AQA Trilogy Unit 6.7 Magnetism and Electromagnetism - Higher

Complete the gap fill: Magnetic force is a type of force and it is strongest at the of the magnet. There are two types of magnetic pole: a	Draw the magnetic field lines on the bar magnet below. Remember lines always start at the and point towards the 	Explain how a plotting compass could be Y used to investigate the magnetic field around a magnet.
and a Write what would happen between the poles in beach of the magnetic interactions below:	Z	
		In which direction do compass needles always align? Why?
	List four magnetic materials: f 1.	Which of these magnets will exert a stronger
Define the term 'magnetic field':	4 Describe the difference between a permanent g magnet and an induced magnet. 	A.
State the factor that affects the strength of the d magnetic field:		B. Explain your answer.

You are given the following equation in **k** Jour exam:

orce = magnetic flux density × current × length

A wire with a current of A.OA is placed between wo bar magnets (each has a width of 12mm) in A state of attraction. The nagnetic flux density is 0.2T.

Calculate the force acting on he wire.

Note: in other calculations, you may be required to rearrange the formula.

When a current flows through a conducting vire, a magnetic field is produced around he wire.

State two factors the strength of the magnetic field depends on:

AQA Trilogy Unit 6.7 Magnetism and Electromagnetism - Highe	r		2
A long, straight conducting wire is placed vertically so that it passes through a horizontal piece of board. Iron filings are sprinkled onto the board. Draw the pattern they would form:	Describe how you would use the piece of d equipment previously stated to investigate the magnetic field you have drawn.	How can you find the north pole of a solenoid?	What is the motor effect?
	What is a solenoid?	List four ways in which you can make the magnetic field around a solenoid/ electromagnet stronger:	State three ways you can increase the force: k 1.
State the piece of equipment you could use to investigate the magnetic field you have drawn above.	Draw the magnetic field pattern around a f solenoid below:	1.	How can you reverse the direction of the force?
State the method that informs you of the direction of the current in a straight wire.	Current	4 Describe what happens to the magnetic i	A motor has a magnetic flux density of 1.5T and a current of 8A. The total length of the wire is 500cm. Calculate the force on the wire using the equation F = BIL.
fingers:	What is this pattern similar to?	field around a straight wire when the current is reversed.	

You are given the following equation in a your exam.		quation in a	How can the direction of a motor be reversed?	Describe how you would use an iron nail, a flength of insulated wire and a cell to make an
force = magnetic flux density × current × length		ent × length		electromagnet that can be used to pick up some steel paper clips.
Complete the	table:			
Symbol Part of the Equation	What It Represents	Units	How can the speed of a motor be increased?	
	force			
В			What rule can be used to find the direction of the force?	
		A	What angle do your thumb, first and second finger need to be at? What does each part represent?	Why will a motor not work without a commutator?
L			thumb: first finger: second finger:	Describe a simple electric motor.
What is the b	asis of an electric moto	br?		

3

cience

You are given the following equation in your exam: force = magnetic flux density × current × length A wire with a current of 4.0A is placed between two bar magnets (each has a width of 12mm) in a state of attraction. The magnetic flux density is 0.2T. Calculate the force acting on the wire. Note: in other calculations, you may be required to rearrange the formula. convert 12mm into metres = 0.012m place values into equation: force = $0.2T \times 4.0A \times 0.012m$ force = 0.0096N (newtons) When a current flows through a conducting wire, a magnetic field is produced around the wire. State two factors the strength of the magnetic field depends on: 1. size of the current 2. distance from the wire

A long, straight conducting wire is placed vertically so that it passes through a horizontal piece of board. Iron filings are sprinkled onto the board. Draw the pattern they would form:	Describe how you would use the piece of equipment previously stated to investigate the magnetic field you have drawn. Place a magnetic compass at one point along the wire. Turn the power supply on and off. Move the magnetic compass further along the wire. Again, turn the power supply on and off. Move the compass further away from the wire to see that the magnetic field is weaker. What is a solenoid? A solenoid is formed when a long piece of conducting (and insulated) wire is logged into a	How can you find the north pole of a solenoid? Using the right-hand grip method. Hold the solenoid with your right hand and fingers pointing in the direction the current is flowing. Your thumb should point to the north pole.	If a ma and Sta 1. 2.
State the piece of equipment you could use to investigate the magnetic field you have drawn above.	conducting (and insulated) wire is looped into a coiled cylinder. Draw the magnetic field pattern around a f solenoid below:	 Use a larger current. Use an iron core. Add more turns to the wire. Place the turns of the wire closer together. 	Hov By rev
State the method that informs you of the direction of the current in a straight wire. Right-hand grip method/rule. What do your thumb and fingers represent in this method? thumb: The direction of the current. fingers: The direction the field lines should be drawn.	What is this pattern similar to?The magnetic field around a bar magnet.	Describe what happens to the magnetic <i>i</i> field around a straight wire when the current is reversed. The magnetic field is also reversed.	A r and The Cal F = cor pla for

nat is the motor effect?

a conductor carrying a current is placed in a gnetic field, the magnet producing the field d the conductor exert a force on each other.

te three ways you can increase the force:

- Increasing the size of the current.
- Increasing the length of the conductor in the magnetic field.
- Increasing the flux density.

w can you reverse the direction of the force? arphi

reversing the direction of the current or versing the direction of the magnetic field.

motor has a magnetic flux density of 1.5T \checkmark

e total length of the wire is 500cm.

lculate the force on the wire using the equation • BIL.

vert cm into metres = 5m

ce values into equation:

 $ce = 1.5T \times 8.0A \times 5m$

ce = 60N (newtons)

2

\i

 $\langle \mathbf{k} |$

You are given the following equation in a your exam. force = magnetic flux density × current × length			How can the direction of a motor be reversed? C By reversing the direction of the current or reversing the direction of the magnetic field.	Describe how you would use an iron nail, a flength of insulated wire and a cell to make an electromagnet that can be used to pick up some
Complete the	5 0	eni × iengin		steel paper clips. Wrap the wire around the iron nail. Connect
Symbol Part of the Equation	What It Represents	Units	How can the speed of a motor be increased?	the wire to the power supply (with connecting leads and crocodile clips). Switch on the power supply. Use de-magnetised paper clips. Suspend the nail near the paperclips and record how
F	force	Ν	By increasing the size of the current or increasing the magnetic field/use a larger magnet.	many collected. The more paperclips und record now many collected. The more paperclips suspended, the stronger the electromagnet is. Change the number of turns (on the coil). Change the current (through the coil).
В	magnetic flux density	т	What rule can be used to find the direction of the force?	
I	current	A	What angle do your thumb, first and second finger need to be at? 90° What does each part represent? thumb: movement	Why will a motor not work without a commutator? The commutator ensures that the current stays in the same direction. Also the coil would not be free to spin. This means the coil would remain still and not rotate.
L	Length of the wire within the field.	m	first finger: field second finger: current	Describe a simple electric motor. A coil of wire is fixed (on an axle). The ends of the wire are connected via a split-ring commutator.
What is the basis of an electric motor? A coil of wire carrying a current in a magnetic field tends to rotate.		or?	B	To a battery/power supply. The carbon brush contacts at the commutator ensures the current direction in the coil is always the same. The coil is placed between two (flat) magnets. With opposite poles facing each other. The coil rotates continuously and this is the basis of an electric motor.

3