not die.'

Assessment Overview: Part A and Part B: 1 hour	Language	Structure and Form	Characters	Themes
Part A: You are given an extract from the novella. You need to analyse how Dickens presents a character or relationship. Criteria: 3 paragraphs Clear point Embed evidence Include language, structure and form Explain what the quote shows Analyse the techniques Refer to reader Part B: After the extract, you are given a theme shown in the novella. You need to refer to events elsewhere in the novella which relate to that theme. Criteria: 3-4 paragraphs Clear point Event description Explain what the event shows Explain how it shows the theme Explain why it is significant Reader effect	Alliteration Triple Emphasis Satire- use of humour or ridicule to criticise Simile- comparing using 'like' or 'as' Metaphor- saying one thing is another Personification- make object human Pathetic fallacy- weather to create mood Pathos- language to evoke pity Allusion- reference to another literary work Hyperbole- exaggerated statement Connotation- associated meaning of word Characterisation- built up description of character in text Semantic field- words related in meaning Imagery- visually descriptive language. Noun: Name of person, place, thing Adjective: Describes noun Determiner: Gives information about the noun: the/a/every/some Abstract Noun: An idea/concept love/anger Concrete Noun: Something you can touch/hold Verb: Doing word Adverb: Describes verb Modal Verb: Gives information about the verb: should/could/might Imperative Verb: A command Pronoun: In place of noun I/he/it/they Preposition: Tells you where something is on/over/under Conjunction: A connective and/or/but/although Superlative: The most extreme version tallest/smallest	Order of ideas: Thinking about what the writer started/finished with; why they saved something until last or shared it early on. Paragraph length: Is it particularly long/short? Sentence length: As above. Simple sentence: A sentence with only one subject and one verb: The cat sat on the chair. Compound sentence: Two main clauses joined with a connective that both make sense independently: The cat sat on the chair and the man sat on the floor. Complex sentence: A sentence with a main clause and a subordinate clause: The cat, who was spoilt, sat on the chair whilst the man sat on the floor. Punctuation: Consider how these devices have been used Juxtaposition: Two opposite ideas used close by one another Repetition: Using the same words, phrase or ideas more than once Main Clause: The main part of a sentence; makes sense on its own. Subordinate Clause: A clause which does not make sense on its own. Conflict- problem faced by characters Resolution- point where conflict is resolved Foreshadowing- clue about something later Foreboding- sense that something will occur Backstory- insight into character's past Exposition- revelation of something Poetic justice- good rewarded bad punished Melodrama- exaggerated characters/events Motif- repeated image or symbol Antithesis- contrast of ideas in same grammatical structure Authorial intrusion- where author pauses to speak directly to reader Allegory- characters/events represent ideas about religion, morals or politics Asyndeton- list without conjunctions Polysyndeton- list with conjunctions (and)	1.Ebenezer Scrooge: Miserly, mean, bitter, materialistic, unsympathetic, indifferent, cold, selfish, isolated, cynical, charitable, value driven, generous, happy, sociable, transformed. 2. Marley's Ghost: Materialistic, self-centred, terrifying, haunting, exhausted, direct, reformed, regretful, hopeful, selfless, wise 3. Bob Cratchit: Uncomplaining, tolerant, courteous, deferential, patient, civil, eager, pleasurable, goodhumoured, playful, caring, tender, cheerful, loving, forgiving. 4. Fred: Warm-hearted, empathetic, cheerful, optimistic, even-tempered, insightful, determined, generous, forgiving, jovial, enthusiastic, caring 5. Ghost of Christmas Past: Contradictory, strong, gentle, quiet, forceful, questioning, mysterious 6. Ghost of Christmas Present: Compassionate, abundant, generous, cheerful, jolly, friendly, severe, sympathetic 7. Ghost of Christmas Future: Mysterious, silent, ominous, intimidating, frightening, resolute. 8. Tiny Tim: Frail, ill, good, religious	-Family -Loneliness and isolation -Time -Education -Christmas Spirit -Redemption -Poverty -Social responsibility -Supernatural -Poverty -Fate -Charity -Transformation -Capitalism -Greed -Money -Friendship -Religion -Morality Isolation/Loneliness, -Choices -Memory and the past -Compassion -Forgiveness -Guilt and blame -Time -Rationality

Knowledge Organiser: Non-Fiction Reading

Module Overview: You will read a variety of unseen Non-Fictions texts and will practise comprehension, analysis, evaluation and comparison. You will write a transactional writing piece.

	omparison d select key mation	AO2: Analysis Explaining how and language / structural devices are used.		AO3: Comparison Identifying similarities/differences between writers' ideas/perspectives.	AO4: Evaluation Exploring how and why a text is effective.	A05/6 Writing and SPaG Use of ideas, language and structure. Accurate and effective SPaG.
Assessment Overview: $\mathbf{2}$ hours and 5 minutes: The exam paper includes two unseen Non-Fiction Texts and a transactional writing task.						
Questio	1-3: Text 1	Questions 4-6: Text 2		Question 7: Texts 1 and 2		Q8/9 : Transactional Writing: Choice of two questions, you will answer one
$\begin{gathered} \text { Q1/2: (3) } \\ \text { AO1 } \end{gathered}$	Q3: (15 marks)	$\begin{gathered} \text { Q4/5: (3) } \\ \text { AOI } \end{gathered}$	Q6: (15 marks) AO4	Q7a: (6 marks)	$\begin{aligned} & \text { Q7b: (14 marks) } \\ & \text { AO3 } \end{aligned}$	$\begin{gathered} \text { Q8/9: } \\ \text { A05 (} 24 \text { marks) } \\ \text { A06 (16 marks) } \end{gathered}$
Find and copy key quotes from the text. 5 minutes	Identify key quotes Analyse language devices Analyse structural choice Analyse word choices Explore effect on reader/writer's intentions 20 minutes	Find and copy key quotes from the text. 5 minutes	Embed short, concise quotes Link back to key word in question Explain what writer was trying to do and how they've done it Refer to writers' choices 20 minutes	Find three similarities Include a quote from each text No need to explain or elaborate as long as it's clear. 5 minutes	Build on 7a analysis Refer to the PAF Compare how the texts are similar/different Include key quotes 20 minutes	Communicate clearly, effectively and selecting and adapting tone, style and register for different forms, purposes and audiences. Organise information and ideas, using structural and grammatical features to support coherence and cohesion of texts. Candidates must use a range of vocabulary and sentence structures for clarity, purpose and effect, with accurate spelling and punctuation.

Key Terms:	Formats:	Purposes:
Purpose: The reason the piece if written. Audience: Who the piece is written for. Format: What type of text is the piece written in. Analyse: Examine the text to explain. Evaluate: Judge the success of the piece. Compare: Find similarities between two texts Contrast: Find differences between two texts. Perspective: Point of view of the writer.	Article: a piece of writing included with others in a newspaper, magazine, or other publication. Letter: a written, typed, or printed communication, sent in an envelope by post or messenger. Speech: a formal address or discourse delivered to an audience. Review: a critical appraisal of a book, play, film, etc. published in a newspaper or magazine.	Persuade: To make someone think/do something. Argue: To offer both points of view whilst concluding on own judgment. Inform: To offer information on a topic. Advise: To offer ideas, tips and suggestions. Review: judge and critique a book, play, event, restaurant etc.
Structure Devices		Word Classes
Order of ideas: Thinking about what the writer started/finished with; why they saved something until last or shared it early on. Paragraph length: Is it particularly long/short? Sentence length: As above. Simple sentence: A sentence with only one subject and one verb: The cat sat on the chair. Compound sentence: Two main clauses joined with a connective that both make sense independently: The cat sat on the chair and the man sat on the floor. Complex sentence: A sentence with a main clause and a subordinate clause: The cat, who was spoilt, sat on the chair whilst the man sat on the floor.	Imperative sentence: A command or instruction Interrogative sentence: A legitimate question Declarative sentence: A simple statement Exclamatory sentence: An exclamation to show anger/shock/excitement Punctuation: Consider how these devices have been used Juxtaposition: Two opposite ideas used close by one another Repetition: Using the same words, phrase or ideas more than once Main Clause: The main part of a sentence; makes sense on its own. Subordinate Clause: A clause which does not make sense on its own.	Noun: Name of person, place, thing Adjective: Describes noun Determiner: Gives information about the noun: the/a/every/some Abstract Noun: An idea/concept love/anger Concrete Noun: Something you can touch/hold Verb: Doing word Adverb: Describes verb Modal Verb: Gives information about the verb: should/could/might Imperative Verb: A command Pronoun: In place of noun I/he/it/they Preposition: Tells you where something is on/over/under Conjunction: A connective and/or/but/although Superlative: The most extreme version tallest/smallest

Figurative Language Devices	Rhetorical Language Devices
Alliteration: Repeated letter/sound Triple emphasis: List of three words / sentence structures to create imagery Imagery: Description which creates a clear picture Hyperbole: Exaggeration of an image Oxymoron: Two opposite words used side-by-side to describe one thing Metaphor: A comparison without 'like' or 'as' - saying something is something else Simile: A comparison with 'like' or 'as' Semantic Field: A range of vocabulary which all shares a similar theme. Personification: Giving something inanimate human qualities Onomatopoeia: A word to reflect a sound pop/bang/crash Idiom: Non-literal phrase we recognise: raining cats and dogs Euphemism: Polite way of saying something: the man had passed away Litotes: Play down something negative: My dog is not the friendliest	Anaphora: Repetition of word/phrase at start of several sentences Anecdote: A personal story to exemplify a point Fact: Can be proven Opinion: Someone's thoughts Rhetorical Question: A question used for effect and not answered Emotive Language: Words used to provoke an emotional reaction Statistics: Facts and figures Triple Emphasis: A list of three words or sentence structures used to emphasise a certain point or perspective Hyperbole: Exaggeration to prove a point Sensational Language: Purposely dramatic or over-the-top language

Plot Overview:

Students must study and annotate a selection of 'Conflict' poetry from the GCSE Anthology. Additionally, to this they must then become familiar with Unseen Poetry and learn the skills of comparison.

Summary: After we annotate each Conflict Poem, add a sentence to

 summarise poem.A Poison Tree:
The Destruction of Sennacherib:
Extract from The Prelude:
The Man He Killed:
Cousin Kate:
Half-Caste:

Exposure:
The Charge of the Light Brigade:
Catrin:
War Photographer:
Belfast Confetti:
The Class Game:
Poppies:
No Problem:
What were they Like?

Exam Overview:
Part A and Part B.
Section

Section 1- Anthology

You are given one of
the poems from the Anthology.

You will be given a theme to then compare with another poem of your choice.

Criteria:

3/4 paragraphs Clear point Embed evidence Include language, structure and form
Explain what the quote shows Analyse the techniques Refer to the reader. Compare and contrast throughout your analysis.

You will be given two unseen poems and asked to compare and contrast the sharing theme.

Criteria:

3-4 paragraphs Clear point Embed evidence Include language, structure and form Explain what the quote shows Analyse the techniques

Refer to the reader.

 Compare and contrast throughout your analysis.
Techniques:

Language, structure and form.
Stanza: The verses in the poem.
Consider the shape; how it starts; and
how the poem ends.
Refrain: Last line repeated
Juxtaposition: The placement of two ideas, statements or events near each other to invite comparison to contrast. Rhyming: (of a word, syllable, or line) have or end with a sound that corresponds to another.
Rhythm: a strong, regular repeated pattern of movement or sound
Line length: The length of the line.
Repetition: the action of repeating something that has already been said or written.
Enjambement: The continuation of a sentence without a pause beyond the end of a line, couplet, or stanza. Iambic pentameter: A line of verse with five metrical feet, each consisting of one short (or unstressed) syllable followed by one long (or stressed) syllable.
Caesura: A break between words within a metrical foot

Form

Lyric Poetry: Modern lyric poetry is a formal type of poetry which expresses personal emotions or feelings, typically spoken in the first person.
Monologue Poetry: Dramatic monologue is a type of poetry written in the form of a speech of an individual character.
Narrative Poetry: Narrative poetry is a form of poetry that tells a story, often using the voices of both a narrator and characters; the entire story is usually written in metered verse. Free Verse: Free verse is an open form of poetry, which in its modern form arose through the French vers libre form. It does not use consistent meter patterns, rhyme, or any musical pattern. It thus tends to follow the rhythm of natural speech Sonnet: A sonnet is a poem that consists of 14 lines and more than often uses an iambic pentameter structure.
Epic Poetry: An epic poem, or simply an epic, is a lengthy narrative poem typically about the extraordinary deeds of extraordinary characters.

Year 11 Mathematics Knowledge Organiser (Term 1 - Unit 39/40/41/42/43/44/45)

Compass Directions (MW 124)

You can use an acronym such as 'Never Eat Shredded Wheat' to remember the order of the compass directions in a clockwise direction.

Bearings: $N E=045^{\circ}, W=270^{\circ}$ etc. s

Bearings (MW 124)

1. Measure from North (draw a North line)
2. Measure clockwise
3. Your answer must have 3 digits (eg. 047°) Look out for where the bearing is measured from.
Example.

John runs from A to B and back again
a) What is the bearing of his outward run from A to B ?
b) What is the bearing of this return run
from B to $A ?=057^{\circ}=057^{\circ}+180^{\circ}=237^{\circ}$

Pythagoras' Theorem

(MW 150a/b/c)

For any right angled triangle:

$$
\frac{a}{b} a^{2}+b^{2}=c^{2}
$$

Used to find missing lengths.
a and b are the shorter sides, c
is the hypotenuse (longest side).
Example.

8

$$
\begin{aligned}
& a=y, b=8, c=10 \\
& a^{2}=c^{2}-b^{2} \\
& y^{2}=100-64 \\
& y^{2}=36 \\
& y=6
\end{aligned}
$$

Trigonometry
 (MW 168)

The study of triangles.

Sides of a Right-Angle Triangle

Hypotenuse

The longest side of a right-angled triangle. Is always opposite the right angle.

Opposite

Side across from the Angle marked.

Adjacent

Next to
the angle.

Trigonometric Formulae (MW 168)

Use SOHCAHTOA.

When finding a missing angle, use the
'inverse' trigonometric function by pressing the 'shift' button on the calculator.
Example.
Use Opposite and Adjacent, so use 'tan'
$\tan 35=\frac{x}{11}$
$x=11 \tan 35=7.70 \mathrm{~cm}$

Use Adjacent and Hypotenuse, so use cos $\cos x=\frac{5}{7}$
$x=\cos ^{-1}\left(\frac{5}{7}\right)=44.4^{\circ}$

Year 11 Mathematics Knowledge Organiser (Term 1- Unit 46/47/48)

Circle

A circle is the locus of all points equidistant from a central point.

Example

Parts of a Circle (MW 116)

Radius - the distance from the centre of a circle to the edge

Diameter - the total distance across the width of a circle through the centre.
Circumference - the total distance around the outside of a circle

Chord - a straight line whose end points lie on a circle

Tangent - a straight line which touches a circle at exactly one point

Arc - a part of the circumference of a circle
Sector - the region of a circle enclosed by two radii and their intercepted arc

Segment - the region bounded by a chord and the arc created by the chord.

Area of a Circle(MW 117)

$A=\pi r^{2}$ which means 'pi x radius squared'. Example
If the radius was 5 cm , then:

$$
A=\pi \times 5^{2}=78.5 \mathrm{~cm}^{2}
$$

Circumference of a Circle (MW 118)

$\boldsymbol{C}=\boldsymbol{\pi} \boldsymbol{d}$ which means 'pi \times diameter' Example
If the radius was 5 cm , then:

$$
C=\pi \times 10=31.4 \mathrm{~cm}
$$

Parts of a Circle

Radius

Chord

Segment

Diameter

Arc

Sector

Arc Length of a Sector (MW 1149

The arc length is part of the circumference.

Take the angle given as a fraction over 360° and multiply by the circumference.

Example

Arc Length $=\frac{115}{360} \times \pi \times 8$

$$
=8.03 \mathrm{~cm}
$$

Area of a Sector (MW 167)

The area of a sector is part of the total area. Take the angle given as a fraction over 360° and multiply by the area.

Example
Area $=\frac{115}{360} \times \pi \times 4^{2}$

$$
=16.1 \mathrm{~cm}^{2}
$$

Volume of a Cube/Cuboid (MW 115)
$V=$ Length \times Width \times Height

$$
\boldsymbol{V}=\boldsymbol{L} \times \boldsymbol{W} \times \boldsymbol{H}
$$

You can also use the Volume of a Prism formula for a cube/cuboid.
Example

Prism

A prism is a 3D shape whose cross section Is the same throughout.
Example

Rectangle Prism

Volume of a Prism (MW 119)

$V=$ Area of Cross Section \times Length

Tetrahedron (Triangular pyramid)

Faces = flat surfaces
Edges $=$ sides/lengths
Vertices $=$ corners
Example
A cube has 6 faces,
12 edges
8 vertices.

Properties of Solids (MW 43)

Dodecahedron

Icosahedron
,

Cone

Surface area a Cube/Cuboid (MW 114a/b)

The total area of all the faces of a cube/cuboid

Example

Area of front and back $=3 \times 5 \times 2=30 \mathrm{~cm}^{2}$
Area of left and right $=3 \times 6 \times 2=36 \mathrm{~cm}^{2}$
Area of top and bottom $=5 \times 6 \times 2=60 \mathrm{~cm}^{2}$
Surface area $=30+36+60=126 \mathrm{~cm}^{2}$

Recurring Decimal

A decimal with one or a group of digits that repeat itself indefinitely.
E.g. 0. $\dot{\mathbf{2}} \dot{\mathbf{3}}=0.23232323 . .$.

Convert $0 . \dot{8} \dot{4}$ to a fraction.

Multiply the decimal so that the repeated decimal digits are on the left side of the decimal point.

$$
\begin{gathered}
x=0.84848484 \\
100 x=84.848484
\end{gathered}
$$

Subtract x from 100x.

$$
99 x=84
$$

Isolate x , then simplify:

$$
x=\frac{84}{99}=\frac{28}{33}
$$

Upper and Lower Bounds

The upper and lower bound come from the largest and smallest values that would round to a particular number. Take 'half a unit above and half a unit below'. For example rounded to 1 d.p means nearest 0.1 , so add 0.05 and subtract 0.05 to get the bounds.
All error intervals look the same like this - $\leq x<$
Example - State the upper and lower bound of 360 when it has been rounded to 2 significant figures:
2 significant figures is the nearest 10, so 'half this' to get 5, and add on to 360 and take it off 360,

Fractional Indices

The denominator of a fractional power acts as a 'root'. The numerator of a fractional power acts as a normal power.

$$
a^{\frac{m}{n}}=(\sqrt[n]{a})^{m}
$$

Example

$$
\begin{gathered}
27^{\frac{2}{3}}=(\sqrt[3]{27})^{2}=3^{2}=9 \\
\left(\frac{25}{16}\right)^{\frac{3}{2}}=\left(\frac{\sqrt{25}}{\sqrt{16}}\right)^{3}=\left(\frac{5}{4}\right)^{3}=\frac{125}{64}
\end{gathered}
$$

Negative Indices

$$
\begin{aligned}
& a^{-n}=\frac{1}{a^{n}} \\
& \text { Example } \\
& 3^{-2}=\frac{1}{3^{2}} \\
&=\frac{1}{9}
\end{aligned}
$$

Product Rule

To find the total number of outcomes for two or more events, multiply the number of outcomes for each event together. This is called the product rule because it involves multiplying to find a product.

Example:

A restaurant menu offers 4 starters, 7 main courses and 3 different desserts. How many different three-course meals can be selected from the menu?

Multiplying together the number of choices for each course gives $4 \times 7 \times 3=$ 84 different three-course meals.

Surds

A surd is an expression with an irrational square root. An irrational number cannot be written as a fraction. We leave them in surd form as the decimal version is too long.

$$
\sqrt{ } 2 \text { and } \sqrt{ } 3 \text { are surds }
$$

$\sqrt{ } 4=2$ so $\sqrt{ } 4$ is not a surd
If we were to write down the exact length of the square it would be $\sqrt{3}$.
$3 m^{2}$

Simplifying Surds

To simplify surds look for square number factors.

Rules:

$\mathrm{V} a b=\mathrm{V} a \times \mathrm{V} b$
e.g. $775=\mathrm{V} 25 \times \mathrm{V} 3=5 \mathrm{~V} 3$
e.g. $\mathrm{V} 3 \times \mathrm{V} 15=\mathrm{V} 45=\mathrm{V} 9 \mathrm{~V} 5=3 \mathrm{~V} 5$
$m \vee a+n \vee a=(m+n) \vee a$
e.g. $2 \sqrt{ } 5+7 \sqrt{ } 5=(2+7) \sqrt{ } 5=9 \sqrt{ } 5$
$\sqrt{ } \frac{a}{b}=\frac{\sqrt{ } a}{\sqrt{b}}$

$$
\text { e.g. } \sqrt{\frac{72}{20}}=\frac{\sqrt{72}}{\sqrt{20}}=\frac{\sqrt{36} \times \sqrt{2}}{\sqrt{4} \times \sqrt{5}}=\frac{6 \sqrt{2}}{2 \sqrt{5}}=\frac{3 \sqrt{2}}{\sqrt{5}}
$$

Expand (Quadratic)

Each term in one bracket needs to be multiplied by each term in the other bracket.

Example (grid method)

$$
(x+2)(x+5)
$$

	\boldsymbol{x}	$\boldsymbol{+ 5}$
\boldsymbol{x}	x^{2}	$+5 x$
$\mathbf{+ 2}$	$+2 x$	+10

Rationalising the denominator

This is the removing of a surd from the denominator of a fraction by multiplying both the numerator and the denominator by that surd.

$$
\frac{a}{\sqrt{b}}=\frac{a}{\sqrt{b}} \times \frac{\sqrt{b}}{\sqrt{b}}=\frac{a \sqrt{b}}{b}
$$

Example
e.g. $\frac{6}{\sqrt{12}}=\frac{6}{\sqrt{12}} \times \frac{\sqrt{12}}{\sqrt{12}}$ (multiply both top and bottom by $\sqrt{12}$)

$$
\begin{aligned}
& =\frac{6 \sqrt{12}}{12}=\frac{\sqrt{12}}{2} \quad \text { (now simplify) } \\
& =\frac{\sqrt{4} \times \sqrt{3}}{2}=\frac{2 \sqrt{3}}{2}=\sqrt{3}
\end{aligned}
$$

Factorise (Quadratic)

Factorising is writing an expression as a product of terms by 'taking out' a common factor.

What numbers multiply to make the last number in the expression? Which of these factors add /subtract to make the number in the middle?

Example

$$
\begin{gathered}
x^{2}-2 x-3 \\
(x-3)(x+1) \\
x^{2}-6 x+5 \\
(x-5)(x-1)
\end{gathered}
$$

Expand (Cubic)

Example - $(3 x+2)(2 x-4)(5 x+7)$
First of all expand the first two brackets like normal (FOIL or Grid).

	$\mathbf{3 x}$	$\mathbf{+ 2}$
$\mathbf{2 x}$	$6 x^{2}$	$+4 x$
$-\mathbf{4}$	$-12 x$	-8

$$
6 x^{2}+8 x-8
$$

Now expand $\left(6 x^{2}+8 x-8\right)(5 x+7)$:

	$\mathbf{6} \boldsymbol{x}^{\mathbf{2}}$	$\mathbf{+ 8 x}$	-8
$\mathbf{5 x}$	$30 x^{3}$	$+40 x^{2}$	$-40 x$
$\mathbf{+ 7}$	$42 x^{2}$	-56 x	-56

$$
30 x^{3}+2 x^{2}-96 x-56
$$

Factorise (with coefficients)

Factorise $6 x^{2}-11 x-10$
This time we also need to find factors of the first term as well as the last term.

Factors of $10-1$ and 10 OR 2 and 5 Factors of $6-1$ and 6 OR 2 and 3.

Now I need to see which pairs of factors will multiply together so they will create 11x.

Answer: $(3 x+2)(2 x-5)$

Year 11 Higher (Set 1) Mathematics Knowledge Organiser

Subject of a formula

More difficult questions - think about inverse operations to help you!
Examples

Make r the subject of $V={ }_{-}^{1} \pi r^{2} h$.
To start, isolate r^{2} by multiplying by 3 and then dividing by πh.

$$
\begin{aligned}
& 3 V=\pi r^{2} h \\
& \frac{3 V}{\pi h}=r^{2}
\end{aligned}
$$

Now we square root both sides.

$$
\begin{aligned}
& \sqrt{\frac{3 V}{\pi h}}=r \\
& r=\sqrt{\frac{3 V}{\pi h}}
\end{aligned}
$$

Make x the subject of $3 x+5=y-a x$.
When a formula contains the new subject more than once, start by isolating any terms including it on one side of the equals sign.

Here, add ax and subtract 5.

$$
3 x+a x=y-5
$$

Now we factorise the side with our new subject.

$$
x(3+a)=y-5
$$

Then divide by the bracket to leave x on its own.

$$
x=\frac{y-5}{3+a}
$$

Rearranging formulae (difficult)

More difficult questions may
require you to factorise an
expression to be able to make a certain variable the subject. This is usually when the variable appears twice in the formulae we need to rearrange.

Make x the subject of $3 x+5=y-a x$.
When a formula contains the new subject more than once, start by isolating any terms including it on one side of the equals sign.

Here, add $a x$ and subtract 5 .

$$
3 x+a x=y-5
$$

Now we factorise the side with our new subject.

$$
x(3+a)=y-5
$$

Then divide by the bracket to leave x on its own.

$$
x=\frac{y-5}{3+a}
$$

Finding the nth term of a linear sequence

1. Find the difference.
2. Multiply that by n.
3. Substitute $n=1$ to find out what number you need to add or subtract to get the first number in the sequence.

Example

Find the nth term of: $3,7,11,15 \ldots$

1. Difference is +4
2. Start with $4 n$
3. $4 \times 1=4$, so we need to subtract 1 to get 3 . nth term $=4 n-1$

Geometric Sequence

A sequence of numbers where each term is found by multiplying the previous one by a number called the common ratio, \mathbf{r}.

Example

An example of a geometric sequence is:

$$
2,10,50,250 \ldots
$$

The common ratio is 5

Another example of a geometric sequence is:

$$
81,-27,9,-3,1 \ldots
$$

The common ratio is $-\frac{1}{3}$

Triangular numbers

The sequence which comes from a pattern of dots that form a triangle.

$$
1,3,6,10,15,21 \ldots
$$

nth term of a quadratic sequence

1. Find the first and second
differences.
2. Halve the second difference and multiply this by n^{2}.
3. Substitute $n=1,2,3,4 \ldots$ into your expression so far.
4. Subtract this set of numbers from the corresponding terms in the sequence from the question. 5. Find the nth term of this set of numbers.
5. Combine the nth terms to find the overall nth term of the quadratic sequence.

Substitute values in to check your nth term works for the sequence. Example
Find the nth term of: 4, 7, 14, 25, 40..

Answer:

Second difference $=+4 \rightarrow$ nth term $=2 n^{2}$

Sequence: $4,7,14,25,40$
$2 n^{2} \quad 2,8,18,32,50$
Difference: $2,-1,-4,-7,-10$
Nth term of this set of numbers is
$-3 n+5$
Overall nth term: $2 n^{2}-3 n+5$

nth term of a geometric sequence
 r^{n-1}

where a is the first term and r is the common ratio
Example
The nth term of $2,10,50,250$. Is

$$
2 \times 5^{n-1}
$$

Quadratic Sequence

A sequence of numbers where the second difference is constant.
A quadratic sequence will have a n^{2} term.
Example

Fibonacci type sequences

A sequence where the next number is found by adding up the previous

two terms

Example

The Fibonacci sequence is:

$$
1,1,2,3,5,8,13,21,34 \ldots
$$

An example of a Fibonacci-type sequence is:
$4,7,11,18,29$...

Year 11 Higher (Set 1) Mathematics Knowledge Organiser

Parallel lines

If two lines are parallel, they will have the same gradient. The value of m will be the same for both lines.

Are the lines $y=3 x-1$ and $2 y-6 x+10=0$ parallel?

Answer: Rearrange the second equation in to the form

$$
\begin{gathered}
y=m x+c \\
2 y-6 x+10=0 \rightarrow y=3 x-5
\end{gathered}
$$

Since the two gradients are equal (3), the lines are parallel.

Perpendicular lines

If two lines are perpendicular, the product (times together) of their gradients will always equal -1. The gradient of one line will be the negative reciprocal of the gradient of the other line.

Find the equation of the line perpendicular to $y=3 x+2$ which passes through $(6,5)$.

Answer: As they are perpendicular, the gradient of the new line will be $-1 / 3$ as this is the negative reciprocal of 3 .

$$
\begin{gathered}
y=m x+c \\
5=-\frac{1}{3} \times 6+c \\
c=7 \\
y=-\frac{1}{3} x+7
\end{gathered}
$$

Or

$$
3 x+x-7=0
$$

Surface Area of a cylinder

$$
2 \pi r^{2}+2 \pi r h
$$

Example:

$$
\begin{gathered}
2 \pi(2)^{2}+\pi(4)(5) \\
=28 \pi
\end{gathered}
$$

Surface Area of a cone

$$
\pi r l+\pi r^{2}
$$

Example:

$$
\begin{gathered}
\pi(3)(5)+\pi(3)^{2} \\
=24 \pi
\end{gathered}
$$

Surface Area of a sphere
 $$
4 \pi r^{2}
$$

Example:
Find the surface area of a sphere with radius 3 cm .

$$
S A=4 \pi(3)^{2}=36 \pi c m^{2}
$$

Frustum

A frustum is a solid (usually a cone or pyramid) with the top removed. Volume:
Find the volume of the whole shape, then take away the volume of the small cone/pyramid removed at the top.

Volume of a cylinder
$\pi r^{2} \times h e i g h t$

Example:

$V=\pi(4)(5)$

$$
=62.8 \mathrm{~cm}^{3}
$$

Volume of a cone

$\frac{1}{3} \times \pi r^{2} \times h e i g h t$
Example:

Volume of a sphere

$\frac{4}{3} \pi r^{3}$

Example:

Find the volume of a sphere with diameter 10 cm .

$$
\frac{4}{3} \pi(5)^{3}=\frac{500 \pi}{3} c m^{3}
$$

$$
\begin{aligned}
& \frac{1}{3} \pi(10)^{2}(24) \\
& -\frac{1}{3} \pi(5)^{2}(12) \\
& =700 \pi \mathrm{~cm}^{3}
\end{aligned}
$$

Year 11 Higher (Set 1) Mathematics Knowledge Organiser

Transformations

The movement or manipulation of an object. The four transformations we use are rotation, reflection, translation and enlargement.

Reflection

The size does not change, but the shape is 'flipped' like in a mirror.

To describe a reflection you need to give the equation of the mirror line

Line $x=$? is a vertical line. Line $y=$? is a horizontal line. Line $y=x$ is a diagonal line.

Example:

Reflect shape C in the line $y=x$.
TIP: Reflect each point of the triangle separately then join them up.

Rotation

The size does not change, but the shape is turned around a point.
Use tracing paper.
To describe a rotation you need to give:
the direction (clockwise or anti-clockwise)
the angle
the centre of rotation (coordinate)

Example:

Rotate shape A 90 anti-clockwise about $(0,1)$

Translations

Translate means to move a shape.
The shape does not change size or orientation.
In a column vector, the top number moves left (-) or right (+) and the bottom number moves up (+) or down (-)
$\binom{2}{3}$
means '2 right, 3 up'
$\binom{-1}{-5}$ means ' 1 left, 5 down'

Example:

In the example on the right, the shape has been translated by vector $\binom{4}{-3}$

Year 11 Higher (Set 1) Mathematics Knowledge Organiser

Enlargement

The shape will get bigger or smaller. Multiply each side by the scale factor.

For example:

Scale factor 3 means '3 times larger = multiply all the lengths by 3' Scale factor $1 / 2$ means 'half the size $=$ divide all lengths by 2'

Sometimes the shape may need to be enlarged from a specific point.

Example:

This shape has been enlarged by scale Factor 2 at the centre of enlargement ($\mathrm{o}, 0$).

Negative Enlargement

Negative enlargements will look like they have been rotated. They are enlarged in the opposite direction to a positive enlargement.

Example

Enlarge $A B C$ by scale factor -2 , centre (1,1)

Finding the Centre of Enlargement

Draw straight lines through corresponding corners of the two shapes.
The centre of enlargement is the point where all the lines cross over.

Be careful with negative enlargements as the corresponding corners will be the other way around.

Example:

Fractional Enlargement

This is where the shape will get smaller. Such as scale factor $1 / 3$ would make the shape 3 times smaller.

Example

This shape has been enlarged by scale factor $1 / 2$

Year 11 Higher (Set 1) Mathematics Knowledge Organiser

Iteration

Iteration is the repetition of a mathematical procedure applied to the result of a previous application, typically as a means of obtaining successively closer approximations to the solution of a problem.

Starting with $x_{0}=0$ use the iteration formula

$$
x_{n+1}=\frac{2}{x_{n}^{2}+3}
$$

3 times to find an estimate to the solution.
Calculate the values of x_{1}, x_{2}, x_{3} to find an estimate for the solution to $x^{3}+3 x=2$

$$
\begin{aligned}
& x_{0+1}=\frac{2}{0^{2}+3}=0.6 \\
& x_{1+1}=\frac{2}{0 . \dot{6}^{2}+3}=0.5806451613 \\
& x_{2+1}=\frac{2}{(0.58 \ldots)^{2}+3}=0.5993140006
\end{aligned}
$$

Using the Quadratic Formula

The formula is:

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Quadratics are usually in the form:

$$
a x^{2}+b x+c=0
$$

This is how we pick out the values that will be substituted into the formula:

$$
\begin{array}{rl}
x^{2}+4 x+2=0 \\
a=1 & b=4 \quad c=2
\end{array}
$$

Now that you have the a. b and c values these can now be substituted into the formula - then gradually start to simplify the formula:

$$
\begin{aligned}
x= & \frac{-4 \pm \sqrt{4^{2}-4 \times 1 \times 2}}{2 \times 1} \\
\Rightarrow x & =\frac{-4 \pm \sqrt{8}}{2} \\
\Rightarrow x & =-0.585 \ldots \\
& =-0.59(1 \mathrm{dp}) \\
\text { or } x & =-3.414 \ldots \\
& =-3.41(1 \mathrm{dp})
\end{aligned}
$$

Completing the square

A quadratic in the form $x^{2}+b+c$ can be written in the form $(x+p)^{2}+q$.

1. Write a set of brackets with x in and half the value of b.
2. Square the bracket.
3. Subtract $\left(\frac{b}{2}\right)^{2}$ and add c.
4. Simplify the expression.

You can use the completing the square form to help find the maximum or minimum of quadratic graph.

Example:

Complete the square of

$$
\begin{gathered}
y=x^{2}-6 x+2 \\
(x-3)^{2}-3^{2}+2 \\
=(x-3)^{2}-7
\end{gathered}
$$

The minimum value of this expression occurs when $(x-3)^{2}=0$, which occurs when $x=3$

When $\mathrm{x}=3, \mathrm{y}=0-7=-7$

Minimum point $=(3,-7)$

If there is a coefficient in front of x^{2} then use the same method as above, but factorise out a at the start.

Year 11 Higher (Set 1) Mathematics Knowledge Organiser

Simultaneous Equations

This involves finding solutions that work in two (or more) equations at the same time - e.g.: $\quad x+2 y=8$

$$
2 x+y=7
$$

Solving Simultaneous Equations (Graphically)

Draw the graphs of the two equations. The solutions will be where the lines meet.
The solution can be written as a coordinate.

Example

$$
y=5-x \text { and } y=2 x-1 .
$$

They meet at the point with coordinates $(2,3)$ so the answer is $x=2$ and $y=3$

Simultaneous Equations

First label the equations

$$
\begin{align*}
& x+2 y=8 \tag{1}\\
& 2 x+y=7 \tag{2}
\end{align*}
$$

Then multiply to match the coefficients (the number before the letter)

$$
\begin{align*}
& 2 x+4 y=16 \\
& 2 x+y=7
\end{align*}
$$

Next add (or subtract) to remove an unknown

$$
\begin{align*}
& 2 x+4 y=16 \tag{3}\\
& 2 x+y=7 \tag{2}
\end{align*}
$$

$$
\begin{equation*}
3 y=9 \tag{3}
\end{equation*}
$$

Here, we can see that $y=3$.
Finally, substitute into a previous equation to calculate the other unknown. Here we used equation:

$$
\begin{array}{r}
x+2 \times 3=8 \\
x+6=8
\end{array}
$$

We can see here that $x=2$

$$
\text { So } x=2 \text { and } y=3
$$

Conditional Probability

When events are dependent, the probability of the second event is called a conditional event because it is conditional on the outcome of the first event.

Example

2 milk and 8 dark chocolates in a box.
Kate chooses one and eats it. She chooses a second one.

This can be shown on a tree diagram:

Year 11 Higher (Set 1) Mathematics Knowledge Organiser

Direct Proportion (algebra)

Direct: $y=k x$ or $y \propto x$

1. Solve to find k using the pair of values in the question.
2. Rewrite the equation using the k you have just found.
3. Substitute the other given value from the question in to the equation to find the missing value.

Example:

p is directly proportional to q . When $p=12, q=4$.
Find p when $\mathrm{q}=20$.

1. $p=k q$
$12=k \times 4$
so $k=3$
2. $p=3 q$
3. $p=3 \times 20=60$, so $p=60$

ANSWER: $\mathbf{p}=60$ and $\mathbf{q}=120(3 \times 60)$

Indirect Proportion (algebra)

Direct: $y=k x$ or $y \propto x$

1. Solve to find k using the pair of values in the question.
2. Rewrite the equation using the k you have just found.
3. Substitute the other given value from the question in to the equation to find the missing value.

Example:

p is directly proportional to q .
When $p=12, q=4$.
Find p when $\mathrm{q}=20$.

1. $p=k q$
$12=k \times 4$
so $k=3$
2. $p=3 q$
3. $p=3 \times 20=60, s o p=60$

ANSWER: $\mathbf{p}=60$ and $\mathbf{q}=120(3 \mathrm{x}$ 60)

Congruence

Shapes are congruent if they are identical - same shape and same size.
Shapes can be rotated or reflected but still be congruent.

Similar

Shapes are similar if they are the same shape but different sizes.
The proportion of the matching sides must be the same, meaning the ratios of corresponding sides are all equal

Proving Congruence

4 ways of proving that two triangles are congruent:

1. SSS (Side, Side, Side)
2. RHS (Right angle, Hypotenuse, Side)
3. SAS (Side, Angle, Side)
4. ASA (Angle, Side, Angle) or AAS

Example:

Proving similarity

To show that two triangles are similar, show that:

1. The three sides are in the same proportion
2. Two sides are in the same proportion, and their included angle is the same
3. The three angles are equal

Year 11 Higher (Set 1) Mathematics Knowledge Organiser

Trigonometry Exact Values					
\qquad 0° 30° 45° 60° 90° \sin 0 $\frac{1}{2}$ $\frac{\sqrt{2}}{2}$ $\frac{\sqrt{3}}{2}$ \cos 1 $\frac{\sqrt{3}}{2}$ $\frac{\sqrt{2}}{2}$ $\frac{1}{2}$ tan 0 $\frac{1}{\sqrt{3}}$ 1 $\sqrt{3}$ \cdots					

$$
y=\cos (x) \text { for }
$$

$$
0 \leq x \leq 360^{\circ}
$$

$$
y=\tan (x) \text { for }
$$

$$
0 \leq x \leq 360^{\circ}
$$

Sine Rule

Use with non right angle triangles.
Use when the question involves 2 sides and 2 angles.

Trigonometry Graphs

For missing side:

$$
\frac{a}{\sin A}=\frac{b}{\sin B}
$$

$$
\begin{gathered}
\frac{x}{\sin 85}=\frac{5.2}{\sin 46} \\
x=\frac{5.2 \times \sin 85}{\sin 46}=3.75 \mathrm{~cm}
\end{gathered}
$$

Year 11 Higher (Set 1) Mathematics Knowledge Organiser

Cosine Rule (missing side)

For missing side:

$a^{2}=b^{2}+c^{2}-2 b c \cos A$

$x^{2}=9.6^{2}+7.8^{2}-(2 \times 9.6 \times 7.8 \times \cos 85)$

$$
x=11.8
$$

Cosine Rule (missing angle)

$\cos A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}$

$\cos \theta=\frac{7.2^{2}+8.1^{2}-6.6^{2}}{2 \times 7.2 \times 8.1}$

$$
\theta=50.7^{\circ}
$$

Area of triangle

Area of a Triangle $=\frac{1}{2} a b \sin C$

Trig Problem Solving

A man looks out to sea from a cliff top at a height of 12 metres. He sees a boat that is 150 metres from the cliff. What is the angle of depression?

The problem can be represented as this diagram...

We will use SOHCAHTOA as a right angled triangle is involved. Tan is the trig ratio that will apply (hypotenuse is not needed).

$$
\tan \theta=\frac{\text { opposite }}{\text { adjacent }}
$$

$\tan \partial=\frac{12}{150}$
$\tan ^{-1}\left(\frac{12}{150}\right)$
$\partial=4.6$

Sampling

Population: the whole group that is being studied.

Sample: a selection taken from the population that will let you find out information about the larger group.

Representative: a sample group that accurately represents the population.

Random sample: a group completely chosen by change. No predictability to who it will include.

Bias: a built-in error that makes all values wrong by a certain amount.

Stratified Sampling

Stratified sampling is used to select a sample that is representative of different groups. The aim is to find a proportional sample based on the group size.
$\frac{\text { number in category }}{\text { total }} \times$ sample size

Year 7	Year 8	Year 9
120	80	100

Miss Holland wants to take a stratified sample of 15 students. How many Year 7's should she survey?

$$
\frac{120}{300} \times 15=6 \quad \begin{aligned}
& \text { Miss Holland should survey } \\
& 6 \text { students from year } 7
\end{aligned}
$$

Cumulative frequency

Cumulative Frequency is a running total.

Age	Frequency	Cumulative Frequency
$0<a \leq 10$	15	15
$10<a \leq 40$	35	$15+35=50$
$40<a \leq 50$	10	$50+10=60$

A cumulative frequency diagram is a curve that goes up. It looks a little like a stretchedout S shape.

Plot the cumulative frequencies at the endpoint of each interval.

You can find the Lower Quartile, Median, and Upper quartile by drawing lines $1 / 4$ of the way, $1 / 2$ of the way and $3 / 4$ of the way across the cumulative frequency axis. Then see where this line hits the curve and then read down onto the x axis.

Boxplot

The minimum, lower quartile, median, upper quartile and maximum are shown on a box plot.

Example

Students sit a maths test. The highest score is 19 , the lowest score is 8 , the median is 14 , the lower quartile is 10 and the upper quartile is 17. Draw a box plot to represent this information.

Boxplot Keywords

Lower Quartile - represents the first $1 / 4$ of the data (halfway between minimum value and median).

Median - the middle value
Upper Quartile - represents $3 / 4$ of data (halfway between median and maximum value)

Interquartile Range (IQR) -
Difference between upper quartile and lower quartile.

Comparing Boxplots

Write two sentences.

1. Compare the averages using the medians for two sets of data.
2. Compare the spread of the data using the range or IQR for two sets of data.

The smaller the range/IQR, the more consistent the data.
You must compare box plots in the context of the problem.

Example:

'On average, students in class A were more successful on the test than class B because their median score was higher.'
'Students in class B were more consistent than class A in their test scores as their IQR was smaller.'

Year 11 Higher (Set 1) Mathematics Knowledge Organiser

Histograms

A visual way to display frequency data using bars. Bars can be unequal in width.

Histograms show frequency density on the y-axis, not frequency.
Frequency Density $=\frac{\text { Frequency }}{\text { Class Width }}$

The area of the bar is proportional to the frequency of that class interval.

Frequency

$=$ Freq Density \times Class Width

Circle Theorem: Angles in the same segment are equal.

Example:

Circle Theorem: Angle in a semi-circle has a right angle at the circumference

Example:

Circle Theorem: Opposite angles in a cyclic quadrilateral add up to 180°

Example:

$$
\begin{array}{rl}
x & =180-83 \\
y= & =97^{\circ} \\
y & 180-92
\end{array}
$$

Circle Theorem: Alternate segment theorem

Example:

$$
\begin{aligned}
& x=52^{\circ} \\
& y=38^{\circ}
\end{aligned}
$$

Circle Theorem: A tangent meets a radius at 90°

Example:

Circle Theorem: Tangents from an external point are equal in length.

Example:

Circle Theorem: Angle at centre is twice the angle at circumference.
Example:

$x=104 \div 2=52^{\circ}$

Year 11 Higher (Set 1) Mathematics Knowledge Organiser

Graphs of circles

The equation of a circle, centre $(0,0)$, radius r, is:

$$
x^{2}+y^{2}=r^{2}
$$

$$
x^{2}+y^{2}=25
$$

The equation of a circle is always in the form:

$$
x^{2}+y^{2}=r^{2}
$$

This is provided the centre of the circle is $(0,0)$. This is because you can find the equation of a circle using Pythagoras theorem.

Cubic graph

Cubic graphs are a curve shape - the diagram below shows the difference between a positive and negative cubic graph:

Cubic graphs are in the form $a x^{3}+b x^{2}+$

$$
c x+d=0 .
$$

Area under a curve

You can only estimate the area under a curve.

This can be done by splitting the area up into similar shapes (such as rectangles, triangles and trapeziums). You can find the area of each of these shapes and then add them together.

Quadratic graph

A 'U-shaped' curve called a parabola. The equation is of the form
$y=a x^{2}+b x+c$,
where a, b and c are numbers, $a \neq 0$.

If $a<0$, the parabola
 is upside down.

A root is a solution. The roots of a quadratic are the x-intercepts of the quadratic graph

Gradient of a curve

Remember gradient is the change in y over the change in x !

The gradient of a curve at a point is the same as the gradient of the tangent at that point.

1. Draw a tangent carefully at the point.
2. Make a right-angled triangle.
3. Use the measurements on the axes
to calculate the rise and run (change in y and change in x)
4. Calculate the gradient.

Example:

$$
\text { Gradient }=\frac{16}{2}=8
$$

Year 11 Higher (Set 1) Mathematics Knowledge Organiser

Adding and subtracting Algebraic

Fractions

Use the same method for adding and subtracting fractions - find a common denominator!
Example:

$$
\begin{gathered}
\frac{1}{x}+\frac{x}{2 y} \\
=\frac{1(2 y)}{2 x y}+\frac{x(x)}{2 x y} \\
= \\
\frac{2 y+x^{2}}{2 x y}
\end{gathered}
$$

Multiplying Algebraic Fractions

Multiply numerators and multiply the denominators!
Example:

$$
\begin{aligned}
& \frac{x}{3} \times \frac{x+2}{x-2} \\
= & \frac{x(x+2)}{3(x-2)} \\
= & \frac{x^{2}+2 x}{3 x-6}
\end{aligned}
$$

Dividing Algebraic Fractions

Multiply the first fraction by the reciprocal of the second fraction.
Example:

$$
\begin{aligned}
& \frac{x}{3} \div \frac{2 x}{7} \\
= & \frac{x}{3} \times \frac{7}{2 x} \\
= & \frac{7 x}{6 x}=\frac{7}{6}
\end{aligned}
$$

Functions

A function is the relationship between two sets of values.

Notation:

$f(x)$

\mathbf{x} is the input value $f(x)$ is the output value.

Composite Functions

A combination of two or more functions to create a new function. $\mathrm{fg}(\mathrm{x})$ is the composite function that substitutes the function $g(x)$ into the function $f(x)$.
$f g(x)$ means 'do g first, then f ' gf(x) means 'do f first, then g '

Example:

$f(x)=5 x-3, g(x)=\frac{1}{2} x+1$
What is $f g(4)$?

$$
g(4)=\frac{1}{2} \times 4+1=3
$$

$$
f(3)=5 \times 3-3=12=f g(4)
$$

What is $f g(x)$?

$$
f g(x)=5\left(\frac{1}{2} x+1\right)-3=\frac{5}{2} x+2
$$

Inverse Functions

$$
f^{-1}(x)
$$

A function that performs the opposite process of the original function.

1. Write the function as $y=f(x)$
2. Rearrange to make x the subject.
3. Replace the y with x and the x with $f^{-1}(x)$

Example:

$f(x)=(1-2 x)^{5}$. Find the inverse.

$$
\begin{gathered}
y=(1-2 x)^{5} \\
\sqrt[5]{y}=1-2 x \\
1-\sqrt[5]{y}=2 x \\
\frac{1-\sqrt[5]{y}}{2}=x \\
f^{-1}(x)=\frac{1-\sqrt[5]{x}}{2}
\end{gathered}
$$

Algebraic Proof

To demonstrate or show that a statement is true, we use examples. To prove that a statement is true you can use algebra.

Some useful generalisations

Consecutive Integers	$n, n+1, n+2, \ldots$
Even Numbers	$2 n$
Odd Numbers	$2 n+1$
Consecutive Evens	$2 n, 2 n+2,2 n+4, \ldots$
Consecutive Odd	$2 n+1,2 n+3, \ldots$.

Year 11 Higher (Set 1) Mathematics Knowledge Organiser

Algebraic proof - Example:

Prove that the square of an odd number is always odd.

$$
\begin{aligned}
& \text { Let the odd number be } 2 n+1 . \\
& \text { So } \begin{array}{c}
(2 n+1)^{2}=(2 n+1)(2 n+1) \\
=4 n^{2}+4 n+1
\end{array}
\end{aligned}
$$

We can take out a factor of 2 (ignore the 1).
As $2\left(2 n^{2}+2 n\right)$ is even, then when we add 1 , the number must be odd.

Prove for any 3 consecutive integers the difference between the product of the first 2
and the product of last two is always twice the middle number
Let the consecutive integers be $n, n+1$ and $n+2$.
The product of the first and second

$$
n(n+1)=n^{2}+n
$$

The product of the second and third

$$
(n+1)(n+2)=n^{2}+3 n+2
$$

So the difference between these products is

$$
n^{2}+3 n+2-n^{2}+n=2 n+2
$$

This equals $2(n+1)$ which is twice the middle number

Vectors can be used to describe movements in Geometry as seen below:

$$
\begin{aligned}
& \overrightarrow{\mathrm{AC}}=2 \mathbf{a} \\
& \overrightarrow{\mathrm{AF}}=\mathbf{a}+\mathbf{b} \\
& \overrightarrow{\mathrm{AL}}=3 \mathbf{a}+2 \mathbf{b} \\
& \overrightarrow{\mathrm{LE}}=-3 \mathbf{a}-\mathbf{b}
\end{aligned}
$$

Vectors describe a movement.
A vector has a direction and a distance.

This diagram
shows the vector:

$$
\overrightarrow{\mathrm{AB}}=\binom{3}{-2}
$$

Magnitude

Magnitude is defined as the length of a vector. Example

Scalar of a Vector

A scalar is the number we multiply a vector by. Example
$3 a+2 b=3\binom{2}{1}+2\binom{4}{-1}$
$=\binom{6}{3}+\binom{8}{-2}$
$=\binom{14}{1}$

You can add vectors to get a resultant vector as seen below:

Year 11 Higher (Set 2) Mathematics Knowledge Organiser

Depreciation

This is where the value of something devalues at the same percentage rate each year.

Example

John buys a car for $£ 17000$. It depreciates in value every year by 8%. What will it be worth after 5 years?

```
Cost - interest
100% - 8% = 92% = 0.92
17000\times0.925 = 11204.39
```

Answer £11204.39

Compound Interest

Amount of interest changes each year based on what is in the bank at the end of the year.
Example
John invests $£ 3000$ in a bank that pays 1.5% compound interest. How much will he have after 4 years?
Investment + interest
$100 \%+1.5 \%=101.5 \%=1.015$
$3000 \times 1.015^{4}=3184.09$
Answer $£ 3184.09$

Simple Interest

Same amount of interest is added on each year.
Example
£200 is invested into a bank account with a rate of 3% simple interest for 2 years.
3% of $200=£ 6$
Year $1=£ 200+£ 6=£ 206$
Year $2=£ 206+£ 6=£ 212$
ANSWER: $£ 212$ in bank account at end of the year.

```
Reverse percentage
Example
Jane buys a pair of trousers in a sale for £68 after they were reduced
by 15%. What was the original cost of the trousers?
Trousers now worth 85% of original price
85% = 68
1%=68\div85=0.8
100% = 0.8 x 100=80
Original cost = £80
```


Subject of a formula

A formula usually has a single variable on one side of the equals sign. This is called the subject of the formula. Sometimes you will want to rearrange the formula so that one of the other variables becomes the subject. To do this you use inverse operations (in a similar way to solving equations) in order to isolate the new subject.

Examples

Make r the subject of $C=2 \pi r$.
To isolate r, divide by 2π.

$$
\frac{C}{2 \pi}=r
$$

We often write formulae with the subject on the left-hand side, so this becomes

$$
r=\frac{C}{2 \pi}
$$

Make x the subject of $y=\frac{x}{5}+3$.

To isolate x, start by subtracting 3.

$$
y-3=\frac{x}{5}
$$

Next, multiply by 5 - remember to multiply each term of the lefthand side.

$$
\begin{aligned}
& 5(y-3)=x \\
& x=5(y-3)
\end{aligned}
$$

Year 11 Higher (Set 2) Mathematics Knowledge Organiser

Subject of a formula

More difficult questions - think about inverse operations to help you!
Examples

Make r the subject of $V=\frac{1}{3} \pi r^{2} h$.

To start, isolate r^{2} by multiplying by 3 and then dividing by πh.

$$
\begin{gathered}
3 V=\pi r^{2} h \\
\frac{3 V}{\pi h}=r^{2}
\end{gathered}
$$

Now we square root both sides.

$$
\begin{aligned}
& \sqrt{\frac{3 V}{\pi h}}=r \\
& r=\sqrt{\frac{3 V}{\pi h}}
\end{aligned}
$$

Make x the subject of $3 x+5=y-a x$.

When a formula contains the new subject more than once, start by isolating any terms including it on one side of the equals sign.

Here, add $a x$ and subtract 5.

$$
3 x+a x=y-5
$$

Now we factorise the side with our new subject.

$$
x(3+a)=y-5
$$

Then divide by the bracket to leave x on its own.

$$
x=\frac{y-5}{3+a}
$$

Speed, Distance, Time
Speed $=$ Distance \div Time
Distance $=$ Speed \times Time
Time $=$ Distance \div Speed

Example

Speed $=4 \mathrm{mph}$
Time $=2$ hours
Find the Distance.

$$
D=S \times T=4 \times 2=8 \text { miles }
$$

Density, Mass, Volume

Density $=$ Mass \div Volume
Mass = Density x Volume
Volume = Mass \div Density

Example

Density $=8 \mathrm{~kg} / \mathrm{m}^{3}$
Mass $=2000 \mathrm{~g}$
Find the Volume.
$V=M \div D=2 \div 8$

$$
=0.25 \mathrm{~m}^{3}
$$

Year 11 Higher (Set 2) Mathematics Knowledge Organiser

Pressure, Force, Area

Pressure = Force \div Area
Force = Pressure \times Area
Area $=$ Force \div Pressure

Remember the correct units.

Example

Pressure $=10$ Pascals
Area $=6 \mathrm{~cm}^{2}$
Find the Force
$F=P \times A=10 \times 6$

$$
=60 \mathrm{~N}
$$

Sampling

Population: the whole group that is being studied.
Sample: a selection taken from the population that will let you find out information about the larger group.

Representative: a sample group that accurately represents the population.
Random sample: a group completely chosen by change. No predictability to who it will include.

Bias: a built-in error that makes all values wrong by a certain amount.
Primary data: data collected from an original source for a purpose.
Secondary data: data taken from an external location. Not collected directly.
Outlier: a value that stands apart from the data set

Stratified Sampling

Stratified sampling is used to select a sample that is representative of different groups. The aim is to find a proportional sample based on the group size.

Miss Holland wants to take a stratified sample of 15 students. How many Year 7's should she survey?

$$
\frac{120}{300} \times 15=6 \quad \begin{aligned}
& \text { Miss Holland should survey } \\
& 6 \text { students from year } 7
\end{aligned}
$$

Pie Chart

Used for showing how data breaks down into its constituent parts.
Remember to label the category that each sector in the pie chart represents.

Example

If there are 40 people in a survey, then each person will be worth $360 \div 40=9^{\circ}$ of the pie chart.

Year 11 Higher (Set 2) Mathematics Knowledge Organiser

Find the angle in a Pie Chart

When drawing a pie chart, divide 360° by the total frequency. This will tell you how many degrees to use for the frequency of each category.

Angle $=\frac{\text { Frequency }}{\text { Total Frequency }} \times 360$
Example
In a survey of 30 people, each person would be represented by $\frac{1}{30}$ of the full circle.

$$
360 \div 30=12^{\circ}
$$

Each person would get 12°
In a survey of 30 people, 12 said their favourite colour is red.

$$
\frac{12}{30} \times 360=144^{\circ}
$$

Draw and interpret Pie Charts

Example

Type of pet	Dog	Cat	Hanster
Frequency	32	25	3

There were 60 people asked in this survey (Total frequency)
"32 out of 60 people had a dog" (32/60)
This fraction of the 360 degrees represents dogs is $32 / 60 \times 360=192^{\circ}$
Use a protractor to draw
This is 192°
Multiple method
As 60 goes into $360-6$ times.

Each frequency can be multiplied by 6 to find the degrees (proportion of 360)

Comparing Pie Charts:
You NEED the overall frequency to make any comparisons

Plans and Elevations

This takes 3D drawings and produces 2D drawings.
Plan View: from above
Side Elevation: from the side Front Elevation: from the front Example

See to the right for the example.

Year 11 Higher (Set 2) Mathematics Knowledge Organiser

Constructing Triangles

(Side, Side, Side)

Angle Bisector: Cuts the angle in half.

1. Draw the base of the triangle using a ruler.
2. Open a pair of compasses to the width of one side of the triangle.
3. Place the point on one end of the line and draw an arc.
4. Repeat for the other side of the triangle at the other end of the line.
5. Using a ruler, draw lines connecting the ends of the base of the triangle to the point where the arcs intersect.

Constructing Triangles

(Side, Angle, Side)
Perpendicular Bisector: Cuts a line in half and at right angles.

1. Draw the base of the triangle using a ruler.
2. Measure the angle required using a protractor and mark this angle.
3. Remove the protractor and draw a line of the exact length required in line with the angle mark drawn.
4. Connect the end of this line to the other end of the base of the triangle.

Constructing Triangles (Angle, Side, Angle)

1. Draw the base of the triangle using a ruler.
2. Measure one of the angles required using a protractor and mark this angle.
3. Draw a straight line through this point from the same point on the base of the triangle.
4. Repeat this for the other angle on the other end of the base of the triangle.

Equidistant

A point is equidistant from a set of objects if the distances between that point and each of the objects is the same.

Example

Year 11 Higher (Set 2) Mathematics Knowledge Organiser

Angle Bisector

Angle Bisector: Cuts the angle in half.

1. Place the sharp end of a pair of compasses on the vertex.
2. Draw an arc, marking a point on each line.
3. Without changing the compass put the compass on each point and mark a centre point where two arcs cross over. 4. Use a ruler to draw a line through the vertex and centre point.

Perpendicular Bisector

Perpendicular Bisector: Cuts a line in half and at right angles.

1. Put the sharp point of a pair of compasses on A.
2. Open the compass over half way on the line.
3. Draw an arc above and below the line.
4. Without changing the compass, repeat from point B.
5. Draw a straight line through the two intersecting arcs

Perpendicular from an External Point

The perpendicular distance from a point to a line is the shortest distance to that line.

1. Put the sharp point of a pair of compasses on the point.
2. Draw an arc that crosses the line twice.
3. Place the sharp point of the compass on one of these points, open over half way and draw an arc above and below the line.
4. Repeat from the other point on the line.
5. Draw a straight line through the two intersecting arcs.

Perpendicular from a Point on a Line

Given line $P Q$ and point R on the line:

1. Put the sharp point of a pair of compasses on point R.
2. Draw two arcs either side of the point of equal width (giving points S and T)
3. Place the compass on point S, open over halfway and draw an arc above the line.
4. Repeat from the other arc on the line (point T).
5. Draw a straight line from the intersecting arcs to the
 original point on the line.

Year 11 Higher (Set 2) Mathematics Knowledge Organiser

Loci and Regions

A locus is a path of points that follow a rule.
For the locus of points closer to B than A, create a perpendicular bisector between A and B and shade the side closer to B.

For the locus of points equidistant from A, use a compass to draw a circle, centre A.

For the locus of points equidistant to line X and line Y, create an angle bisector.

For the locus of points a set distance from a line, create two semi-circles at either end joined by two parallel lines.

Congruence

Shapes are congruent if they are identical - same shape and same size.
Shapes can be rotated or reflected but still be congruent.

Similar

Shapes are similar if they are the same shape but different sizes.
The proportion of the matching sides must be the same, meaning the ratios of corresponding sides are all equal

Proving similarity

To show that two triangles are similar, show that:

1. The three sides are in the same proportion
2. Two sides are in the same proportion, and their included angle is the same
3. The three angles are equal

Proving Congruence

4 ways of proving that two triangles are congruent:

1. SSS (Side, Side, Side)
2. RHS (Right angle, Hypotenuse, Side)
3. SAS (Side, Angle, Side)
4. ASA (Angle, Side, Angle) or AAS

See the example on the right.

Finding a scale factor

To find a scale factor, divide a length on one shape by the corresponding length on a similar shape.

Year 11 Higher (Set 2) Mathematics Knowledge Organiser

Vectors describe a movement. A vector has a direction and a distance.

This diagram shows the vector:

$$
\overrightarrow{\mathrm{AB}}=\binom{3}{-2}
$$

Magnitude

Magnitude is defined as the length of a vector.
Example

Scalar of a Vector

A scalar is the number we multiply a vector by.

Example
$3 a+2 b=$

$=3\binom{2}{1}+2\binom{4}{-1}$
$=\binom{6}{3}+\binom{8}{-2}$
$=\binom{14}{1}$

You can add vectors to get a resultant vector as seen below:

Vectors can be used to describe movements in Geometry as seen below:

For the diagram on the left:

$$
\begin{aligned}
& \overrightarrow{\mathrm{AC}}=2 \mathbf{a} \\
& \overrightarrow{\mathrm{AF}}=\mathbf{a}+\mathbf{b} \\
& \overrightarrow{\mathrm{AL}}=3 \mathbf{a}+2 \mathbf{b} \\
& \overrightarrow{\mathrm{LE}}=-3 \mathbf{a}-\mathbf{b}
\end{aligned}
$$

Solving Two Step

Equations Finding the value of an unknown, by identifying operations performed and doing the inverse operation:

Solving Equations
involving fractions Finding the value of an unknown. To eliminate a denominator, multiply every term by the denominator:

Solving Equations with unknowns on both sides Add/subtract the smallest algebraic term from both sides:

Year 11 Higher (Set 2) Mathematics Knowledge Organiser

Forming Equations / Formulae

Substitute letters for words in the
question.
Example
Bob charges $£ 3$ per window and a £5 call out charge.

$$
C=3 N+5
$$

$\mathrm{N}=$ number of windows and $\mathrm{C}=\mathrm{cos} \dagger$

Simultaneous

Equations

(substitution)

The idea here is to rearrange one of the equations into the for $y=$. Then substitute this equation into the other equation.

$$
\begin{gathered}
y-2 x=3 \\
3 x+4 y=1
\end{gathered}
$$

Rearrange: $y-2 x=3 \rightarrow y=2 x+3$
Substitute: $3 x+4(2 x+3)=1$
Solve: $3 x+8 x+12=1$

$$
11 x=-11
$$

$$
x=-1
$$

Substitute: $y=2 \times-1+3$

$$
y=1
$$

Solution: $x=-1, y=1$

Simultaneous Equations

Finding solutions that work in two (or more) equations at the same time, like the ones below...

$$
\begin{aligned}
& x+2 y=8 \\
& 2 x+y=7
\end{aligned}
$$

is called solving simultaneous equations.

Solving Simultaneous Equations (Graphically)

Draw the graphs of the two equations. The solutions will be where the lines meet. The solution can be written as a coordinate.

Example

$$
y=5-x \text { and } y=2 x-1
$$

They meet at the point with coordinates
$(2,3)$ so the answer is $x=2$ and $y=3$

Simultaneous Equations

First label the equations

$$
\begin{align*}
& x+2 y=8 \tag{1}\\
& 2 x+y=7 \tag{2}
\end{align*}
$$

Then multiply to match the coefficients (the number before the letter)

$$
\begin{align*}
& 2 x+4 y=16 \\
& 2 x+y=7
\end{align*}
$$

Next add (or subtract) to remove an unknown

$$
\begin{align*}
& 2 x+4 y=16 \tag{3}\\
& 2 x+y=7 \tag{2}
\end{align*}
$$

$$
\begin{equation*}
3 y=9 \tag{3}
\end{equation*}
$$

Here, we can see that $y=3$.
Finally, substitute into a previous equation to calculate the other unknown. Here we used equation:

$$
\begin{array}{r}
x+2 \times 3=8 \\
x+6=8
\end{array}
$$

We can see here that $x=2$

$$
\text { So } x=2 \text { and } y=3
$$

Proportion

Proportion compares the size of one part to the size of the whole.
Usually written as a fraction.

Example

In a class with 13 boys and 9 girls, the proportion of boys is $\frac{13}{22}$ and the proportion of girls is $\frac{9}{22}$

Proportional Reasoning

Comparing two things using
multiplicative reasoning and applying this to a new situation.
Identify one multiplicative link and use this to find missing quantities.
Example

Best Buys

Find the unit cost by dividing the price by the quantity.
The lowest number is the best value.

Example

8 cakes for $£ 1.28 \rightarrow 16 p$ each (\div by 8)
13 cakes for $£ 2.05 \rightarrow 15.8 p$ each (\div by 13)

Pack of 13 cakes is best value.

Unitary Method

Finding the value of a single unit and then finding the necessary value by multiplying the single unit value.
Example
3 cakes require 450 g of sugar to make.
Find how much sugar is needed to make 5 cakes.
3 cakes $=450 \mathrm{~g}$
So 1 cake $=150 \mathrm{~g}(\div$ by 3$)$
So 5 cakes $=750 \mathrm{~g}(\mathrm{x}$ by 5$)$

Direct Proportion

If two quantities are in direct proportion, as one increases, the other increases by the same percentage. k is the ratio between x and y

Example

Y is directly proportional to X
When $x=500 \quad y=10$
Calculate the value of y when $x=150$
$Y=k x$
$10=500 k \quad$ therefore $k=1 / 50$
$Y=1 / 50 x$
$y=1 / 50 \times 150 \quad y=3$

Indirect proportion

If two quantities are in indirect proportion, as one increases, the other decreases by the same percentage. $1 / k$ is the ratio between x and y

Example

P is inversely proportional to V
When $P=6 \quad V=8$
Calculate the value of P when $V=2$
$P=k / v \quad 6=k / 8$
therefore $\mathrm{k}=48$
$P=48 / 2 \quad P=24$

Inverse proportion

If two quantities are inversely proportional, as one increases, the other decreases by the same percentage.
If y is inversely proportional to x, this can be written as $y \propto \frac{1}{x}$
An equation of the form $\boldsymbol{y}=\frac{\boldsymbol{k}}{\boldsymbol{x}}$ represents inverse proportion.

Example

Recurring Decimal

A decimal with one or a group of digits that repeat itself indefinitely.
E.g. 0. $\dot{\mathbf{2}} \dot{\mathbf{3}}=0.23232323 . .$.

Convert $0 . \dot{8} \dot{4}$ to a fraction.

Multiply the decimal so that the repeated decimal digits are on the left side of the decimal point.

$$
\begin{gathered}
x=0.84848484 \\
100 x=84.848484
\end{gathered}
$$

Subtract x from 100x.

$$
99 x=84
$$

Isolate x , then simplify:

$$
x=\frac{84}{99}=\frac{28}{33}
$$

Fractional Indices

The denominator of a fractional power acts as a 'root'. The numerator of a fractional power acts as a normal power.

$$
a^{\frac{m}{n}}=(\sqrt[n]{a})^{m}
$$

Example

$$
\begin{gathered}
27^{\frac{2}{3}}=(\sqrt[3]{27})^{2}=3^{2}=9 \\
\left(\frac{25}{16}\right)^{\frac{3}{2}}=\left(\frac{\sqrt{25}}{\sqrt{16}}\right)^{3}=\left(\frac{5}{4}\right)^{3}=\frac{125}{64}
\end{gathered}
$$

Negative Indices

$$
a^{-n}=\frac{1}{a^{n}}
$$

Example

$$
\begin{aligned}
3^{-2} & =\frac{1}{3^{2}} \\
& =\frac{1}{9}
\end{aligned}
$$

Upper and Lower Bounds

The upper and lower bound come from the largest and smallest values that would round to a particular number. Take 'half a unit above and half a unit below'. For example rounded to 1 d.p means nearest 0.1 , so add 0.05 and subtract 0.05 to get the bounds.
All error intervals look the same like this - $\leq x<$
Example - State the upper and lower bound of 360 when it has been rounded to 2 significant figures:
2 significant figures is the nearest 10, so 'half this' to get 5, and add on to 360 and take it off 360,
$355 \leq x<365$

Expand (Linear)

To expand a bracket, multiply each term in the bracket by the expression outside the bracket.
Example

$$
3(m+7)=3 x+21
$$

Factorise (Linear)

The reverse of expanding.

Factorising is writing an expression as a product of terms by 'taking out' a common factor.
Example

$$
6 x-15=3(2 x-5)
$$

where 3 is the common factor.

Expand (Quadratic)

Each term in one bracket needs to be multiplied by each term in the other bracket.

Example (grid method)

$(x+2)(x+5)$

	\boldsymbol{x}	$\mathbf{+ 5}$
\boldsymbol{x}	x^{2}	$+5 x$
$+\mathbf{2}$	$+2 x$	+10

Factorise (Quadratic)

What numbers multiply to make the last number in the expression? Which of these factors add /subtract to make the number in the middle?
Example

$$
\begin{gathered}
x^{2}-2 x-3 \\
(x-3)(x+1)
\end{gathered}
$$

Year 11 Higher (Set 2) Mathematics Knowledge Organiser

Solving Quadratics By Factorising

Make the equation equal to 0 and factorise. The solutions of the unknowns is the value to make each bracket equal to 0 :

Factorise

$$
\begin{gathered}
(x+3)(x-6)=0 \\
x+3=0 \quad x-6=0 \\
x=-3 \quad \text { or } \quad x=6
\end{gathered}
$$

The Quadratic Formula

This is a proven formula to solve quadratics. The _+ part is how you get more than one solution.

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

The quadratic expression mus \dagger be equal to zero first. This formula needs to be memorised!

Solving Quadratics graphically

Quadratics can also be solved graphically.

Draw the graph of the quadratic - by substituting in values from the graph.

x	-3	-2	-1	0	1	2	3	4
y	10	4	0	-2	-2	0	4	10

The Solutions or Roots are where $\mathrm{y}=0$, at the points $(-1,0)$ and $(2,0)$

Using the Quadratic Formula

Quadratics are usually in the form:

$$
a x^{2}+b x+c=0
$$

This is how we pick out the values that will be substituted into the formula:

$$
\begin{array}{r}
x^{2}+4 x+2=0 \\
a=1 \quad b=4 \quad c=2
\end{array}
$$

Now that you have the a. b and c values these can now be substituted into the formula - then gradually start to simplify the formula:

$$
\begin{aligned}
& x=\frac{-4 \pm \sqrt{4^{2}-4 \times 1 \times 2}}{2 \times 1} \\
& \Rightarrow x=\frac{-4 \pm \sqrt{8}}{2} \\
& \Rightarrow x=-0.585 \ldots \\
& \\
& \Rightarrow=-0.59(1 \mathrm{dp}) \\
& \begin{aligned}
\text { or } x & =-3.414 \ldots \\
& =-3.41(1 \mathrm{dp})
\end{aligned}
\end{aligned}
$$

NOTE:

Another way you can solve quadratics is to 'complete the square' and 'iteration'. You will come across these later in the year.

Cumulative frequency

Cumulative Frequency is a running total.

Age	Frequency	Cumulative Frequency
$0<a \leq 10$	15	15
$10<a \leq 40$	35	$15+35=50$
$40<a \leq 50$	10	$50+10=60$

A cumulative frequency diagram is a curve that goes up. It looks a little like a stretchedout S shape.

Plot the cumulative frequencies at the endpoint of each interval.

You can find the Lower Quartile, Median, and Upper quartile by drawing lines $1 / 4$ of the way, $1 / 2$ of the way and $3 / 4$ of the way across the cumulative frequency axis. Then see where this line hits the curve and then read down onto the x axis.

Boxplot

The minimum, lower quartile, median, upper quartile and maximum are shown on a box plot.

Example

Students sit a maths test. The highest score is 19 , the lowest score is 8 , the median is 14 , the lower quartile is 10 and the upper quartile is 17. Draw a box plot to represent this information.

Boxplot Keywords

Lower Quartile - represents the first $1 / 4$ of the data (halfway between minimum value and median).

Median - the middle value
Upper Quartile - represents $3 / 4$ of data (halfway between median and maximum value)

Interquartile Range (IQR) -
Difference between upper quartile and lower quartile.

Comparing Boxplots

Write two sentences.

1. Compare the averages using the medians for two sets of data.
2. Compare the spread of the data using the range or IQR for two sets of data.

The smaller the range/IQR, the more consistent the data.
You must compare box plots in the context of the problem.

Example:

'On average, students in class A were more successful on the test than class B because their median score was higher.'
'Students in class B were more consistent than class A in their test scores as their IQR was smaller.'

Year 11 Higher (Set 2) Mathematics Knowledge Organiser

Histograms

A visual way to display frequency data using bars. Bars can be unequal in width.

Histograms show frequency density on the y-axis, not frequency.

Frequency Density $=\frac{\text { Frequency }}{\text { Class Width }}$

The area of the bar is proportional to the frequency of that class interval.

Frequency

$=$ Freq Density \times Class Width

Circle Theorem: Angles in the same segment are equal.

Example:

Circle Theorem: Angle in a semi-circle has a right angle at the circumference

Example:

Circle Theorem: Opposite angles in a cyclic quadrilateral add up to 180°

Example:

$$
\begin{gathered}
x=180-83=97^{\circ} \\
y=180-92=88
\end{gathered}
$$

Circle Theorem: Alternate segment theorem

Example:

$$
\begin{aligned}
& x=52^{\circ} \\
& y=38^{\circ}
\end{aligned}
$$

Circle Theorem: A tangent meets a radius at 90°

Example:

Circle Theorem: Tangents from an external point are equal in length.

Example:

Circle Theorem: Angle at centre is twice the angle at circumference.
Example:

$x=104 \div 2=52^{\circ}$

Biology Topic 5: Homeostasis and response

1. Keywords	
Homeostasis	The regulation of the internal conditions of a cell or organism to maintain optimum conditions for function in response to internal and external changes.
Optimum conditions	The perfect conditions for an organism to survive and grow. E.g. blood glucose level, body temperature and water level.
Nervous response	Uses electrical signal in nerves to make fast changes
Chemical response	Uses hormones in the blood to make changes.
Reflex arc	A nervous response that is fast and automatic for protection. Does not involve the conscious brain.
CNS	(Central nervous system) The brain and the spinal chord
Neurone	Nerve cell. Carries an electrical signal from one end to the other

2. Nervous system: Reflex arc							
No.	1	2	3	4	5	6	7
Section	Stimulus	Receptor	Sensory neurone	Co-ordinator	Motor neurone	Effector	Response
Definition	A change to the environment that triggers a nervous response	A cell which detects a specific stimulus	A neurones which carries electrical signal from receptor to CNS	The area that receives and processes the information	Neurone that connects the CNS to the effector	The organ that creates the correct response form the stimulus	The effect of the stimulus. Often designed to prevent injury
Example	Touching a flame	Pain receptor in skin	Sensory neurone	Brain Relay neurone	Motor neurone	Muscle gland	Movement

7. Control of body temperature (TRIPLE ONLY)		
Thermoregulatory centre	Part of the tempera	brain that receives signals about of the blood and skin
$37^{\circ} \mathrm{C}$	Optimum	ternal body temperature
Vasodilation	The wide surface of	g of blood vessels near the he skin
Vasoconstriction	The narro surface of	ing of blood vessels near the he skin
Sweat	Liquid re the body	sed from pores on skin to cool it evaporates
Shivering	Involuntary heat	muscle contractions to generate
How the body responds to changes in temperature		
Too hot		Too cold
1. Vasodilation bring blood near the surface 2. Sweating increases 3. Heat is lost through evaporation and radiation 4. Body temp drops		1. Vasoconstriction take blood away from surface 2. Sweating stops 3. Muscles contractions (shivering) generate heat 4. Body temp increases

8. Hormonal control: Endocrine system	
Endocrine system	A chemical response where glands secrete hormones into the blood which make changes around the body
Glands	Special tissues designed to produce specific chemical (hormones)
Secrete	Release

10. Control of blood glucose levels	
Type 1 diabetes	When the pancreas is damaged from infection and cannot make insulin. Needs injections to treat
Type 2 diabetes	When poor diet and obesity cause body cells to not respond to insulin anymore. Treated with diet and exercise
Insulin	Hormone made in pancreas that reduces glucose levels in the blood
glycogen	The long term store of sugar in the body. Made in the liver

11. Control of blood glucose continued (HT ONLY)

Glucagon

> A hormone which reduces blood glucose concentration by turning it into glycogen

Normal blood glucose
Blood
glucose increases

Pancreas
secretes
insulin into
blood
Liver absorbs glucose and turns it to glycogen

Blood glucose drops

Pancreas
secretes
glucagon into blood

Liver converts glycogen to glucose and releases it into blood stream

12. Controlling water and nitrogen levels (TRIPLE ONLY)	
Urea	The waste product made by the breakdown of amino acids in the liver.
Urine	The urea, excess water and ions not needed by the body. Made by the kidneys
Kidneys	The organ responsible for filtration and selective reabsorption
Selective reabsorption	When the kidneys reabsorb: - All of the glucose - Some of the mineral ions - Some of the water
Dialysis	A way of manually filtering the blood when the kidneys are no longer functioning. Whilst waiting for a transplant

14. Reproductive hormones		
Hormone	Made in	Function
Testosterone	Testes	Creates male sexual changes at puberty including sperm production
Oestrogen	Ovary	Creates female sexual changes at puberty including ovulation
Follicle stimulating hormone (FSH)	Pituitary gland	Causes egg to mature in ovary
Luteinising hormone (LH)	Pituitary gland	Causes egg to be released by ovary
Progesterone	Ovary	Maintains lining of womb

13. Hormones and the kidneys (TRIPLE HT ONLY)

ADH (anti-diuretic hormone)
A hormone made in the pituitary gland which increase the reabsorption of water by kidney tubules

How ADH works:

1. Blood is too concentrated
2. Pituitary gland releases ADH into blood.
3. ADH increase permeability of kidney tubules
4. More water is reabsorbed
5. Blood dilutes to normal levels. Urine is yellow.
6. Menstrual cycle (HT ONLY)

16. Contraception	
Type	How it works
Oral (the pill)	Stops FSH so no egg released
Injection/implant	Release progesterone which prevents egg maturation for months or years
Barrier (condoms)	Prevent sperm and egg meeting
Intrauterine (the coil)	Prevents embryo implanting
Spermicides	Kill sperm
Abstinence	Not having sex
Surgical (vasectomy/hysterectomy)	Surgically sterilising the adult permanently

18. Negative feedback (HT ONLY)	
Negative feedback	A system where the product reduces the stimulus to return the change to normal levels
Adrenalin	Fight or flight hormone. Increases heart rate and boosts blood supply of oxygen and glucose
Thyroxine	Controls metabolic rate and affects growth and development. Controlled by negative feedback.

19. Plant hormones (TRIPLE ONLY)		
Phototropism	The shoot of a plant growing towards light. The root growing away form light	
Gravitropism (geotropism)	The shoot of a plant growing up and the roots growing down	
Auxin	Group of plant hormones which make cells in shoots grow more and cells in roots grow less. Used as rooting powder and weedkiller.	
How tropisms work		
Phototropism	1. Gravitropism 3.\quadShaded side contains more auxin So grows faster	

20. Other plant hormones (TRIPLE HT ONLY)
21. Eggs are harvested and fertilised by fathers sperm in a lab
22. Fertilised eggs grow in lab
23. A few embryos are implanted into mother womb
Possible
consequences of
IVF

Physical and emotional fatigue
consequences of Low success rate Risk of multiple births simultaneously

Biology Topic 6: Inheritance, variation and evolution

1.Keywords	
Mitosis	A type of cell division which create two identical daughter cells
Meiosis	A type of cell division the create 4 unique gametes
Gametes	Sex cells eg sperm + egg and pollen + ovum
Sexual reproduction	Reproduction involving the fusion of gametes. Make unique offspring that resemble both parents
Asexual reproduction	Reproduction involving only one parent. No gametes fuse. Offspring are identical to parent
DNA	Deoxyribose nucleic acid. Polymer made of 2 strands forming a double helix. Contains the instructions for an organism.
Chromosomes	Long strands of DNA found in the nucleus. Humans have 23 pairs
Gene	A section of DNA which codes for a protein
Genome	All the genes of an organism

2. Meiosis

1. DNA replication: chromosome number doubles
2. Cell divides: two cells now
3. Those cells divide: four gametes now with half the number of chromosomes
4. Advantages of reproduction (TRIPLE ONLY)

Advantages sexual	Advantages asexual
Causes variation	Only need 1 parent
If environment changes natural selection can occur	Energy and time efficient (fast)
Humans can selectively breed organisms for beneficial characteristics	Lots of offspring can be produced when conditions are good
Organisms that can use both	Malaria

4. DNA structure (TRIPLE ONLY)	
Nucleotide	The monomer of DNA. Consists of a sugar, phosphate and a base
Base	One of 4 different chemicals that make the triplet code. A G T C
Triplet code	3 bases in a row give a code for a specific amino acid

5. Protein synthesis and gene expression (HT TRIPLE ONLY)	
Pairing of nucleotide bases	A \rightarrow T T $\rightarrow \mathrm{A}$ $G \rightarrow C \quad C \rightarrow G$
Transcription	When the DNA is read and converted into messenger RNA (mRNA)
Translation	When the mRNA is read by ribosomes and use to build the amino acid sequence
Transfer RNA (tRNA)	Carries the correct amino acid to the ribosome for the mRNA triplet code
Coding DNA	DNA which codes for a protein, a gene
Non-coding DNA	DNA which does not code for a protein. Can be involved in turning on or off genes.
Mutation	A change to the DNA sequence. Most are harmless but some can stop proteins working correctly

6. Genetic inheritance	
Allele	Different forms of the same gene. eg hair colour
Dominant	When only one copy of the allele is needed to show in the offspring
Recessive	When the allele only shows when there are two copies
Homozygous	Two copies of the same allele
Heterozygous	Two different alleles
Genotype	The set of genes in our DNA
Phenotype	The outward appearance a set of genes displays

7. Inherited disorders	
Inherited disorders	Disorders that are caused by inheriting faulty genes from parents
Polydactyly	A dominant inherited disorder which causes extra fingers or toes to form
Cystic fibrosis	A recessive inherited disorder which causes sticky mucus to block air ways

8. Sex determination

No of chromosomes in a human	23 pairs (22 normal, 1 pair of sex)
Male	$X Y$ (50\% chance)
Female	$X X$ (50\% chance)
Sperm	Can hold Y or X chromosome so determine gender of embryo

9. Variation	Changes within a population. Caused by mutation
Generiation variation	Changes due to inheriting different alleles of genes
Environmental variation	Changes due to the effect the environment has
10. Evolution	The change in the inherited characteristics of a population due to natural selection. May result in a new species
Evolution	The process where the organism best adapted to the environment survives and passes on their characteristics
Natural selection	
Species	A group of organisms with similar features which can breed to make fertile offspring
Stages of evolution	1. Population shows variation due to their genes 2. Environment changes 3. Some individuals are best adapted and live longer 4. These can breed and produce more offspring 5. Over a long period of time the offspring dominate the population

11. Selective breeding	
Selective breeding	The ancient practice of artificially selecting animals and plants to breed together to create certain characteristics
Inbreeding	The consequence of too much selective breeding. Can lead to disease or defects
Outcomes of selective breeding	- Disease resistance in crops - Increased meat and milk production - Domestication of pets - Large unusual flowers

12. Genetic engineering	
Genetic engineering	The process of changing the genome by adding a desirable gene from another organism
GM crops	Genetically modified crops that are resistant to disease or grow bigger crops. Controversial to some

13. Process of genetic engineering (HT ONLY)	
1	DNA containing desired gene removed from cell
2	Enzyme cuts out gene
3	Plasmid taken from bacteria
4	Plasmid cut by same enzyme
5	Plasmid and human gene joined by an enzyme

15. Theory of evolution (TRIPLE ONLY)	
Charles Darwin	Proposed the theory of evolution in his book 'on the origins of species'
Darwin's theory took a long time to be accepted because:	-It challenged the idea that God made all creatures There was not enough evidence at the time Mechanism of inheritance was not understood for another 50 years. Jean-Baptiste Lamarck Had a different theory about inherited characteristics. He believed they were acquired through the life of the parents. He was wrong Alfrea Russell Wallace Independently came up with the idea of evolution and natural selection at the same time as Darwin. Worked on the idea of speciation SpeciationFormation of a new species as a result of evolution

17. Fossils	Fossil Remains of a plant or animal that were alive millions of years ago. Found in rocks. Normally only the hard parts Fossil formation -Parts of organisms that have not decayed because one or more of the conditions needed for decay are absent Parts of the organism are replaced by minerals as they decay Preserved traces of organisms, such as footprints What they tell us Early life was simple As the fossils get newer the life becomes more complex Why do we not have a fossil for every living thing -Early life forms were soft bodied so not fossils formed Geological activity destroyed fossils

18. Extinction			
Extinction	When an entire species has died		
Causes of	1.	Disease	
extinction	2.	New predators	
	3.	Famine	
	4.	Natural disaster (meteor, volcano)	

19. Resistant bacteria

| MRSA | A type of bacteria that has evolved to be resistant
 to antibiotics |
| :--- | :--- | :--- |
| How to prevent
 antibiotic resistance | 1. \quad Not prescribing antibiotic for viral and non-
 threatening infections |
| $2 . \quad$Completing the course of antibiotic given
 3.
 Restricting the use of agricultural antibiotics | |

20. Classification of organisms

Carl	Invented the groups we classify Linnaeus organisms into
	1. Kingdom 2. Phylum
	3. Class 4. Order 5. Family 6. Genus 7. Species
Binomial name	The official name of all organism consisting of genus and species
3 domain system	
Archaea	Primitive bacteria normally found in extreme environments
Bacteria	True bacteria
Eukaryotes	Plants, animals, fungi and protists

Mnemonic Device

Kingdom
Phylum
Class
Order
Family
Genus
species
- King
- Phillip
- Came
- Over
- For
- Good
- Soup

Chemistry Topic 5: Energy changes

1. Keywords	
Conservation of energy	Energy can not be created or destroyed just transferred from one for to another
Exothermic reaction	Reaction which releases heat to the surroundings. Causing an increase in temperature
Endothermic reaction	Reaction which absorbs heat from the surroundings. Causing a decrease in temperature

2. Reaction protiles

1	Activation energy
2	Reactants
3	Products
4	Energy released
5	Reaction progress
6	Potential energy

Exothermic

reaction

Endothermic reaction

4. Cells and batteries (TRIPLE ONLY)	
Simple cell	Made from connecting two different metals in contact with an electrolyte
Battery	Two or more cells joined together in series to make a greater voltage
Non-rechargeable cell	Type of cell where the reactions stop when one of the reactants is used up. E.g Alkali batteries
Rechargeable cell	Type of cell where the chemical reactions can be reversed when an electric current is supplied
Fuel cell	Type of cell that makes electricity from reacting a fuel (eg Hydrogen) with oxygen

5. Hydrogen fuel cell (TRIPLE ONLY)

Overall equation	$2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$
Anode equation (HT ONLY)	$4 \mathrm{H}^{+}(\mathrm{aq})+\mathrm{O}_{2}(\mathrm{~g})+4 \mathrm{e}^{-} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
Cathode equation (HT ONLY)	$\mathrm{H}_{2}(\mathrm{~g})-2 \mathrm{e}^{-} \rightarrow 2 \mathrm{H}^{+}(\mathrm{aq})$

| 3. Energy changes of reactions (HT ONLY) |
| :--- | :--- | :--- | :--- |
| Reaction type Temperature
 change Amount of
 energy
 absorbed to
 break bonds Amount of
 energy
 released
 when making
 new bonds
 Exothermic Increases Less More
 Endothermic Decreases More Less |

Physics topic 5a: Forces

1. Forces keywords	
Force	Something that makes a change happen
Magnitude	The value of a force in newtons
Scalar	Things that have magnitude but not direct
Vector	Things that have a magnitude and a direction. Forces are always vectors
Contact force	Can only act when two things touch
Non-contact force	Can act on things not touching
Balanced (forces)	When forces are equal and opposite each other also called equilibrium
Unbalanced (forces)	When opposing forces are not equal to each other
Resultant (force)	The overall force once all the forces are considered
Force arrows	Show direction and size of a force NewtonUnit force is measured in Newtonmeter A spring calibrated so it has a scale to measure force Centre of mass A point in the middle of an object where all its mass acts Elastic A material that returns to its original shape after being deformed Plastic A material that does NOT return to its original shape after being deformed

2. Types of force	Between	Contact or non- contact	Example
Friction	Two moving surfaces	Contact	Brakes
Upthrust	An object and water	Contact	Boat
Reaction	Two stationary objects	Contact	Book on shelf
Air resistance	A moving object and air	Contact	Plane
Gravity	Two masses	Non-contact	You and the earth
Tension	Two ends of an elastic material	Contact	Spring
Magnetic	Magnets and magnetic materials	Non-contact	Magnet picking up a nail

3. Calculating weight		
Symbol	Name	Calculated by..
W	Weight (N)	$=$ Mass \times Gravity
m	Mass (Kg)	$=$ Weight \div Gravity
g	Gravitation al field strength	$=$ Weight \div mass
On earth $\mathrm{g}=10 \mathrm{~N} / \mathrm{kg}$		

4. Calculating work		
Symbol	Name	Calculated by..
W	Work (J)	= Force x Distance
F	Force (N)	= Work \div Distance
s	Distance (m)	= Work \div Force
$W=$ FS		

5. Hooke's law		
Symbol	Name	Calculated by..
F	Force (N)	$=$ Spring constant x Extension
k	Spring constant (N / m)	= Force \div Extension
e	Extension (m)	$=$ Force \div Spring constant
$F=$ Ke		

6. Energy stored in a spring		
Symbol	Name	Calculated by..
Ep	Elastic potential energy stored (J)	$E p=\frac{1}{2} k e^{2}$
$\frac{1}{2}$	Half (0.5)	N/A
k	Spring constant (N / m)	$k=\frac{2 E p}{e^{2}}$
e	Extension (m)	$e=\sqrt{\frac{2 E p}{k}}$
	$E p=$	e^{2}
To calculate extension: 1. Measure the original length of the object 2. Measure the stretched length of the object 3. Extension $=$ stretched length - original length		

7. Moments:

1.To calculate a moment you need to know:

- How much force is being applied (Newtons, N)
- The distance from the pivot that the force is being applied (Meters, m)

Moment $=$ force \times distance
2.The unit for moment is newton metre (Nm)
3.A small force over a large distance can generate the same moment as a large force over a small distance.

8. Calculating pressure

Symbol	Name	Calculated by..
F	Force (N)	$=$ pressure \times area
p	Pressure $\left(\mathrm{Pa}=\mathrm{n} / \mathrm{m}^{2}\right)$	$=$ force \div area
A	Area $\left(\mathrm{m}^{2}\right)$	$=$ force \div pressure

9. Calculating pressure in column of liquid (HT ONLY)		
Symbol	Name	Calculated by..
9	Gravitational field strength ($10 \mathrm{~N} / \mathrm{Kg}$)	$g=\frac{p}{h \rho}$
P	Pressure ($\mathrm{Pa}=\mathrm{n} / \mathrm{m}^{2}$)	$p=h \rho g$
h	Height (m)	$h=\frac{p}{g \rho}$
ρ	Density (kg/m)	$\rho=\frac{p}{g h}$
$0=h p g$		

Physics Topic 5b: Forces in motion

1. Keywords	
Speed	Distance \div time. Scalar quantity
Velocity	Distance (in a certain direction) \div time. Vector quantity
Distance	How far and object moves. Scalar quantity
Displacement	The straight line distance from the start point to the end point. Vector quantity
Terminal velocity	The maximum speed reached when the forces are balanced

2. Typical speeds	
Walking	$1.5 \mathrm{~m} / \mathrm{s}$
Running	$3 \mathrm{~m} / \mathrm{s}$
Cycling	$6 \mathrm{~m} / \mathrm{s}$
Sound	$330 \mathrm{~m} / \mathrm{s}$

lculating		
Symbol	Name	Calculated by..
S	Distance (m)	$=$ speed x time
V	Speed/Velocity (m/s)	$=$ distance \div time
\dagger	Time (s)	$=$ distance \div speed
$S=V+$		

4. D/T graph keywords

Keyword	Meaning	Position on distance time graph
Accelerate	Speeding up	1
Decelerate	Slowing down	2
Constant speed	Staying the same speed	3
Stationary	Not moving	4
Speed	Distance covered in a certain time	The steepness of the line

5. Acceleration	Acceleration $\left(\mathrm{m} / \mathrm{s}^{2}\right)$	$a=\frac{\Delta v}{t}$
a	Change in velocity $(\mathrm{m} / \mathrm{s})$	$\Delta v=a t$
Δv	Time (s)	$t=\frac{\Delta v}{a}$
t	$a=\frac{\Delta v}{t}$	

7. Uniform acceleration	
v	$v^{2}-u^{2}=2 a s$
u	Final velocity $(\mathrm{m} / \mathrm{s})$
a	Acceleration $\left(\mathrm{m} / \mathrm{s}^{2}\right)$
s	Distance (m)

6. Velocity-time graphs

1	Constant acceleration
2	Constant speed/velocity
3	Constant deceleration
HT	Area under graph = total distance travelled

8. Newtons laws of motion	
$1^{\text {st }}$	If the resultant force on an object is zero the object either remains stationary or at a constant speed
$2^{\text {nd }}$	Force = mass \times acceleration
$3^{\text {rd }}$	When two objects interact the forces are equal and opposite

9. Forces and braking

Stopping distance	The thinking distance + braking distance
Thinking distance	The distance travelled in the time it takes to react (typically 0.2s)
Factors affecting thinking distance	1. Tiredness 2. Drugs 3. Alcohol 4. Distractions (phones)
Braking distance	The distance travelled under a braking force
Factors affecting braking distance	1. Road conditions (ice, water) 2. Tyre condition 3. Brake condition

```
11. Changes in momentum (PHYSICS ONLY)
```

$F=\frac{m \Delta v}{\Delta t}$		
F	force	N
$m \Delta v$	Change in momentum	$\mathrm{Kgm} / \mathrm{s}$
Δt	Change in time	s

[^0]
Nutrition at different life-stages

Adults:

- Early - Growth in regard to height of the body continues to develop until 21 years of age. Therefore, all micro-nutrients and macro-nutrients especially carbohydrates, protein, fats, vitamins, calcium and iron are needed for strength, to avoid diseases and to maintain being healthy.
- Middle - The metabolic rate starts to slow down at this stage, and it is very easy to gain weight if the energy intake is unbalanced and there isn't enough physical activity.
- Elderly - The body's systems start to slow down with age and a risk of blood pressure can increase as well as decrease in appetite, vision and long-term memory. Because of this, it is essential to keep the body strong and free from disease by continuing to eat a healthy, balanced diet.

Children:

- Babies - All nutrients are essential and important in babies, especially protein as growth and development of the body is very quick at this stage. Vitamins and minerals are also important. You should try to limit the amount of salt and free sugars in the diet.
- Toddlers - All nutrients remain very important in the diet at this stage as growth remains. A variety of foods are needed for toddlers to have all the micro-nutrients and macro-nutrients the body needs to develop.
- Teenagers - The body grows at a fast pace at different times at this stage as the body develops from a child to an adult, therefore all nutrients are essential within proportions. Girls start their menstruation which can sometimes lead to anaemia due to not having enough iron in the body.

Special Dietary needs

Different energy requirements based on:

- Lifestyles / Occupation / Age / Activity level

The amount of energy the body needs is determined with each of the above factors e.g. active lifestyle or physical activity level would need more energy compared to a person being sedentary.

Medical conditions:

- Allergens - Examples of food allergies include milk, eggs, nuts and seafood.
- Lactose intolerance - Unable to digest lactose which is mainly found in milk and dairy products.
- Gluten intolerance - Follows a gluten free diet and eats alternatives to food containing wheat, barley and rye.
- Diabetes (Type 2) - High level of glucose in the blood, therefore changes include reducing the amount of fat, salt and sugar in the diet.
- Cardiovascular disorder - Needing a balanced, healthy diet with low levels of salt, sugar and fat.
- Iron deficiency - Needing to eat more dark green leafy vegetables, fortified cereals and dried fruit.

Dietary requirements:

- Religious beliefs - Different religions have different dietary requirements.
- Vegetarian - Avoids eating meats and fish but does eat dairy products and protein alternatives such as quorn and tofu.
- Vegan - Avoids all animal foods and products but can eat all plant-based foods and protein alternatives such as tofu and tempeh.
- Pescatarian - Follows a vegetarian diet but does eat fish products and seafood. cbac

The importance of nutrition

Listed below are the macro-nutrients and micro-nutrients. You need to know their function in the body and know examples of food items for each. You need to know why they are needed in the diet and why there is a need for a balanced/varied diet.

Macro-nutrients

Carbohydrates - Carbohydrates are mainly used in the body for energy. There are two types of carbohydrates which are:

- Starch - Examples include bread, pasta, rice, potatoes and cereals.
- Sugar - Examples include sweets, cakes, biscuits \& fizzy drinks.

Fat - This is needed to insulate the body, for energy, to protect bones and arteries from physical damage and provides fat soluble vitamins. There are two main types of fat which are:

- Saturated fat - Examples include butter, lard, meat and cheese.
- Unsaturated fat - Examples include avocados, plant oils such as sunflower oil, seeds and oily fish.

Protein - Protein is mainly used for growth and repair in the body and cell maintenance. There are two types of protein which are:

- High biological value (HBV) protein - Includes meat, fish, poultry, eggs, milk, cheese, yogurt, soya and quinoa.
- Low biological value (LBV) protein - Includes cereals, nuts, seeds and pulses.

Micro-nutrients

Vitamins

- Fat soluble vitamin A - Main functions include keeping the skin healthy, helps vision in weak light and helps children grow. Examples include leafy vegetables, eggs, oily fish and orange/yellow fruits.
- Fat soluble vitamin \mathbf{D} - The main function of this micro-nutrient is to help the body absorb calcium during digestion. Examples include eggs, oily fish, fortified cereals and margarine.
- Water soluble vitamin B group - Helps absorbs minerals in the body, release energy from nutrients and helps to create red blood cells. Examples include wholegrain foods, milk and eggs.
- Water soluble vitamin C - Helps absorb iron in the body during digestion, supports the immune system and helps support connective tissue in the body which bind cells in the body together. Examples include citrus fruits, kiwi fruit, cabbage, broccoli, potatoes and liver.

Minerals

- Calcium - Needed for strengthening teeth and bones. Examples include dairy products, soya and green leafy vegetables.
- Iron - To make haemoglobin in red blood cells to carry oxygen around the body. Examples include nuts, beans, red meat and green leafy vegetables.
- Sodium - Controls how much water is in the body and helps with the function of nerves and muscles. Examples include salt, processed foods and cured meats.
- Potassium - Helps the heart muscle to work correctly and regulates the balance of fluid in the body. Examples include bananas, broccoli, parsnips, beans, nuts and fish.
- Magnesium - Helps convert food into energy. Examples include wholemeal bread, nuts and spinach.
- Dietary fibre (NSP) - Helps digestion and prevents constipation. Examples include wholegrain foods (wholemeal pasta, bread and cereals), brown rice, lentils, beans and pulses.
- Water - Helps control temperature of the body, helps get rid of waste products from the body and prevents dehydration. Foods that contain water naturally include fruits and vegetables, milk and eggs.

Level 1/2 Hospitality and Catering: Unit 2-2.1.2 -

How cooking methods can impact on nutritional value

Roasting

- Roasting is a method of cooking in high temperatures and so this will destroy most of the group C vitamins and some of the group B vitamins.

Steaming

- Steaming is the best cooking method for keeping vitamin C in foods.
- Only up to 15% of vitamin C is lost as the foods do not come into contact with water.

Grilling

- Using this cooking method can result in losing up to 40% of group B vitamins.
- It is easy to overcook protein due to the high temperature used in grilling foods.

Baking

- Due to high temperatures in the oven, it is easy to overcook protein and damage the vitamin C and B group vitamins.

Sustainability

Many diners are interested in hospitality and catering provisions that provide sustainable dining.

The aim of the three Rs of sustainability is to conserve natural resources and prevent excess waste. By following the rules of reduce, reuse, and recycle, hospitality and catering provisions can save money at the same time as attracting more diners and bringing in more profit.

Sustainability also means buying local produce, using organic ingredients, buying meat and poultry from farm assured producers who guarantee better welfare for the animals, using Marine Stewardship Council sustainable fish and offering meat-free versions of favourite dishes.

Reuse

Food that is past its best, for example a brown banana, or scraps such as bones can be used to create new dishes which in turn will decrease food waste. www.lovefoodhatewaste.com has a vast range of recipe ideas for using surplus food.

- Bread: breadcrumbs, bread and butter pudding, bread sauce and croutons.
- Meat and poultry: bones can be used to make stocks.
- Fruit: banana muffins, apple crumble, fruit coulis, smoothies.
- Vegetables: bubble and squeak, vegetable stock, vegetable bakes, omelettes.
- Eggs: whites can be used to make meringue; yolks can be used to make mayonnaise.

Reduce

Food waste: If food and waste were its own country, it would be the third largest producer of greenhouse gas in the world! If it cannot be used to make new dishes or given away, then as much food waste as possible should be composted.

Energy use: Hospitality and catering provisions can save energy in many ways including using low-energy lighting, maintaining and upgrading equipment, putting lids on saucepans, batch baking and cooking.

Food miles: Using local suppliers means that the food does not have to travel as far from 'field to fork'.

Water usage: Use less in cooking by only just submerging vegetables or using a steamer. Use an energy and water efficient dishwasher.

Recycle

Many hospitality and catering provisions have separate bins for recyclable materials Professional kitchens should also have areas to separate waste into recyclable, non-recyclable and compostable materials. All staff should be trained to know how to dispose waste correctly.

Coffee grounds can be composted. Compost can be used to grow fruit, vegetables and herbs for use in the kitchen.

Jars and plastic containers can be used for storage in the kitchen. Glass bottles can be used to hold flowers or candles as table decorations.

Too Good To Go, Karma and Olio are apps used by restaurants and supermarkets. Customers can buy discounted food which would otherwise go into landfill.

This means stating, in the plan, what you would do to deal with a problem if something were to go wrong.

Naming all pieces of equipment you would need to cook the dishes, which also includes specialist equipment such as pasta machines and ice cream makers as well as saucepans, chopping boards, knives, etc.

Stating in the plan, points regarding the health, safety and hygiene. The use of temperature probes to ensure foods are cooked, correctly using colour coded chopping boards or washing hands after handling raw meat are a few examples.

Quality points

These include naming any quality points to consider in the preparation, cooking and serving stage of the plan. Examples could include checking foods are in use by/best before dates, dishes are cooked to minimum temperatures, ingredients stored in correct places and correct temperature, etc.

Sequencing or dovetailing
This means you fit together the different steps and activities in logical order when planning to cook more than one dish.

Timing
You need to state realistic timings of how long each step is likely to take throughout your plan to give accurate information of how long your dishes take to complete.

Mise en place
This is all the preparation you undertake before cooking. Examples of this include weighing out ingredients, collecting equipment and washing hands.

Cooking
Throughout your plan, you will need to state how you ensure food is cooked correctly, e.g. chicken is white in the middle, using a temperature probe, etc.

Cooling and hot holding
Cooling dishes correctly within 1.5 hrs to 8 degrees and keeping hot dishes for service at 63 degrees should be mentioned in your plan for relevant dishes, as well as how you would ensure these temperatures are met, e.g. by using temperature probes.

Serving

Once you have finished cooking your dish or dishes, you need to state how you would present your dish/dishes, e.g. on plate, bowl, etc., as well as what decoration, garnishes and sauces you include before serving.

Storage

In your plan, you should state where different kinds of ingredients need to be stored, e.g. raw chicken in the fridge or frozen fruit in the freezer and at what temperatures these pieces of equipment need to be (fridge needs to be $0-5$ degrees and freezer needs to be -18 degrees).
cbac

Creativity

It is said that 'we eat with our eyes'. Creativity in plating dishes enhances the diner's experience diners want to be 'wowed' when their meal appears!

Serving dishes: Start with the plate - varied sizes, shapes and colours can add immediate impact to your dish. Dishes served in bowls or dessert glasses should be placed on a plate to aid serving.

Elements: Each dish will consist of several elements - the main protein, accompaniments, garnish and decoration.

Volume: Do not overcrowd the plate - leave some space so that the diner can see each element of the dish. The rule of thumb is that only two-thirds of the plate should be full.

Height: Food can be stacked to add height to the overall dish, but each element should be visible.

Colour: Accompaniments, garnishes and decoration can add colour to dishes where the main elements are similar in colour. An example is fish and chips: bright green peas and a slice of yellow lemon will enhance the overall appearance of the meal.

Functionality: The dish should be beautiful to look at, but easy for the diner to eat.

Temperature: Hot food should be served on hot plates. Cold food should be served on chilled plates.

Accompaniments

Accompaniments should be chosen to complement the main part of the dish. Examples include:

Carbohydrate accompaniments:

- Savoury: bread, dauphinoise potatoes, pilau rice.
- Sweet: shortbread, brandy snaps, macaron.

Fruit and vegetable accompaniments:

- Savoury: pea purée, roasted root vegetables, griddled asparagus.
- Sweet: berry compote, fruit kebabs, grilled peaches.

Sauces:

- Savoury: gravy, red wine jus, parsley sauce
- Sweet: custard, salted caramel sauce, chocolate sauce.

Portion control

It is important that the customer is satisfied with their portion without the plate being overcrowded. Keeping portion control accurate allows hospitality and catering provisions to order adequate supplies of ingredients. Accurate portion control will also help prevent food waste.

Garnish

Garnishes are additions to a dish which both add to the overall taste and enhance the overall appearance.

Savoury: parmesan crisps, crispy onions, caviar, watercress, lemon wedges, fresh herbs, salsa, edible flowers

Sweet: chocolate dipped strawberries, tuile biscuits, chopped nuts, tempered chocolate work, spun sugar work, edible flowers.

Decoration

Decoration adds drama to the finished dish but it is not meant to be eaten or add to the overall flavour of the dish. Examples include:

- whole spices added to pilau rice
- gold leaf
- hollow eggshell as serving dish.

Plating styles

Classic

Freeform

Landscape

Food safety practices

During your practical session, you must demonstrate that you can work safely and hygienically. Your plan should show that you have thought about food safety and hygiene during all parts of your practical session. Your personal safety and hygiene practices will be observed during your practical session.

Personal safety and hygiene practices

Hands:

- Wash before, during and after preparing food especially after touching raw meat, dirty vegetables and fridge handles.
- Wash after going to the toilet.
- Wash after sneezing or blowing your nose.
- Wash after disposing of waste.

Clothing and hair:

- Clean apron and/or chef's whites.
- Non-slip closed-toe shoes.
- Tie hair back.
- Wear a bandana or hair net.

Cuts:

- Cover with a blue, waterproof plaster.

Equipment:

- Handle knives safely.
- Use oven gloves when carrying hot items.
- Keep electrical equipment away from water.
- Clean spills immediately.

Food safety and hygiene practices

Ingredients:

- Check use-by and best before dates.
- Check ingredients for freshness; no bruises on fruit, fish should not smell.
- Store correctly until needed.

Cleaning:

- Clean worktops before preparation.
- Clean workstation and equipment after preparing high-risk foods.
- Wash up throughout the session - do not leave it all until the end!

Temperatures:

- Keep high-risk foods in the fridge $\left(0^{\circ} \mathrm{C}-5^{\circ} \mathrm{C}\right)$ until needed.
- Use a temperature probe to check core temperature of high-risk foods.

Waste management:

- Keep waste separate from ingredients during preparation, cooking and serving
- Recycle and compost waste if possible.

Management of accidents

- Ensure that you know the location of the First Aid box.
- Ensure that you know how to use a fire blanket or fire extinguisher.

Dish production

- Were you able to keep to your time plan?
- Did you have any problems during the practical? How did you resolve them?

Dish selection

- Did your dishes contain the right nutrients for your two groups?
- Were they expensive or cheap to produce?
- Did they contain seasonal or local produce?

Organoleptic

How did your dishes:

- Look (appearance)?
- Taste (flavour and texture)?
- Smell (aroma)?

Hygiene

- Did you follow all hygiene guidelines?
- Did you wear correct PPE?
- Did you wash up between jobs?

PEE: Point, Evidence, Explain
You need to write a self-reflection of how you performed during your practical session. There are 8 areas to consider when you write your review of your dishes.

Health and safety

- Were you able to use equipment safely? - Did you store ingredients correctly?

Waste

- Did you separate your waste into categories? (Food waste, recyclable materials, general waste.)
- Did you buy the right amount of ingredients?

Presentation

- Were the portions the right size for you
groups?
- How did you add colour to your dishes?
- Were your garnishes and decorations
Presentation
- Were the portions the right size for your two
groups?
- How did you add colour to your dishes?
- Were your garnishes and decorations
Presentation
- Were the portions the right size for you
groups?
- How did you add colour to your dishes?
- Were your garnishes and decorations
Presentation
- Were the portions the right size for your
groups?
- How did you add colour to your dishes?
- Were your garnishes and decorations
Presentation
- Were the portions the right size for your
groups?
- How did you add colour to your dishes?
- Were your garnishes and decorations appropriate?

Improvements

- If you made your dishes again, what would you do differently?
- If you had to do the task again, would you change your choice of dishes?
- Would you add additional accompaniments?

Decision making

- What were your strengths in completing the written tasks?
- What were your strengths in choosing dishes?
- How could you improve weak decisions?
- Were the dishes easy to make together?
- What were the disadvantages of the chosen dishes?
- Did your dishes meet the needs of the provision?
- Did your dishes meet the needs of your two groups (nutrition and cost)?

Planning

Was the practical session plan in a logical order?

- Discuss your strengths.
- Discuss your weaknesses.
- Suggest improvements.

Were you able to keep to the plan during the practical session?

- Discuss your strengths.
- Discuss your weaknesses.
- Suggest improvements.

Organistation

How did you organise your written tasks?

- Discuss your strengths.
- Discuss your weaknesses.
- Suggest improvements.

How did you organise your workstation during the practical session?

- Discuss your strengths.
- Discuss your weaknesses.
- Suggest improvements.

Time management

How did you manage your time when completing the written tasks?

- Discuss your strengths.
- Discuss your weaknesses.
- Suggest improvements.

How did you manage your time during the practical session?

- Discuss your strengths.
- Discuss your weaknesses.
- Suggest improvements.

Level $1 / 2$ Hospitality and Catering:
 Unit 2-2.2.1: Factors affecting menu planning

Factors affecting menu planning

You need to be aware of the following factors when planning menus:

- cost (ingredients as well as business costs)
- portion control (value for money without waste)
- balanced diets/current national advice
- time of day (breakfast, lunch, and dinner menus as well as small plates and snacks)
- clients/customers (a menu with prices that will suit the people who visit your establishment).

Equipment available

You need to know and understand the type of equipment needed to produce a menu. The choice of dishes will be influenced by the equipment available to the chef

This includes kitchen equipment such as:

- hobs, ovens, and microwaves
- fridge, freezer and/or blast chiller
- specialist equipment, for example a sous vide or pizza oven
- hand-held equipment, for example electric whisks or hand-blenders
- other electric equipment, for example food processors.

The skills of the chef must be suited to the type of provision and the menu offered.

A Michelin starred restaurant will require a chef who has complex skills in preparation, cooking and presentation of dishes.

A café will require a chef who has a range of medium and complex skills to produce a suitable menu.

A large restaurant will normally have a full kitchen brigade while a smaller establishment may only have a single chef with one or two assistants.

The type of provision will influence the amount of time a customer may be willing to wait for their dish to be prepared. Can the chef prepare, cook, and present more than one dish at the same time? Can some items be made in advance?

Environmental issues

The chef will need to think about environmental issues when planning a menu. Can the chef reduce the amount of ingredients bought as well as reducing food waste? Can the chef reuse ingredients to create new dishes for example stale bread made into bread-and-butter pudding? Can the kitchen recycle waste wherever possible? Running the kitchen sustainably will save money.

Organoleptic properties

Organoleptic properties are the sensory features of a dish (appearance, aroma, flavour, and texture).

The chef will need to think about how the dish will look and taste. Is there a range of colours? Do the flavours go well together? Are there a variety of textures?

Level 1/2 Hospitality and Catering:
 Unit 2-2.3.1: Practical skills and techniques

Skills and techniques

You need to be able to identify the different types of skills you need to produce your selected dishes. Some dishes will require the use of more complex skills. You will need to demonstrate a range of skills when producing your chosen dishes.

Preparation and cooking skills are categorised as follows: basic, medium, and complex.

Presentation

You should know and understand the importance of using the following appropriate presentation techniques during the production of dishes:

- creativity
- garnish and decoration
- portion control
- accompaniments

Basic preparation skills and techniques

Blending, beating, chopping, grating, hydrating, juicing, marinading, mashing, melting, peeling, proving, sieving, tenderising, trimming, and zesting.

Basic cooking skills and techniques
Basting, boiling, chilling, cooling, dehydrating, freezing, grilling, skimming, and toasting.

Medium preparation skills and techniques

Baton, chiffonade, creaming, dehydrating, deseeding, dicing, folding, kneading, measuring, mixing, puréeing, rub-in, rolling, skinning, slicing, spatchcocking, toasting (nuts/seeds) and weighing

Medium cooking skills and techniques
Baking, blanching, braising, deglazing, frying, griddling, pickling, reduction, roasting, sautéing, steaming, stir-frying, and using a sous vide (water bath).

Complex preparation skills and techniques

Brunoise, crimping, de-boning, filleting, julienne, laminating (pastry), melting using bain-marie, mincing, piping, and segmenting, shaping, unmoulding and whisking (aeration)

Complex cooking skills and techniques
Baking blind, caramelising, deep fat frying, emulsifying, poaching, and tempering.

ASSESSMENT OBJECTIVE 2

MEDIA	BEST PRACTILE
cILDURED PENLILS	- Apply using a soft circular motion - Start with the lightest colours and build up colour/tone - Analogue colours add depth - Complimentary colours add definition - A sharp pencil will create a crisp finish - Avoid applying a thick stripy line of tone, blur it by applying soft pressure on the edge
Watercolour	- Mix your own variations of colour instead of using them straight out of the palette - Avoid adding too much water to your paint or the paper will start to bobble/wave - Apply colour in layers to build up tone - To blend colours on the page work quickly and place wet next to wet - When you want colour to stay separate make sure you don't apply wet next to wet - Consider layering mark-making on top of dry layers to add interest - Change your water regularly to avaid cross contamination
CILLAGE	- Rip VR cut (not bath) - Use small pieces or use the trace and cut method for whole sections - Dverlap to avoid leaving gaps - Use a variety of tones to make your work look more interesting - Apply the paper right up to the drawn line to create a crisp edge
ACRYIIC PAINT	- Mix your own colours instead of using them straight out of the tub - Add complimentary colours to darken your paint and show shadows - Add white to your paint to show highlights - Consider how elements within the image impact on each other - Foreground is lighter, background is darker
TONAL PENCLIS	- Know your pencils-B- soft and dark LINE (the higher the number the softer and darker they are) H-hard pencils create a thin, light line (the higher the number the harder and lighter they are) - Rest your hand on a paper towel to avoid smudging - Make sure your work transitions smoothly from light to dark - Use a soft circular motion AND BUIILD UP TONE GRADUALLY
IIL PASTELS	- Start with the lightest colours - Press on heavily to apply a strong coverage - Blend colours tagether by slightly overlapping - Be gestural with the marks you apply
INK/PEN	- Work from left to right (or right to left if you are left handed) to avoid smudging - Use a paper towel to blot any excess ink of the nib - Work quickly to avoid letting too much ink collect on the page - Experiment with thickness of line and mark-making techniques

MEDIA	THE SUBSTANCE AN ARTIST USES TD CREATE ART. E.G. CDLLAGE, CDLDURED PENCILS, ACRYLIC PAINT ETC.
MATERIALS	the same as media but can also refer to what the ART WORK IS CREATE ON. E.E. CANVAS, PAPER, CLAY.
TECHNILUES	THE METHOD USED TO CIMPLETE THE ART WIRK, CAN be generic such as painting, ar mare focused SULCH AS BLENDING.
PROLESSES	THE METHID USED TO CREATE ARTWIRK THAT USUALLY FILLIDS A RANGE DF STEPS RATHER THAN JUST ONE SKILL.

Year 10 HT2 Drama Knowledge Organiser

Summary of topic

Through theory sessions and controlled conditions students will complete their timed evaluation of 900
words as a guide.

Aims of the topic

To understand how to write a well structured and analytical evaluation.

> Devising Plays Knowledge Organiser Evaluation

> Y11GCSE

Assessment \& Performance Tips

Students will complete their final evaluation of the devised performance.

The evaluation should have a title 'Component 1 Devising Evaluation'

It should have 3 main sections. It should be roughly 900 words.

Remember this is about the final performance only not the process.

Skills \& Definitions

Analysis - Describing and saying why.
Evaluation - A summary sentence(s) at the end of the section. PEE (point, evidence, explain).
Structure - The evaluation it written in 3 main sections - introduction (name of play, stimuli and practitioner/genre, Section 1 Analysis of character portrayal, Section 2 Analysis of own performance skills (practitioner/genre), effectiveness of final performance linking back to stimuli and intentions and final evaluation.
Stimuli - The starting point set by exam board e.g. picture, quote, word or song. You chose one.
Practitioner - Brecht or Artaud and how they influenced the performance.
Brecht - Famous for Political and Epic Theatre. (See practitioner knowledge organiser). Made the audience think and bring real change.
Artaud - Famous for Theatre of Cruelty (See practitioner knowledge organiser). Made the audience feel uncomfortable.
Genre - Physical theatre is NOT a practitioner, it is a STYLE of drama focused upon storytelling using movement.
Techniques - The key skills which are relevant to the practitioner or genre (see practitioner knowledge organiser).
Effectiveness - How successful was the final performance?
Final performance - The end performance of the piece.
Word count - There is a word count of roughly 900 words.
Bullet points - You are allowed 2 pages of bullet point notes for this

Year 10 HT1 Drama Knowledge Organiser

Summary of topic

Through theory sessions and homework students will complete their portfolios based on their practical
devising work.

Aims of the topic

To understand how to write a structured, coherent portfolio.

: 做北

Skills \& Definitions

Analysis - Describing and saying why.
Evaluation - A summary sentence(s) at the end of the section. PEE (point, evidence, explain)
Paragraph - The portfolio should have three sections (idea development from stimuli, practitioner/genre technique, amendments made before final performance).
Ideas - How the characters, story developed, movement and key scenes.
Stimuli - The starting point set by exam board e.g. picture, quote, word or song. You chose one.
Practitioner - Brecht or Artaud and how they influenced the performance.
Brecht - Famous for Political and Epic Theatre. (See practitioner knowledge organiser). Made the audience think and bring real change.
Artaud - Famous for Theatre of Cruelty (See practitioner knowledge organiser). Made the audience feel uncomfortable.
Genre - Physical theatre is NOT a practitioner, it is a STYLE of
drama focused upon storytelling using movement.
Techniques - The key skills which are relevant to the practitioner or genre (see practitioner knowledge organiser).
Amendments - Changes made during the process.
Rehearsal process - The journey from initial ideas to final performance.
Word count - Max word count is 999 to avoid a penalty. Each section should be around 300 words.

Component 1-Exploring the Performing Arts Musical Theatre

Students participate as a performer in musical theatre workshops and will explore and participate in classes to develop their knowledge and understanding of the interrelationships between processes, techniques and approaches that contribute to performance repertoire.

Jerry Mitchell- choreographer

Jerry Mitchell, the choreographer of the Broadway version of Hairspray, was also involved with the adaptation of the film choreography.
Mitchell resides in Manhattan and St. Louis and in 2003 was nominated to revive an award for outstanding choreographer for the Hairspray musical.

Costume Designer: Rita Ryack

Every single costume worn in the show (and movies) is very stylized and reflective of the times. Full skirts, sweater sets, bobby socks, plaid print, pearls, and BIG hair are a part of almost every girl's outfit throughout the films and stage production. Pastel colours, floral print, and Mary-jane shoes are also heavily featured.

Dance Craze- The Twist

The Twist is named after the Billboard no. 1 Chubby Checker song which was released in September 1960. It was also number 1 again in January 1962.
The song and dance became popular in Hairspray town Baltimore on DJ Buddy Dean's television dance show.
The Mashed Potato
This popular dance craze was most popular in 1962, after it was made famous by James Brown as well as by Dee Dee Sharp's hit "Mashed Potato Time"

- An optimistic teenager with big hair, big dreams, and a big personality! She is the main character who is sweet but strong in her convictions. She is bigger in size than the other girls, but she can still dance.

Link Larkin- main character

The star heartthrob on The Corny Collins Show. He is extremely attractive and talented. Hoping to get his big break with a recording contract, he unexpectedly falls for Tracy.

Historical context

The piece was set in 1924 and Chicago was Based on real stories. In particular, the 1926 play by Maurine Dallas about the murders and trials of Belva Gaertner and Beulah Annen. This meant Chicago's press and public became riveted by the subject of homicides committed by women. The Time of vaudeville was a very popular art form in the 1920's consisting of a diverse series of short acts. In the 2000 film version before Velma goes on stage you can hear the director say "on in five" meaning that this was part of a Vaudeville variety show.

Year 10 HT2 Knowledge Organiser for BTEC SportUnit 1 Fitness for Sport and exercise

Exercise Intensity

Components of Fitness - Skill

Balance $=$ The ability to maintain your centre of mass over a base of support. A performer may need static or dynamic balance.
Agility = The ability of a sports performer to quickly and precisely move or change direction without losing their balance. Coordination $=$ The smooth flow of
Aerobic endurance $=$ It is the ability of the cardio-respiraton system to efficiently supply nutrients and oxygen to working muscles during sustained physical activity.
Muscular strength = The maximum force a muscle or muscle group can produce. (Measured in N or KG)
Muscular endurance $=$ It is the ability of a muscle or group of muscles to keep contracting over a period of time against light to moderate load.
Flexibility = Having an adequate range of motion in all joints of the body. It is the ability to move a joint through its complete range of movement.
Speed $=$ The ability to perform a movement or cover a distance in a short period of time = distance/time taken. Body composition $=$ This is the relative ratio of fat mass to fat free mass (vital organs, muscle, bone) in the body

Keywords

 movement needed to perform a task efficiently and accurately. It often involves being able to use 2 or more body parts together.Reaction Time $=$ The time taken for a sports performer to respond to a stimuli and the start their response.
Power = The work done in a unit of time. It is the ability to apply a combination of strength and speed. Power = Force (kg) x Distance (m)/time (min or s)
Cardio-Respiratory $=$ The heart and blood vessels working with the lung and the airways to carry oxygen to the muscle.
Contracting $=$ This is when the muscles shortens to create a
movement Accelerative
Speed $=$ Gradually increasing your speed Pure Speed $=$ Your maximum speed.
Endurance = The ability to prolong the amount of time near maximum speed Static
Balance $=$ Balancing without moving Dynamic Balance $=$ Balancing when moving
Stimuli =Something which causes a response or movement

Year 10 HT2 Knowledge Organiser for BTEC SportUnit 1 Fitness for Sport and exercise

Exercise Intensity
 Measuring Heart Rate
 1. Sit Down

2. Locate your radial with your index and middle finger
3. Don't use your thumb-it has its own pulse
4. Count the beats from 30 seconds and times it by 2 to find your BPM

Training Zones
Speed Zone $=95 \%$ to 100% of MHR
Anaerobic Training Zone $=85 \%$ to 95% of MHR Aerobic Training Zone $=60 \%$ to 85% of MHR

The Borg Scale - Rate of Perceived Exertion (RPE) The Borg scale is used to predict or estimate the Heart Rate of an individual.
Practice by the individual is needed to make their predictions as accurate as possible
The individual rates themselves from 7 to 20 on the scale.
They then times this by 10 to get an estimated HR RPE $\times 10=\mathrm{HR}(B P M)$

Fainy Llytut
somemant tara

Basic Principles of Training

We apply principles of training to our training programmes so that we make it affective and make sure it aids progression.
The Basic Principles of Training

Frequency = How often we train Increasing the number of days
Intensity = How hard we train Increasing the number or
reps
Time = How long we train Increasing the time we train
Type = How we train selecting the correct training method

The FITT principle is part of the Additional Principle of PROGREESIVE OVERLOAD.

This is the gradual increase of a training load, when done correctly it will progressively increase Frequency, Intensity, Time and Type to develop fitness gains

Key terms

Heart Rate $(H R)=$ The amount your heart beats in 1 minute (BPM)
Maximum Heart Rate (MHR) = The maximum your heart will beat in 1 minute, $220-$ Age = MHR
RPE = Rate of Perceived Exertion (How hard we think we have worked)

GCSE MUSIC HT2 Knowledge Organiser

Reasons for NOT Meeting Modern Resource Demands.
Environment and Water: Reservoirs and Water Transfer

Resources are things that humans require for life or to make our lives easier. Humans are becoming increasingly dependent on exploiting these resources, and as a result they are in high demand.

Resource Required
Resources such as food, energy and water are what is needed for basic human development.

FOOD	WATER	ENERGY
Without enough nutritious food, people can become malnourished. This can make them ill . This can prevent people working or receiving education.	People need a supply of clean and safe water for drinking, cooking and washing. Water is also needed for food, clothes and other products.	A good supply of energy is needed for a basic standard of living. People need light and heat for cooking or to stay warm. It is also needed for industry.

Demand outstripping supply
The demand for resources like food, water and energy is rising so quickly that supply cannot always keep up. Importantly, access to these resources vary dramatically in different locations

1. Population Growth

- Currently the globa population is 7.3 billion.
- Global population has risen exponentially this century. Global population is expected to reach 9 billion by 2050 With more people, the demand for food, water, energy, jobs and space will increase.

rime

3. Changing Technology and Employment

The demand for resources has driven the need for new technology to reach or gain more resources
More people in the secondary and tertiary industry has increased the demand for resources required for electronics and robotics.

2. Economic Development

- As LIDCs and EDCs develop further, they require more energy for industry.
- LIDCs and EDCs want similar lifestyles to ACs, therefore they will need to consume more resources.
- Development means more water is required for food production as diets improve.

Resource Reliance Graph

Consumption - The act of using up resources or purchasing goods and produce.
Carry Capacity - A maximum number of species that can be supported.

Resource consumption exceeds Earth's ability to provide! Earth's ability to provide! A-4

Global warming effects cycles and seasons and therefore farming.

- Rainfall patterns are changing and are becoming unpredictable. This is a problem for farming
- Not all countries have access to fossil fuels or suitable landscape for renewables.

Geology	-Many minerals are finite and therefore once used will reduce the resources available. Rock types might limit the availability to store water.	
Conflict	-War can disrupt transport of resources by damaging roads and water pipes.	
Poverty	-LIDCs are unable to afford technology to effectively exploit the natural resources available.	
Natural	- \quadIncrease in hazard events due to climate change. Hazards	Prime agricultural regions in Asia and Africa and are also in hazard zones.
Has the ability to destroy infrastructure needed to		
transport resources.		

Resource Reliance

machinery and machinery and transportation has made deforestation more productive \& convenient.
Large machines and drill technology can remove and reach through material effectively.

2 billion people depend on wood for fuel, which therefore creates high CO2 emissions

- Forests provide for important habitats.
- Clearing of forests leads to soil erosion. - Tree intercepts rain and prevents flooding.

Mining waste can pollute soil and contaminate water supplies.
Habitats are destroyed in mining zones. - Fossil fuels burnt release greenhouse gases

	Methods	
	Increasing storage to hold more water and constructing more dams to control river flow can provide a reliable source of water.	•

Can flood a large area of land and damage habitats and natural landscapes.
Dams can be a barrier for certain species to migrate upstream
Natural flow of sediment is disrupted, which then reduces fertility of land further down. surplus to areas in need of a water supply.

Large-scale engineering works can damage ecosystems along the route.
Lots of energy is required to pump wate over long distances.

Food Security

'Food Security' is when people at all times need to have physical \& econo to food to meet their dietary needs for an active \& healthy life. This is the opposite to 'Food Insecurity' which is when someone is unsure when they might next eat.

Human

Poverty prevents people affording food and farmers buying modern equipment. Poor infrastructure makes food difficult to transport fresh food.

- Conflict disrupts farming and prevents supplies. Food waste due to poor transport and storage. Climate Change is affecting rainfall patterns making food production difficult.

Malthus and Boserup's Theories about Food Supply

With the population growing very quickly, there are different ideas about whether or not this will lead to a food crisis.

Malthus Theory

Believed that population would increase faster than food supply. This would lead to a lack of food being available.
Malthus believed this would cause large scale famine, illness and war This would occur until population returned to level that can be supported.

Boserup Theory

- Believed that however big the population grew, people would find ways to manage.
- If food supplies became limited people would find new ways to increase production.
These solutions would often involve creating new technologies.

Temperature needs to be ideal for certain crops to grow.

- The quality of soil is important to ensure crops have the necessary nutrients.
- Water supply needs to be reliable to allow food to grow.
- Pest, diseases and parasites can destroy vast amounts of crops that are necessary to feed large populations.
- Extreme weather events can damage crops (i.e. floods).

Food security varies around the world. Some people and places are more food secure than others. This can often depend on how much a country can grow and is able to afford.

There are various measures to maintain or even improve our food security. These measures are often taken to be socially, economically, environmentally viable for the longer term.

Social	Economic	Environmental				
This involves buying products that have a positive social, economic and environmental impact today, without						

This involves buying products that have a positive social, economic and environmental impact today, without

- This shows how many calories per person that are consumed on average for each country.
- This can indicate the global distribution of available food and food inequality,
- This is a global movement to give farmers a fairer price for their products
- The profits benefit the community with schools and medical facilities.
- Involves using farming methods that protects rather than destroys environments.
- One-third of all food gets lost or wasted.

Food Waste
Aim to eat locally sourced food to reduce waste through transport.

- Eating 'ugly' food despite it not being 'ideal' can prevent waste and save money

Prevents wasted energy for producing food and therefore reduces CO2 emissions.
Food Production

Case Study: UK Food Security

Food Availability in the UK

The UK population is around 65 million and enjoys a high level of food security

- The UK produces 68% of its own food but this is steadily decreasing.
- The UK has to import the rest, especially seasonal food such as fruit and vegetables.
- Food production in the UK has increased by intensifying agriculture.

Average consumption of food and drink by UK residents
Calories per person per day

Effectiveness of pasts attempt at food security

Intensification of farming from 1940s to the 1980s attempted to increase production by;

- Higher yields of crops and animals
- Monoculture by growing one crop in a large area.
- Irrigation with better groundwater pumping
- Chemicals with improved fertilisers and pesticides
- Mechanisation for sowing and harvesting.

Food consumption in the UK
Average daily calorie intake in the UK has decreased from $\mathbf{2 6 0 0}$ in $\mathbf{1 9 6 0}$ to $\mathbf{2 1 5 0}$ by 2000
Reasons for this decrease includes:

- More people being more active in the past and having physical jobs.
- More awareness of having a good diet and problems surrounding obesity.
- The price of food has increased.

Success in securing local food security

Food Banks

- This is food that is donated by the public.
- They help people with a sudden loss of income.
- It is estimated that $\mathbf{1}$ million people rely on food banks for their own food security.
Urban Gardens
- These are large projects where groups work together to grow food and promote healthy living. - This can involve planting crops in urban environments such as roundabouts.

Effectiveness of present attempts at food security

Recently the UK has been promoting sustainable intensification, involving food security and supporting the environment.

- New technology such as hydroponics help a range of foods to be grown all year round.
- However, this method is expensive for producer and consumer.
much food as possible in as small a space as possible. They often involve using machines and chemicals to gain as much produce as they can.

Intensive Farming	- Makes the most of the land and allows for higher yields. This can make growing food more productive and therefore cheaper to produce. - Chemical fertilisers, pesticides and herbicides can pollute the environment and harm people, animals and insects.
Organic Methods	- This involves the banned use of chemicals and ensuring animals are raised naturally. - This can lead to lower yields of 20% and products being more expensive.
	Technological Developments

Through better understanding of science and improved technology, it is now possible to change the food we grow

 and protect and harvest the crops more effectively.| Genetically modified (GM) | - Involves changing the DNA of foods to enhance their productivity and properties.
 - Crops can be better protected from disease and drought, but also made larger or include more health benefits. |
| :---: | :---: |
| Hydroponics | - This is a method of growing plants without soil. Instead they use nutrient solution.
 - Less water is needed and a reduced need for pesticides to be used.
 - However, this method is very expensive so only used for high value crops. |
| | Small Scale 'Bottom Up' Approaches |
| This involves a small scale production of food and relies on individuals and communities, rather than government or large organisations. | |
| Allotments | - This is an area of land that is divided into plots and rented to individuals to grow their own fruit and vegetables.
 - Allows people in urban areas to produce their own cheap \& healthily food close to home. |
| Permaculture | - This involves people growing their own food and changing their eating habits.
 - This can create more natural ecosystems and fewer resources are required. |

呂 品
偻边

	Mi cumpleaños－my birthday El cumpleaños de mi madre．．．－ my mum＇s birthday
mas	

abro／abrimos／abren regalos $-1 /$ we／they open presents busco／buscamos／buscan huevos de chocolate－I／we／they look for chocolate eggs
canto／cantamos／cantan villancicos－I／we sing Christmas carols como／comemos／comen dulces navideños／doce uvas／pavo－I／we eat Christmas sweets／ 12 grapes／turkey
me acuesto／nos acostamos／se acuestan muy tarde－I／we／they stay up very
me a
me levanto／nos levantamos／se levantan muy temprano－I／we／they get up very early
rezo／rezamos／rezan－I／we／they pray
voy／vamos／van a la iglesia／mezquita－I／we／they go to church／mosque
Santa no es tan popular como en Inglaterra－Santa isn＇t as popular as in England
los Reyes Magos traen los regalos el 6 de enero－the 3 kings bring the presents on $6^{\text {th }}$ January
mucha gente va a la Misa de Gallo la Nochebuena－lots of people go to midnight mass on Christmas Eve
la gente come las doce uvas a medianoche la Nochevieja para tener buena suerte－people eat 12 grapes at midnight on NYE for good luck se come la cena de Navidad en Nochebuena－they eat Christmas dinner on Christmas eve

Pavo trufado de Navidad－turkey stuffed with truffles

Polvorones－almond
biscuits

containing almonds

Roscón de Reyes
traditional cake． Usually contains a coin

La fiesta que me interesa más es el Dia de los Muertos	The festival that interests me most is the Day of the Dead
que se celebra en México en noviembre．	which is celebrated in Mexico in November．
Es una fiesta para recorder los seres queridos muertes	It＇s a festival to remember dead loved ones
y la gente decora las tumbas y las casas	and the people decorate graves and houses
con áltares，velas y flores．	with altors，candles and flowers．
La gente ve desfiles y lleva disfraces y	People watch processions and wear costumes
me parece una fiesta con mucha tradición	and it seems like a very traditional festival．
Además，siempre he soñado con ir a España	Also，I＇ve always dreamed of going to Spain
para ver una corrida de toros	to watch a bullfight
sin embargo pienso que es un poco anticuado	however I think that it＇s a bit old fashioned
y mucha gente dice que es una tradición cruel．	And lots of people say it＇s a cruel tradition

| se queman figuras de madera－wooden figures are burnt
 se construyen hogueras－bonfires are built
 se disparan fuegos artificiales－fireworks are set off
 se lanzan huevos／tomates－eggs／tomatoes ore thrown | |
| :--- | :--- | :--- |
| las calles se llenan de．．－the streets are filled with．－ | niños－children
 jóvenes－young people
 familias－families |
| | come manzanas de caramelo－eat toffee apples
 decora las casas／las tumbas－decorate houses／graves
 con flores／velas－with flowers／candles
 prepara linternas／áltares－prepare lanterns／altars
 ve desfiles－watch processions
 lleva disfraces－wear costumes
 lleva un pañuelo rojo－wear a red scarf
 huye de un grupo de toros－run away from a group of bulls |
| la gente－the
 people | |

Module 8 - Environment

Cequi est important pour moi	What's important to me		
Ce qui est important pour moi, c'est ...	What's important to me is ...	ma famille ma santé	my family my health
l'argent (m)	money	mes amis	my friends
le sport	sport	mes animaux	my animals
la musique	music	mes études	my studies
ce qui me preoccupe	What concerns me		
Cequi me préoccupe, c'est ...	What concerns me is ...	la faim	hunger
l'environnement	the environment	la guerre	
l'état (m) de la planète	the state of the planet	l'injustice (f)	injustice
le racisme	racism	la pauvreté	poverty
la cruauté envers les animaux	cruelty to animals	la violence	violence
Quel temps fera-t-il?	What will the weather be like?		
11 y aura	There will be ...	Il fera ...	It/The weather will be ...
de la pluie	rain	beau	nice/good
de la neige	snow	mauvais	bad
du vent	wind	chaud	hot
du tonnerre	thunder	froid	cold
des averses	showers	frais	chilly
des éclairs	lightning	Le temps sera ...	The weather will be ...
des éclaircies	sunny intervals	ensoleillé	sunny
		nuageux	cloudy
		orageux	stormy
Les problèmes environnementaux	Environmental problems		
Le plus grand problème	The biggest environmental	les incendies	fires
environnemental, c'est ...	problem is ...	Les arbres nous donnent de	Trees give us oxygen, and every day
le changement climatique	climate change	l'oxygène et nous les coupons	we cut them down.
le manque d'eau potable	the lack of drinking water	tous les jours.	
la disparition des espèces	the extinction of species	Beaucoup de personnes n'ont pas	Lots of people don't have access to
la destruction des forêts tropicales	the destruction of the rainforests	accès à cette ressource vitale.	this vital resource.

	Environmental problems		
Le plus grand problème environnemental, c'est ...	The biggest environmental problem is ...	les incendies Les arbres nous donnent de	fires Trees give us oxygen, and every day
hangement climatique	climate chang	l'oxygène et nous les coupons	cuthem down
le manque d'eau potable	the lack of drinking water	tous les jours.	
la disparition des espèces la destruction des forêts tropicales	the extinction of species the destruction of the rainforests	Beaucoup de personnes n'ont pas accès à cette ressource vitale.	Lots of people don't have access to this vital resource.
surpopulation	overpopulation	On détruit la planète.	We are destroying the planet.
pollution de l'air	ollution	C'est très inquiétant.	號 very worrying.
la sécheresse les inondations	drought flooding/floods	C'est catastrophique.	It's catastrophic.
Que doit-on faire pour sauver notre planète?	What should we do to save our planet?	utiliser les transports en commun	use public transport
On doit/On peut ...	You/We should/can ...	aller au collège à vélo	go to school by bike
cycle	recycle	utiliser	use
trier les déchet	separate the rubbish	refuser les sacs en plastique	turn down plastic bags
faire du compost	make compost	avoir une bouteille d'eau au lie	have a bottle of water instead of
consommer moins d'énergie	consume less energy	de prendre un gobelet jetable	taking a disposable cup
éteindre les appareils électriques et la lumière	turn off electrical appliances and the light	économiser l'eau boire l'eau du robinet	save water drink tap water
mettre un pullover au lieu d'allumer le chauffage	put on a jumper instead of turning on the heating	prendre une douche au lieu de prendre un bain	take a shower instead of a bath
faire des achats responsables	make responsible purchases	tirer la chasse d'eau moins	flush the toilet less frequently
utiliser du papier recyclé	use recycled paper	fréquemment	
acheter des produits verts et des produits bio	buy green and organic products	fermer le robinet en se lavant les dents	turn off the tap while brushing your teeth
voyager autrement	travel differently	installer des panneaux solaires	install solar panels

2.1: Growing the Business: Behaving Ethically

Key Terms:

Ethics: The moral principles that govern a businesses behaviour by doing the right thing.

A pressure group: An organised group that seeks to influence a business' behaviour.

Trade off: A balance between 2 different objectives, such as making a profit and spending money on ethical activities that will enhance the businesses reputation

Green Audit: A detailed review of a businesses impact on the environment, either conducted by the business itself or by an independent organisation

Finite resources: A resource that does not renew itself quickly enough to meet society's consumption of the resource, such as oil and natural gas
Sustainability: Business Practices that do not damage or deplete natural resources

> Advantage of behaving ethically/behaving in a way that is environmentally sustainable
> -Good reputation as the business is seen to do the right thing and therefore won't get targeted by a pressure group
> -Won't get fined - won't have unnecessary expense and therefore costs are lower
> -Unique Selling Point (Fair Trade etc.) advantage over competition

Disadvantages of behaving ethically

- It's expensive and do customers actually care

What can a pressure group do?

- writing letters to MPs
- contacting the press
- organising marches
- Campaigning outside shops
- running campaigns on social media asking people to boycott the store

Ways a business can damage the environment?

- Pollution to air and water, noise pollution and light pollution
- The use of non-renewable resources such as oil and coal
- Failure to dispose of toxic and dangerous waste safely

Ways a business can protect the environment

- Reducing the use of unnecessary packaging.
- Dispose of all their packaging safely
- Changing their vehicles to electric vehicles

Reason to conduct a green audit.

Can highlight to the business if their working practices damage the environment and therefore if they damaging the environment

- Could get a fine
- They could get targeted by a pressure group

Explain the trade-off between profit and being ethical/being environmentally sustainable (3)

If a business behaves ethically than a business may get a good reputation and therefore more sales and profit. However, to behave ethically/environmentally sustainable is likely to cost the business money and therefore that will impact profit. However, if the customers do not care that the business is behaving ethically/environmentally sustainable and doesn't make them pick you over another business then it may be seen as a waste of money.

Year 11 Subject Term Knowledge Organiser: Business Studies

2.1: Growing the Business: Globalisation and International Trade

Key Terms

Globalisation: Where businesses operate internationally Imports: Buying products and raw materials from another county
Exports: Selling products you make to customers in other countries
Relocation: Moving the premises of a business to another country - it's usually a factory.
Trade Barrier: A Strategy used by a government who wants to control the amount of Imports and Exports
Tariff: A tax put on a product Imported into the country which makes it more expensive for buyers in that country
Trading Bloc: a group of countries that agree to act together to promote trade amongst themselves - can put tariffs on products from countries outside the block e.g. EU The North American Free Trade Association (NAFTA) and The Association of SouthEast Asian Nations (ASEAN)

Advantage of Importing Goods

- Can find cheaper suppliers
- Can find better quality suppliers

Disadvantage of Importing Goods

- The business now faces competition from around the world may have to lower prices

Advantage of Exporting Goods

- Can now sell world wide - more customers
- As the business can now potentially sell world wide they can benefit from economies of scale (can reduce their unit costs)

Disadvantage of Exporting Goods

- Expensive - may have to adapt and change the product to meet local tastes
- Tariffs can be put on goods making them more expensive

Reasons for Trade Barriers

- Protects domestic jobs - people more likely to buy from UK business as foreign goods are more expensive or limited
- Raises money from the taxes for the government from Tariffs

Relocation:

Advantage:

- Cheaper wages = lower costs which means the business can make more profit or lower the price to attract more customers

Disadvantage

- Can damage the reputation of the business if they have had to make workers redundant
- Extra delivery costs
- It takes longer for delivery
- Can't have a USP, that lots of Britain's value, that the product is made in Britain.

Globalisation and Changing the marketing mix

Price: Some countries can have lower standards of living so therefore the price of the product may have to be reduced Product: May have to be adapted to meet the tastes or cultures of different people - therefore expensive
Promotion: These will have to be converted into different languages and the business must make sure that the translation is done correctly
Place: E-commerce has meant that businesses can now sell world wide

Ways a business can compete internationally:

- Using e-commerce
- Changing the marketing mix

2.1: Growing the Business: Behaving Ethically

Key Terms:

Ethics: The moral principles that govern a businesses behaviour by doing the right thing.

A pressure group: An organised group that seeks to influence a business' behaviour.

Trade off: A balance between 2 different objectives, such as making a profit and spending money on ethical activities that will enhance the businesses reputation

Green Audit: A detailed review of a businesses impact on the environment, either conducted by the business itself or by an independent organisation

Finite resources: A resource that does not renew itself quickly enough to meet society's consumption of the resource, such as oil and natural gas
Sustainability: Business Practices that do not damage or deplete natural resources

> Advantage of behaving ethically/behaving in a way that is environmentally sustainable
> -Good reputation as the business is seen to do the right thing and therefore won't get targeted by a pressure group
> -Won't get fined - won't have unnecessary expense and therefore costs are lower
> -Unique Selling Point (Fair Trade etc.) advantage over competition

Disadvantages of behaving ethically

- It's expensive and do customers actually care

What can a pressure group do?

- writing letters to MPs
- contacting the press
- organising marches
- Campaigning outside shops
- running campaigns on social media asking people to boycott the store

Ways a business can damage the environment?

- Pollution to air and water, noise pollution and light pollution
- The use of non-renewable resources such as oil and coal
- Failure to dispose of toxic and dangerous waste safely

Ways a business can protect the environment

- Reducing the use of unnecessary packaging.
- Dispose of all their packaging safely
- Changing their vehicles to electric vehicles

Reason to conduct a green audit.

Can highlight to the business if their working practices damage the environment and therefore if they damaging the environment

- Could get a fine
- They could get targeted by a pressure group

Explain the trade-off between profit and being ethical/being environmentally sustainable (3)

If a business behaves ethically than a business may get a good reputation and therefore more sales and profit. However, to behave ethically/environmentally sustainable is likely to cost the business money and therefore that will impact profit. However, if the customers do not care that the business is behaving ethically/environmentally sustainable and doesn't make them pick you over another business then it may be seen as a waste of money.

Year 11 Subject Term Knowledge Organiser: Business Studies

2.1: Growing the Business: Globalisation and International Trade

Key Terms

Globalisation: Where businesses operate internationally Imports: Buying products and raw materials from another county
Exports: Selling products you make to customers in other countries
Relocation: Moving the premises of a business to another country - it's usually a factory.
Trade Barrier: A Strategy used by a government who wants to control the amount of Imports and Exports
Tariff: A tax put on a product Imported into the country which makes it more expensive for buyers in that country
Trading Bloc: a group of countries that agree to act together to promote trade amongst themselves - can put tariffs on products from countries outside the block e.g. EU The North American Free Trade Association (NAFTA) and The Association of SouthEast Asian Nations (ASEAN)

Advantage of Importing Goods

- Can find cheaper suppliers
- Can find better quality suppliers

Disadvantage of Importing Goods

- The business now faces competition from around the world may have to lower prices

Advantage of Exporting Goods

- Can now sell world wide - more customers
- As the business can now potentially sell world wide they can benefit from economies of scale (can reduce their unit costs)

Disadvantage of Exporting Goods

- Expensive - may have to adapt and change the product to meet local tastes
- Tariffs can be put on goods making them more expensive

Reasons for Trade Barriers

- Protects domestic jobs - people more likely to buy from UK business as foreign goods are more expensive or limited
- Raises money from the taxes for the government from Tariffs

Relocation:

Advantage:

- Cheaper wages = lower costs which means the business can make more profit or lower the price to attract more customers

Disadvantage

- Can damage the reputation of the business if they have had to make workers redundant
- Extra delivery costs
- It takes longer for delivery
- Can't have a USP, that lots of Britain's value, that the product is made in Britain.

Globalisation and Changing the marketing mix

Price: Some countries can have lower standards of living so therefore the price of the product may have to be reduced Product: May have to be adapted to meet the tastes or cultures of different people - therefore expensive
Promotion: These will have to be converted into different languages and the business must make sure that the translation is done correctly
Place: E-commerce has meant that businesses can now sell world wide

Ways a business can compete internationally:

- Using e-commerce
- Changing the marketing mix

THEMES: Christian Practises

Key terms

Evangelism	Telling others about Christianity with the view to convert them.
Baptism	Being cleansed of original sin and being welcomed in the church.
Prejudice	Judging people to be inferior or superior without any reason behind it.
Eucharist	Taking the body and blood to remember Jesus' sacrifice.
Practises	Things people do.
Denomination	A group within a group.
Sacrament	Events through which people can eb blessed by God.
Liturgical	Formal, structured worship.
Non-Liturgical	Informal, unstructured worship.

Crucial Commands:

Describe:Say in detail what something or someone is like, and the impact it has. E.g. Describe the meaning of the word Omnibenevolent.
Explain: Say why something or someone is important, and the impact it has. E.g. Explain why Jesus' death is important to Christians.
DisCUSS: Write about at least two points of view and explain why these points of view are valuable or not. E.g. "The most important Christian belief is Jesus' resurrection" (15 marks)

- Worship derives from the word 'Worth-ship'. Referring to how much worth (love and devotion) you give to God.

1. Liturgical worship = church service that follows a set structure and pattern.
2. Non-liturgical worship = church service that does not follow a set text or ritual.

Worship can also be split into Charismatic or Private worship. Worship can be to praise God, give thanks, forgiveness, to strengthen a relationship etc.

Missionary work

Mission = vocation or calling to spread the faith.
The Great Commission Jesus instructs his disciples to go and spread the gospels and make disciples of others through baptism. "Go and make disciples of all nations."

Missionary work:
Aims of missionary work is to persuade people to accept Jesus as their Saviour. Alpha is an example of evangelism in the UK. It is an introductory course to Christianity for those that are interested.

Christianity and Easter

Easter and Christmas are both Holy Days in the life of a Christian. Christmas celebrates the birth of Jesus Christ, and Easter celebrates the resurrection of Christ into Heaven.

The interesting question when discussing these practises are whether that is what makes the religion popular or is it just a cultural practise? Is the UK Christian?

Baptism

- Infant baptism = is for babies and young children. - Believers' baptism = people who are old enough to make the decision to be baptised.
Why are people baptised? To become a member of the Church, to be cleansed of \sin, follow in Jesus' footsteps

Believer's Baptism	Infant Baptism
Attend baptism classes	`Parents make promises
Gives a brief testimony	Removes original sin

"Get up, be baptised and wash your sins away" Acts 22:16

The Sacraments

PEE paragraph structure

Point - "Some people argue..."
Example - "Evidence for this can be found in..."

Explain - "This is significant because..."
*You also need to include quotes with Sources of Authority, discuss strong/ weak arguments and most importantly evaluate the IMPACT your point has on individuals, groups or societies!

THEMES: Christian Practises

Key terms

Evangelism	Telling others about Christianity with the view to convert them.
Baptism	Being cleansed of original sin and being welcomed in the church.
Prejudice	Judging people to be inferior or superior without any reason behind it.
Eucharist	Taking the body and blood to remember Jesus' sacrifice.
Practises	Things people do.
Denomination	A group within a group.
Sacrament	Events through which people can eb blessed by God.
Liturgical	Formal, structured worship.
Non-Liturgical	Informal, unstructured worship.

Crucial Commands:

Describe:Say in detail what something or someone is like, and the impact it has. E.g. Describe the meaning of the word Omnibenevolent.
Explain: Say why something or someone is important, and the impact it has. E.g. Explain why Jesus' death is important to Christians.
DisCUSS: Write about at least two points of view and explain why these points of view are valuable or not. E.g. "The most important Christian belief is Jesus' resurrection" (15 marks)

- Worship derives from the word 'Worth-ship'. Referring to how much worth (love and devotion) you give to God.

1. Liturgical worship = church service that follows a set structure and pattern.
2. Non-liturgical worship = church service that does not follow a set text or ritual.

Worship can also be split into Charismatic or Private worship. Worship can be to praise God, give thanks, forgiveness, to strengthen a relationship etc.

Missionary work

Mission = vocation or calling to spread the faith.
The Great Commission Jesus instructs his disciples to go and spread the gospels and make disciples of others through baptism. "Go and make disciples of all nations."

Missionary work:
Aims of missionary work is to persuade people to accept Jesus as their Saviour. Alpha is an example of evangelism in the UK. It is an introductory course to Christianity for those that are interested.

Christianity and Easter

Easter and Christmas are both Holy Days in the life of a Christian. Christmas celebrates the birth of Jesus Christ, and Easter celebrates the resurrection of Christ into Heaven.

The interesting question when discussing these practises are whether that is what makes the religion popular or is it just a cultural practise? Is the UK Christian?

Baptism

- Infant baptism = is for babies and young children. - Believers' baptism = people who are old enough to make the decision to be baptised.
Why are people baptised? To become a member of the Church, to be cleansed of \sin, follow in Jesus' footsteps

Believer's Baptism	Infant Baptism
Attend baptism classes	`Parents make promises
Gives a brief testimony	Removes original sin

"Get up, be baptised and wash your sins away" Acts 22:16

The Sacraments

PEE paragraph structure

Point - "Some people argue..."
Example - "Evidence for this can be found in..."

Explain - "This is significant because..."
*You also need to include quotes with Sources of Authority, discuss strong/ weak arguments and most importantly evaluate the IMPACT your point has on individuals, groups or societies!

Year 11 3D Design Knowledge Organiser

Experimentation/Refinement: Refine Work By Exploring Ideas And Experimenting With \therefore Range Of Media, Materials, Techniques And Processes.

Kev Term

Media

Materials

Techniques

Processes

The substance an artist uses to create art E.G. Collage, coloured pencils, acrylic paint etc The same as media but can also refer to what the art work is create on.
E.G. Clay, Pewter, Wire etc.

The method used to complete the art work, can be generic such as painting, or more focused such as blending.

The method used to create artwork that usually follows a range of steps rather than just one skill.

Materials

- File and sand down your pewter casting for a refined finish.
- Consider texture when designing your pewter cast.
- Safety first, make sure to wear gloves and goggles and be aware tha pewter will burn
- Use a print out image to get the right proportions to your wire sculpture.
- Utilise masking tape to hold pieces together whilst you secure it properly with another piece of wire
- Consider adding beads and other embellishments to add texture and interest to the sculpture.
- Use armature to keep clay in position if creating a large and unusual form.
- Use tools to etch, carve and shape the clay to create interesting textures
- Keep your clay sculpture moist to prevent cracks and drying out whilst sculpting it.

Anchoring your sculpture to a solid, flat piece of wood, stone or some other material will prevent it from falling over and potentially getting damaged.

- Be sustainable with your cardboard use.
- Build in details last - start with the basic shape and form of your desired sculpture.
 other

Complimentary = opposite
Monochromatic = one colour Hue =The pigment

Warm = Red, orange, yellow Cold = blue, green, purple
experimenting in response to your chosen artists.
Use relevant materials and techniques to experiment with

Year 11 Subject Term Knowledge Organiser: Enterprise and Marketing

Branding

A brand is an identity for a product and/or business. Brands help build a personality for a product or business; some brands are perceived as value for money, for example. Other brand personalities include being durable, luxurious, sporty or exciting.

A brand can be created through a brand name, logo, sound (or jingle), strapline, characters or celebrity endorsement and brands often use a combination of these branding methods.

Brand Identity

In addition to a brand name and logo, the colour scheme a business uses, the font style they use and the placement of their logo can all help build their brand identity. Ask anyone to name a 'green colour supermarket brand' for example!

Why is branding used?

\# Trust - people often trust products that are branded compared to non-branded items.

* Brand recognition - having a brand name and logo helps people recognise a product and/or business.
\$ Product image - the perception of a product and/or business is often a result of branding.
* Differentiation - having a brand can support a business's aim to be different to what's already on the market (it could convey this message through a strapline, for example).
* Adding value - branded products are often priced higher than non-branded products.
* Customer loyalty - it is often the case that people repeatedly buy the same brand of product, with branding helping to secure repeat purchases.

Competitor Analysis

When launching a new product, a business often looks at their competitors to find out what is already available on the market. Businesses look at their competitors' strengths, weaknesses, unique selling points and how their product idea is different to what brands already exist.

The External Environment

When developing new products, businesses often look at opportunities and threats that exist outside of the business itself (externally).

Economic

Factors relating to the economy such as inflation and unemployment. new product development.

R069

KNOWLEDGE ORGANISER

Promotional Objectives

A promotional campaign is a series of activities a business plans to help promote a product. The reason the business carries out a promotional campaign is known as their promotional objectives.

Promotional objectives could be:
\$ To raise awareness of a product or service
\$ To differentiate
\$ To create market presence
\$ To increase market share

Promotional Campaigns

The material used as part of a promotional campaign (such as a poster) must be appropriate for the product and the target customer profile.
A successful promotional campaign needs planning in advance with a clear timeframe for the whole campaign and each activity within the campaign. Promotional campaigns also need to be reviewed so, beforehand, a business will identify what they think will be the outcomes if the campaign is to be considered a success; these are known as key performance indicators (KPls).

Professional Pitches

A professional pitch is a presentation of a new product or service to an audience, similar to those you see on Dragon's Den. When someone prepares a professional pitch, they consider a number of factors beforehand:

The objectives
The objectives of the pitch are to inform the audience or to persuade the audience. This influences the presenter's style and language used.
The audience

The presenter needs to be aware of who they are pitching their ideas to, tailoring the content and style of pitch to match.

The venue

A suitable venue needs to be selected based on size, layout and equipment.

Media/materials

The type of media (such as a presentation) used will be considered beforehand.

Personal Appearance The presenter needs to consider their appearance and ensure it suits the style of pitch being delivered (formal).

Pitch Structure

Considering the order in which the pitch will be presented is an important factor; starting with an introduction, ending with a conclusion and with logically sequenced information.

Use of Visual Aids
Including presentations and video clips.
Audience Questions
Presenters often plan answers to audience questions before their pitch.

Cs - Revision Booklet Data Representation

1.2.3 Units

Why do computers use bits?

Binary is a number system that only uses two digits: 1 and 0 .
All information that is processed by a computer is in the form of a sequence of 1 s and 0 s . Therefore, all data that we want a computer to process needs to be converted into binary. These digits 1 and 0 are often referred to as bits.

Units of data storage:

Order (Smallest to largest)	Unit	Equivalent
1	Bit	0 or 1
2	Nibble	4 bits
3	Byte	8 bits
4	KB	1,000 Bytes
5	MB	1,000 KB
6	GB	$1,000 \mathrm{MB}$
7	TB	1,000 GB
8	PB	1,000 TB

Sound file size:

Formula:

sound file size $=$ sample rate x duration (s) x bit depth

Image file size:

Formula:

image file size $=$ colour depth x image height $(p x) x$ image width (px)

Text file size:

Formula:

text file size $=$ bits per character x number of characters

Worked example:

Sample rate $=3$
Duration $=1$ minute 30 seconds Bit depth $=2$
$3 \times 90 \times 2=540$ bits
Worked example:
An image that is 400×400 with a colour depth of 4 bits.
$(400 \times 400) \times 4=640000$ bits $640000 / 8=80,000$ bytes

Worked example

Document that consists of 56 characters.
$50 \times 8=400$ and $6 \times 8=48$ ($400+48=448$ bits)

Exam tip:

Use of 1,024 for conversions and calculations would be acceptable.
Allowance for metadata in calculations may be used

1.2.4 Data Storage

Binary addition:

significant bit is the furthest to the right.

Denary to Binary:

Denary (decimal) to Binary
Example: Convert 81 to an 8 -bit binary number.

TIP:

1. Best way to remember this is what numbers do we use to make the number 81 ?
2. In this example, $64+16+1=81$
3. Because we used these numbers, they are represented by 1 .
4. The others are represented by 0 as they were not used.

Binary shift:

Binary Shift

When working directly with binary numbers, a binary shift to the left and right can be used for multiplication and division respectively.
A left shift will multiply a binary number by 2
For example, a left shift of 1 (binary number $x 2$)

128	64	32	16	8	4	2	1
0	0	1	0	1	1	0	0
128	64	32	16	8	4	2	1
0	1	0	1	1	0	0	

1. The blanks represent the O's because they were not used in this calculation.
2. Once the numbers were identified, it was easy to input the l's in the correct place.
Example: Convert the 8 -bit binary number 00110111 into a denary (decimal) number

128	64	32	16	8	4	2	1
0	0	1	1	0	1	1	1

TIP:

A right shift does the opposite
It will divide a binary number by 2 . For example, a right shift of 1 (binary number / 2)

Binary overflow

When numbers are added together, there is a risk that a binary overflow may occur. This is when there is not enough space to store a piece of data. For example, 255 bits can be stored in one byte. So the number 256.

1.2.4 Data Storage

Hexadecimal

In 1859, Nystrom proposed a hexadecimal (base 16) system of notation, arithmetic, and metrology called the Tonal system. Hexadecimal numerals are widely used by computer system designers and programmers because they provide a human-friendly representation of binary-coded values.

Hexadecimal to Binary:

5 Binary to Hexadecimal
Example: Convert 10110011 to
hexadecimal.
Method
First you need to split them into two nibbles.

128	64	32	16	8	4	2	1
1	0	1	1	0	0	1	1

Add the first nibble 8 $+2+1=11$

Add the first nibble 2 $+1=3$

Remember is 11 is B in hex so the answer would be B3.

Example: Convert 5 E to binary
Method - For this you must split them into two nibbles.

This represents 5 .

You bring them together to form an 8-bit binary number. So the answer is 01011110

Hexadecimal to Denary:
Hex Table:

Denary	Hex
0	0
1	1
2	2
3	3
4	4
5	5
6	6
7	7
8	8
9	9
10	A
11	B
12	C
13	D
14	E
15	F

1.2.4 Data Storage

Binary representation of ASCII:

Characters

Every word is made up of symbols or characters. When you press a key on a keyboard, a number is generated that represents the symbol for that key. This is called a character code. A complete collection of characters is a character set. A character set is a defined list of characters used so they can be encoded by a computer.

Example:

On the right is a section of the ASCII table which identifies each character and it's ASCII (Decimal) and Binary representation.

For example, the acronym ASCII in binary would be....

01000001010100110100001101001001 01001001

Character sets:

Exam tip

ASCII	Unicode
Consists of up to 128 characters (0-127)	Consists of 143,859 characters.
Uses 7 bits	UTF-8/UTF-16
Contains letters, numbers, control characters, and other symbols.	A universal encoded character set that supports storage of information from most languages in a single character set

Don't define a character set as a 'set of characters'. As this just repeats the question. You run the risk of losing marks in the examination.

Exam tip

Remember uppercase and lowercase are represented by different binary numbers. Also numbers represented as characters are also different to their denary equivalent.

1.2.4 Data Storage

Colour Depth and Resolution:

Images

A bitmap image is a digital image that is made up of a series of picture elements (known as pixels) which are used to display images on our screen.

Colour Depth:

Colour depth refers to how many possible colours can be represented in each pixel (bits per pixel)
Resolution:
Image resolution is typically described in PPI, which refers to how many pixels are displayed per inch of an image.

How an image is represented on a computer

- Each square is known as a Pixel
- Each pixel has the ability to store binary value.
- The binary value depends on how many bits can be stored in each pixel.
- Each binary value represents a unique colour.

Impact:

The impact of an increase in colour depth and resolution results in more pixel information and creating a high-quality, crisp image.
On the other hand, it does increase the size of the file.

Metadata

Metadata is 'data about data'. In other, it's data about the image itself.

Examples include:

Dimensions (Height and Width), File type, File size, Time/Date, Resolution, Colour depth.

1.2.4 Data Storage

Sound

When we make sounds, it causes vibrations in the air thus creating sound waves. Technology has the ability to convert these sound waves into digital form.

Sampling:

Definition

When sound is recorded, samples are taken at regular intervals as you can see in the diagram on the right. The sample rate is measured in Hz (Hertz)

Impact:
The impact of more samples being taken at regular intervals will lead to an increase in the quality of a file and it will create a more accurate representation of the original sound. However, it will lead to an increase in file size.

Bit depth

Bit depth is the number of bits available for each sample. If the bit depth increases it can increase the dynamic range of volume (this affects how loud the sound will be). This will also contribute to the quality of the sound file improving.

1.2.4 Data Storage

Compression

Compression is an algorithm designed to reduce the size of a file. There are two types of compression: Lossy and Lossless.

Impact on size:

- cafe wonderland teaparty	08/09/2020 12:38	JPG File	84 KB
-1. cafe wonderland teaparty	10/05/2019 10:51	Adobe Photoshop...	2,449 KB

Example:

The top file has been compressed using lossy and this will:

- Save space on the device it's being stored.
- Use less bandwidth if file is transferred over a network (i.e. e-mail)

Lossy and Lossless Compression:

Lossy Compression	Lossless Compression		
It reconstructs all the original data but this means data is lost during the compression process.	Data is reconstructed and doesn't remove any data.		
Once data is removed, it's permanent and cannot be restored. It's irreversible.	Because data is retained, it's reversible so changes can continue to be made.		
This can impact the overall quality of the graphic.	The overall quality of the graphic is retained.		
It does significantly reduce the overall size of the file.	The size of these files tend to be large.		
JPG is a common file format that uses lossy			
compression.		PNG/PSD are common file formats that use	lossless compression.
:---:			

Impact on quality:

Example:

As you can see above, the image at the top has been saved in a lossless format whereas the image below, has been saved in a lossy format. You can see that the quality of the image below has reduced because data has been permanently removed.

[^0]: To reduce the force we need to extend the collision time

