YeAR 9 －REaSonNig with Algebra ．．． Straight Line G̈raphs

What do I need to be able to do？

By the end of this unit you should be able to：
－Compare gradients
－Compare intercepts
－Understand and use $y=m x+c$
－Find the equation of a line from a graph
－Interpret gradient and intercepts of real－ life graphs

Keywords

Gradient：the steepness of a line
11 intercept：where two ines cross．The y－intercept：where the ine meets the y－axis．
Paralle：two lines that never meet with the same gradient．
Co－ordinate：a set of values that show an exact postion on a graph
I Linear：inear graphs（straight ine）－Inear common difference by addition／subtraction
II asymptote：a straight ine that a graph will never meet．
II Reciprocal：a pair of numbers that multipy together to give I
II Perpendicilar：two ines that meet at a right angle．

ニニニニニニニニニニニニニニ」
Lニニニニニニーーーーー
Lines parallel to the axes

all the points on this line have
a x coordinate of 10

The equation of a line can be rearranged：Eg． $y=c+m x$ $c=y-m x$ dentify which coefficient you are identifying or comparing

Compare Gradients

The coefficient of x（the number in front of x ）tells us the gradient of the line

」

Find the equation from a graph

The value of c is the point at

I The coefficient of x（the number in front
of x ）tells us the gradient of the line
The coordinate of a y intercept will aways be（ $0, \mathrm{c}$ ）

Lines with the same y－ intercept cross in the same place －which the line crosses the y－ axis．Y intercept

YEAR 9 - CONSTRUCTING IN 2D/3D... 3D Shapes

What do I need to be able to do?

By the end of this unit you should be able to:
I - Name $2 D$ \& 3D shapes
I - Recognise Prisms
I - Sketch and recognise nets

- Draw plans and elevations
- Find areas of $2 D$ shapes
- Find Surface area for cubes, cuboids, triangular prisms and cylinders
- Find the volume of 3D shapes

Keywords

11
I 2D: two dimensions to the shape eg length and wioth
I 3D: three dimensions to the shape eg length, width and height
Vertex: a point where two or more line segments meet
I Edge a line on the boundary joining two vertex
I Face: a flat surface on a solid object
I Cross-section: a view inside a solid shape made by cutting through it

1. Plan: a drawing of something when drawn from above (sometimes birds eye view)

I Perspective: a way to give illustration of a 3D shape when drawn on a flat surface.

Name $2 D \& 3 D$ shapes

Nets of cuboids

lcm grids help to draw accurately

II Sketch and recognise nets
11
11
11
11
11
11
11
11
11

Recoonise prisms aspow oxect whit wow wentecte ens
and flat sides

Constructions \& Congruency

What do I need to be able to do?

I By the end of this unit you shoold be able to
1- Draw and measive angle:

- Construct scat daraninos

1- Find locus of dstance from pontst, ines, tho lines
I - Construct perpendicuars from ponts, ines, angles

- Identify conguvence
- bentify congruent triangles

Keywords

II Protractor: piece of equipment used to measure and draw angles
II Locss: set of points with a common property
II Equidistant: the same distance
II Discorectangle: (a stadium) - a rectangle with semi circles at either end
11 Perpendicilar: Ines that meet at 90°
il arc: part of a curve
II Bisector: a line that divides something into two equal parts
II Congrvent: the same shape and size

YeAr 9 - REASONNG wITH NuMEER...

 Using Percentages

11 Keywords

II Percent: parts per 100 - written using the \% symbol
I Decima: a number in our base 10 number system Numbers to the right of the decimal place are called decimals.
I Fraction: a fraction represents how many parts of a whole valve you have.
II Equivalent: of equal value.
II Reduce: to make smaller in value.
11 Growth: to increase/ to grow.
II Integer: whole number, can be positive, negative or zero.
II Invest: use money with the goal of it increasing in valve over time (usually in a bank).
II Mutipier: the number you are muttiplying by
I Proft: the income take away any expenses/ costs.

FDP Equivalence R

$\frac{10}{100}=\frac{1}{10}=0.10 \begin{aligned} & \text { One hundredth } \\ & \text { (one whole spit into } 100 \text { equal parts) }\end{aligned}$

ones	tenths	hundredths
	\bullet	

IPercentage increase/Decrease R
Decrease

Muttipier
$1.00-0.58=0.42 \longleftarrow$ Less than 1

I Reverse Percentages

Try to scale down to 10% or I\% and then scale back up to 100%

Original Number (100%)

Increase by 12%
$100 \%+12 \%=112 \%$
Mutipier

Original Number (100%)

84

$140 \%=84$
$10 \%-6$
$100 \%=60$

Percentage change R

Percentage profit
$\begin{gathered}\text { Money made (profit } \\ \text { value) }\end{gathered} \frac{36000}{180000} \times 100=20 \%$

Converting FDP R

YEAR 9 - REASONING WITH GEOMETRY... 腹 Rotation ε Translation

What do I need to be able to do?
 By the end of this unit you should be able to:
 - Identify the order of rotational symmetry
 - Rotate a shape about a point on the shape
 - Rotate a shape about a point not on a shape
 - Translate by a given vector
 - Compare rotations and reflections

Keywords

Rotate: a rotation is a circular movement

Symmetry: when two or more parts are identical after a transformation.
Regular: a regular shape has angles and sides of equal lengths.
Invariant: a point that does not move after a transformation.
Vertex: a point two edges meet.
Horizontal: from side to side
Vertical: from up to down

Rotational Symmetry

a regivar pentagon has rotational symmetry of order 5

Rotate from a point (in a shape)

1 Trace the orignal shape (mark the point of rotation)

2 Keep the pont in the same place and tum the tracing paper
3. Draw the new shape

Cbockwse anti-Clockusise

Rotate from a point (outside a shape)

YEAR 9 - REASONING WITH GEOMETRY... 量 Reflection \& Symmetry

What do I need to be able to do?

By the end of this unit you should be able to:

- Recognise line symmetry
- Reflect in a horizontal line
- Reflect in a vertical line
- Reflect in a diagonal line

Keywords

Mirror line: a line that passes through the center of a shape with a mirror image on either side of the line
Line of symmetry: same defintion as the mirror line
Reflect: mapping of one object from one position to another of equal distance from a given ine.
Vertex: a point where two or more-line segments meet
I Perpendicilar: lines that cross at 90°
I Horizontal a straight ine from left to right (parallel to the xaxis)
I Vertical a straight ine from top to bottom (parallel to the y axis)

Mirror line (line of reflection)

Shapes can have more than one line of symmetry...
This regular polygon (a regular pentagon has 5 lines of symmetry)

Rhombus
two lines of symmetry

Reflect horizontally/vertically (1)

Paralebogram
No lines of symmetry

all points need

 to be the same distance away from the line of reflectionReflection in the line y axis - this is also a reflection in the line $x=0$

Lines parallel to the x and y axis

 REMEMBERLines parallel to the x-axis are $y=$
Lines parallel to the y-axis are $x=$

Reflect Diagonaly (1)

Points on the mirror line don't change position

Fold along the line of symmetry to check the direction of the reflection

Tum your image

If you tum your image it becomes a vertical horizontal reflection (also good to check your answer this way)

Drawing perpendicular lines

Perpendicular ines to and
from the mirror line can help you to plot diagonal reflections

Reflect Diagonally (2)

This is the line $y=x$ levery y coordinate is the same as the x coordinate along this line)
 The x and y coordinate have the same value but opposite sign

Turn your image

If you turn your image it becomes a vertical horizontal reflection (asko good to check your answer this way)

YEAR 9 - REASONING WITH GEOMETRY Enlargement $\&$ Similarity

What do I need to be able to do?
 By the end of this unit you should be able
 to:
 - Enlarge by a positive scale factor
 - Enlarge by a fractional scale factor
 - Identify similar shapes
 - Work out missing sides and angles in similar shapes
 - Use parallel lines to find missing angles
 - Understand similarity and congruence
 Keywords
 II Enlarge: to make a shape bigger (or smaller) by a given multiplier (scale factor)
 II Scale Factor: the multiplier of enlargement
 Centre of enlargement: the point the shape is enlarged from
 Similar: when one shape can become another with a reflection, rotation, enlargement or translation
 I| Congruent: the same size and shape
 II Corresponding: items that appear in the same place in two similar situations
 II Parallel: straight lines that never meet equal gradients)
 -

11
11 Fractional scale factors

\qquad

identify similar shapes

J ᄂ - - -

Positive scale factors R

Enlargement from a point
Enlarge shape A by SF 2 from $(0,0)$
The shape is
enlarged by 2
il angles in parallel lines

Co-interior angles

Information in similar shapes

Notation helps us
find the
corresponding sides
$A B$ and $E F$ are corresponding

Vertically
opposite angles

Congruence and Similarity

Congruent shapes are identical - all corresponding sides and angles are the same size

II

 11

Because all angles are the same, but all sides are enlarged by 2 OBC and HU are similar

Conditions for congruent triangles
Triangles are congruent if they satisfy any of the following conditions
Side-side-side
all three sides on the triangle are the same size

angle-side-angle

Two angles and the side connecting them are equal in two triangles

Side-angle-side

Two sides and the angle in-between them are equal in two triangles (it will also mean the third side is the same size on both shapes)

Right angle-hypotenuse-side

I The triangles both have a right angle, the hypotenuse and I one side are the same

YEAR 9 - REASONING WITH GEOMETRY... 胗 Pythagoras' Theorem

What do I need to be able to do?
 By the end of this unit you should be able to:
 - Use square and cube roots
 - Identify the hypotenuse
 - Calculate the hypotenuse
 - Find a missing side in a Right angled
 - Use Pythagoras' theorem on axes
 - Explore proofs of Pythagoras' theorem

Keywords

Square number: the output of a number multiplied by itself
Square root: a value that can be multiplied by itself to give a square number
Hypotenuse: the largest side on a right angled triangle. Always opposite the right angle. Opposite: the side opposite the angle of interest
adjacent: the side next to the angle of interest

Squares and square roots R

If a triangle is right-angled, the sum of the squares of the shorter sides will equal the square of the hypotenuse.

$$
a^{2}+b^{2}=\text { hypotenuse }{ }^{2}
$$

$$
a=3 \quad b=4 \quad c=5
$$

$\sqrt{ }$ is the square root symbol

This can also be written as 6^{2}

Substituting the numbers into the theorem shows that this is a night-angled triangle

Calculate the hypotenuse

Hypotenuse

$$
a^{2}+b^{2}=\text { hypotenuse }^{2}
$$

I Substitute in thevalues for a and b
$3^{2}+6^{2}=$ hypotenuse 2 $9+36=$ hypotenuse 2
$45=$ hypotenuse ${ }^{2}$
2 To find the hypotenuse
square root the sum of the squares of the shorter sides.

Calculate missing sides

Ether of the short sides can be labeled a or b
(a) 12 cm
$a^{2}+b^{2}=$ hypotenuse 2

$$
12^{2}+b^{2}=15^{2}
$$

I Substitute in the values you are given
$144+b^{2}=225$
-144
Rearrange the equation by subtracting the shorter square from the hypotenuse squared

$$
\begin{aligned}
& \begin{array}{l}
\text { Square root to } \\
\text { find the length }
\end{array} \\
& \text { of the side }
\end{aligned}\left\{\begin{array}{c}
b^{2}=111 \\
b=\sqrt{11}
\end{array}\right.
$$

Identify the hypotenuse

The hypotenuse is always the longest side on a triangle because it is opposite the biggest angle.

Polygons can still have a hypotenuse if it is split up into । triangles and opposite a right |
angle

Pythagoras' theorem on a coordinate axis

The line segment is the hypotenuse

$$
a^{2}+b^{2}=\text { hypotenuse }^{2}
$$

The lengths of a and b are the sides of the triangle.

algebraic Representation

YEAR 9 - REASONING WITH GEOMETRY...ablems Solving Ratio \& Proportion Problem

What do I need to be able to do?

By the end of this unit you should be able to:

- Solve problems with direct proportion
- Use conversion graphs
- Solve problems with inverse proportion
- Solve ratio problems
- Solve 'best buy' problems

Keynords

11
Proportion: a comparison between two numbers
Ratio: a ratio shows the relative size of two variables
Direct proportion: as one variable is mutiplied by a scale factor the other variable is muttiplied by the same scale factor.
Inverse proportion: as one variable is muttipled by a scale factor the other is divided by the same scale factor.
as one variable changes the other changes at the same rate.

This is a multiplicative change
4 cans of pop $=£ 2.40$

This mutipier is the same In the same way that this would be for ratio

$$
\begin{aligned}
& \text { Sometimes this is easiest } \\
& \text { if you work out how much } \\
& \text { one unit is worth first } \\
& \text { eg I can of pop }=£ 0.60
\end{aligned}
$$

Conversion Graphs compare two varabales
This is always a straight line because as one variable
increases so does the other at the same rate
To make conversions between units you need to find the point to compare - then find the associated point by using your graph
Using a ruler helps for accuracy
Showing your conversion lines help as a "check" for solutions

Inverse Proportion as one variable is mutiplied by a scale factor the other is divided by the same scale factor

Examples of inversely proportional relationships

Time taken to fill a pool and the number of taps running

Time taken to paint a room and the number of workers
T is inversely proportional to G. When $T=2$ then $G=20$

Best Buys Have a directly proportional relationship
To calculate best buys you need to be able to compare the cost of one unit or units of equal amounts

Shop \mathbf{A}
4 cans for $£ 120$ $|£ 1.20 \div 4 \quad| £ 0.93 \div 3 \mid$

Cost per item
I can is $£ 0.30$ Or 30p

I can is $£ 0.31$ or 31p

Shop Ais the best value as it is $1 p$ cheaper per can of pop

Shop A

4 cans for $£ 120$

Cost per pound

YEAR 9 - REPRESENTATIONS...

Probability

year 9 - REasoning with geometry

Trigonometry

Keywords

II Enlarge: to make a shape bigger (or smaller) by a given multiplier (scale factor)
II Scale Factor: the multiplier of enlargement
II Constant: a value that remains the same
Cosine ratio: the ratio of the length of the adjacent side to that of the hypotenuse. The sine of the complement.
I] Sine ratio: the ratio of the length of the opposite side to that of the hypotenuse.
I| Tangent ratio: the ratio of the length of the opposite side to that of the adjacent side.
II Inverse: function that has the opposite effect
II Hypotenuse: longest side of a right-angled triangle. It is the side opposite the right-angle

$a: b$
$x: 100$
$50: 100$

When the angle is the same the ratio of sides a and b will
also remain the same
 II
this way

Tangent ratio: side lengths

$\operatorname{Tan} \theta=\frac{\text { opposite side }}{\text { adjacent side }}$

$a: b$ 0.07 : x $0.07: 0.14$

I Sin and Cos ratio: side lengths
 This is commutative - the
square of the hypotenuse is
equal to the sum of the
squares of the two shorter
sides $\quad \begin{aligned} & \text { Hypotenuse }=a^{2}+b^{2}\end{aligned} \quad \begin{aligned} & \text { Places to look out for Pythagoras } \\ & \text { Perpendicular heights in isosceles } \\ & \text { triangles }\end{aligned}$

Hypotenuse ${ }^{2}=a^{2}+b^{2}$ \begin{tabular}{l}
This is commutative - the

square of the hypotenuse is to look out for Pythagoras

equal to the sum of the

squares of the two shorter

sides

\quad

Perpendicular heights in isosceles

triangles
\end{tabular}

Inverse trigonometric functions

YEAR 9 －REASONING WITH GEOMETRY

Vectors

Vectors show both direction and magnitude

The arrow is pointing in the direction from starting point to end point of the vector．

The magnitude is the length of the vector （This is calculated using Pythagoras theorem and forming a right－angled triangle with auxiliary ines）

The direction is important to correctly write the vector

The magnitude stays the same even if the direction
changes

Understand and represent vectors

Vector notation $\overrightarrow{D E}$ is another way to represent the vector joining the point D to the point E $\overrightarrow{D E}=\binom{-3}{-1}$
The arrow also indicates the direction from point D to point E
$\begin{array}{l}\text { Vectors can also be written in bold lower } \\ \text { case so } \boldsymbol{g} \text { represents the vector }\end{array}$（ $\left.\begin{array}{l}1 \\ 2\end{array}\right)$
ㄴニニニニニニニニニニニニニニニニニニニニニニー・1

addition of vectors

$\left.\begin{array}{c}\overrightarrow{A B}=\binom{3}{1} \\ =\binom{3}{1}+\left(\begin{array}{c}2 \\ 2 \\ -4\end{array}\right) \\ =\binom{3}{4} \\ 1+-4\end{array}\right)$

Vectors multiplied by a scalar

$a=\binom{-1}{2} \quad \boldsymbol{b}=\binom{2}{-4} \quad \boldsymbol{c}=\binom{1}{-2}$
addition and subtraction of vectors

$$
\boldsymbol{a}=\binom{5}{1} \quad \boldsymbol{b}=\binom{0}{4}
$$

$$
\left.\boldsymbol{a}+(-\boldsymbol{b})=\left(\begin{array}{ll}
5+ & -0 \\
1+ & -4
\end{array}\right)=\binom{5}{-4} \right\rvert\,
$$

The resultant is $\boldsymbol{a}-\boldsymbol{b}$ because the vector is in the opposite direction to b which needs a scalar of -1

