Milverton Community Primary and Pre-School

Calculation Policy

Last reviewed: October 2022

Next review date: October 2023

This policy has been designed to teach children to develop conceptual understanding through the progression of concrete, pictorial and abstract methods. This calculation policy should be used to support children to develop a deep understanding of number and calculation.

Using the concrete-pictorial-abstract approach:

Children develop an understanding of a mathematical concept through the three steps (or representation) of concrete-pictorial-abstract approach. Reinforcement is achieved by going back and forth between these representations.

Concrete representation: The enactive stage - a pupil is first introduced to an idea or a skill by acting it out with real objects. This is a 'hands on' component using real objects and it is the foundation for conceptual understanding.

Pictorial representation: The iconic stage - a pupil has sufficiently understood the hands-on experiences performed and can now relate them to representations, such as a diagram or picture of the problem.

Abstract representation: The symbolic stage - a pupil is now capable of representing problems by using mathematical notation, for example: $12 \div 2=6$.

Part/Whole Model - Key Structures

Addition and Subtraction are connected. Add parts together to equal the whole, whole subtract part to name the missing part.

Guidance

This is document provides guidance and examples for key objectives for each year group but is not to be followed as a complete planning aid as not all objectives are exemplified.

Early Years

Developing Number Sense

Vocabulary

Part, whole, add, more, plus, and, make, altogether, total, equal to, equals, double, most, count on. equal to, take, take away, less, minus, subtract, leaves, difference between, how many more, how many fewer / less than, most, least, count back, how many left, how much less is_?

Ordinality:

Concrete:
Children place a range of physical dominoes in a set order.

Pictorial:
Children match representations in a set order, for example, using pictorial bear / number dominoes.

Children fill in spaces on a partially filled number track and create representations to show different totals (extension) - helping pupils to make the transition from understanding ordinality to cardinality.

1		3	4		6	7	8		10

Ordinal numbers:

| Concrete: |
| :--- | :--- | :--- |
| Children physically line up ducks in a row and |
| verbally label them, e.g. 'first/second / third.' |\quad| Pictorial: |
| :--- |
| Children order slides with pictures of ducks, for |
| example, on the Interactive Whiteboard. |\quad| Abstract: |
| :--- |
| Children apply their understanding of ordinal |
| numbers, e.g. by using written $1^{\text {st }}, 2^{\text {nd }}$ and $3^{\text {rd }}$ |
| labels and other related verbal language when |
| ordering objects. |

Cardinality:

Concrete:
Children use a range of structured and unstructured apparatus, plus natural resources, to create different number values.

Pictorial:

Children recognise different number values that are presented in pictorial forms.

Abstract:

```
Children are asked a range of questions that allow them to show an application of understanding related to cardinality, e.g. Can you find a collection of...[objects]...to represent six?
Can you show me six fingers?
```


Subitising:

Concrete: Children replicate a range of physical representations, which they then verbally interpret without a need to count objects.	Pictorial: Children use picture prompts to practise their recognition of number representations.	Abstract: Children use finger paint to show various 1-6 representations.

1 to 1 correspondence:

Concrete: Children count various physical objects by partitioning a group and finally recombining.	Pictorial: Children count the dots on the face of a pictorial dice.	Abstract: Children draw dots to match the number of holes that can be seen on a named Numicon shape.
Children write a number in each part of a muffin tin and then put the appropriate number of buttons in each section.	Children match number cards to pictures of the equal numbers of buttons.	Children cut out buttons equal to the number shown on a number card.

Conservation of number:

| Concrete: |
| :--- | :--- | :--- |
| Children explore whether the number of cubes |
| stay the same or change when they are moved |
| within a shape. | | Pictorial: |
| :--- |
| Pupils work with visual reminders of their |
| concrete experiences - to check how their |
| understanding around conservation of number |
| has changed. | | Abstract: |
| :--- |
| Children are provided with opportunities to |
| further explore and prove their thinking. They |
| may be asked to put a total of dolls in the toy |
| house and then move them around. In order to |
| prove it is still the same total, they can take the |
| dolls and put them onto a number track, whilst |
| also applying their understanding about the |
| cardinal principle. |

Concept of zero:

Concrete:
Children use a shuffle box with up to ten objects
in. After the box has been shaken, pupils write
out the corresponding number sentence, e.g. $2=$
$1+1$, depending on where the objects have
landed. Query what happens if there is nothing
on one side. Introduce to children the concept of
zero, e.g. $2=2+0$.

Pictorial:

Children use pictorial representations to see that you can have an amount that's called 'zero.'
Pupils are required to count the number of apples of a tree, and circle the trees which have no apples.

Abstract:

Children can be encouraged to represent written number sentences by creating visual shuffle boxes using finger paint, e.g. $5=0+5$

Pupils should be able to grasp the concept of zero to use within number sentences, e.g. $4=4+0 \ldots$ and verbalise ...
"I know that four is the same as four add zero."

Counting on:

Concrete:

Children use physical objects to learn the skill. For example, they count on from the larger value by using their fingers whilst pointing at each 'extra' dot on the second side of a domino.

In addition, pupils use counters on number tracks to rehearse the process of counting on.

Pictorial:

Children use a die to generate numbers and count on from pictorial representations of counters already positioned on a number track.

Abstract:
Children apply their understanding of this skill by playing games such as 'snakes and ladders.'

Reception

Addition

Vocabulary

Part, whole, add, more, plus, and, make, altogether, total, equal to, equals, double, most, count on.
Use of Numicon is another great way to help children develop mental representations of number.

These experiences and number representations will help children:

- Reliably count the number of objects in a set using the numbers one to twenty.

- Say which number is one more or one less than a given number.

Explore part /whole relationship

- Use objects to add two single-digit numbers by counting on to find the answer

4

Solving problems using concrete and pictorial images.

Subtraction

Vocabulary

Part, whole, equal to, take, take away, less, minus, subtract, leaves, difference between, how many more, how many fewer / less than, most, least, count back, how many left, how much less is_?

- Use objects to subtract two single-digit numbers by counting back to find the
answer.
The first step into subtraction is to learn how to count backwards.

$8-4=$ \qquad

Solving problems using concrete and pictorial images.
Peter has 5 pencils and 3 erasers. How many more pencils than erasers does he have?
Multiplication

Vocabulary

Part, whole, groups of, lots of, double

Division

Vocabulary

Part, whole, share, share equally, one each, two each..., group, groups of, lots of.

Year 1

Addition

Vocabulary

Part, whole, addition, add, forwards, put together, more than, total, altogether, distance between, difference between, equals = same as, most, pattern, odd, even, digit, counting on.

Learn number bonds to $\mathbf{2 0}$ and demonstrate related facts
Teach addition and subtraction alongside each other as pupils need to see the relationship between the facts.

Regrouping to make 10; using ten frames and counters/cubes or using Numicon. $6+5$	Children to draw the ten frame and counters/cubes.	Children to develop an understanding of equality e.g. $\begin{aligned} & 6+\square=11 \\ & 6+5=5+\square \\ & 6+5=\square+4 \end{aligned}$
Vocabulary	Subtraction	

Physically taking away and removing objects from a whole (ten frames, Numicon, cubes and other items such as beanbags could be used)

$$
4-3=1
$$

Q இ®O

Subtraction by counting back

Counting back (using number lines or number tracks) children start with 6 and count back 2 .
$6-2=4$

Finding the difference (using cubes, Numicon or Cuisenaire rods, other objects can also be used).

Calculate the difference between 8 and 5 .

Making 10 using ten frames.
14-5

Children to represent what they see pictorially e.g.

Children to represent the calculation on a number line or number track and show their jumps. Encourage children to use an empty number line

When subtracting using Dienes children should be taught to regroup a ten rod for 10 ones and then subtract from those ones

$$
20-4=16
$$

Subtracting multiples of 10

Using the vocabulary of 1 ten, 2 tens etc alongside 10, 20, 30 Is very important here as pupils need to understand that it is a 10 not a 1 that is being taken away

Multiplication

Vocabulary

Part, whole, ones, groups, lots of, doubling, repeated addition, groups of, lots of, times, columns, rows, longer, bigger, higher etc and times as (big, long, wide ...etc)

Counting in multiples of 2,5 and $\mathbf{1 0}$ from zero

Children should count the number of groups on their fingers as they are skip counting.
4 groups of $2=8$

When moving to pictorial/written calculations the vocabulary is important

Solving multiplication problems using repeated addition

Division

Vocabulary

Part, whole, share, share equally, one each, two each..., group, groups of, lots of, array
Pupils should be taught to divide through working practically and the sharing should be shown below the whole to familiarize children with the concept of the whole.

The language of whole and part part should be used. $8 \div 4=2$

Year 2

Addition

Vocabulary

Part, whole, + , add, addition, more, plus, make, sum, total, altogether, how many more to make...? how many more is... than...? how much more is...? =, equals, sign, is the same as, tens, ones, partition Near multiple of 10 , tens boundary, more than, one more, two more... ten more...

Using concrete objects and pictorial representations to add $\mathbf{3}$ single digit numbers.

$$
7+3+2=\text { leads to } 10+2=
$$

Using concrete objects and pictorial representations to add a $\mathbf{2}$ digit number and ones and tens.

Using concrete objects and pictorial representations to add two 2-digit numbers

Calculations
15
$+34$
49

Leading to:

Using the bar to find missing digits.
It is important for children to use the

Helen has 14 breadsticks. Her friend has 17. How many do they have altogether?
 bar in this way to encourage the use of it to aid with problem solving.

Subtraction

Vocabulary

Part, whole, Subtraction, subtract, take away, difference, difference between, minus
Tens, ones, partition
Near multiple of 10, tens boundary, Less than, one less, two less... ten less...
Using concrete objects and pictorial representations to subtract a 1-digit number from 2-digit number.

Using concrete pictorial
to subtract a 10s digit number.

68

- 30
\qquad
objects and
representations
number from 2
Column method or children could count back 7 .
$\begin{array}{r}48 \\ -\quad 7 \\ \hline 41\end{array}$

Using concrete objects and pictorial representations to subtract a 2-digit number from 2 digit number.

68
-32

68

Greater Depth:

Use to check inverse calculations

Multiplication

Vocabulary

Part, whole, multiple, multiplication array, multiplication tables / facts, groups of, lots of, times, columns, rows
Skip counting in

Recall and use multiplication facts for the multiplication tables 2,5 and 10.

Repeated grouping/repeated addition $\begin{aligned} & 3 \times 4 \\ & 4+4+4 \end{aligned}$	Children to represent the practical resources in a picture and use a bar model.	$\begin{aligned} & 3 \times 4=12 \\ & 4+4+4=12 \end{aligned}$
There are 3 equal groups, with 4 in each group.	$88 \quad 8888$	
Number lines to show repeated groups- 3×4	Represent this pictorially alongside a number line e.g.:	Abstractnumberlineshowingthree jumps of four. $3 \times 4=12$
		$\begin{array}{llll}0 & 4 & 8 & 12\end{array}$
Cuisenaire rods can be used too.		

Use arrays to illustrate commutativity counters and other objects can also be used. $2 \times 5=5 \times 2$ 2 lots of 5 5 lots of 2	Children to represent the arrays pictorially.	Children to be able to use an array to write a range of calculations e.g. $\begin{aligned} & 10=2 \times 5 \\ & 5 \times 2=10 \\ & 2+2+2+2+2=10 \\ & 10=5+5 \end{aligned}$
Division		
Vocabulary		
Part, whole, group in pairs, 3 s ... 10 s etc, equal groups of, divide, \div, divided by, divided into, remainder		

Solve division
problems in context using arrays

I can solve division as
grouping.
Put 10 buns in groups of 2.
How many plates are there?

$13 \div 4=3$ Remainder 1
Greater Depth with remainders

Year 3

Addition

Vocabulary

Part, whole, hundreds, tens, ones, estimate, partition, recombine, difference, decrease, near multiple of 10 and 100, inverse, rounding, column subtraction, exchange See also Y1 and Y2

Add two three-digit numbers.

Children need to use equipment first to support their understanding of place value.
Children to progress gradually to three digit + three digit starting without carrying and carrying.
 gradually moving towards

Use of place value counters to add HTO + TO, HTO + HTO etc. When thereare 10ones inthe 1scolumn-we exchange for 1 ten, when there are 10 tens in the 10 s column-we exchange for 1 hundred.

243
$+368$
611
11

Using the bar to find missing digits.

It is important for children to use the bar in this way to encourage the use of it to aid with problem solving.

Bar Model to support understanding of problem solving:

A man sold 230 balloons at a carnival in the morning.
He sold another 86 balloons in the evening. How many balloons did he sell in all?

Subtraction

Vocabulary

Part, whole, hundreds, tens, ones, estimate, partition, recombine, difference, decrease, near multiple of 10 and 100, inverse, rounding, column subtraction, exchange See also Y1 and Y2

Subtract up to $\mathbf{3}$ digits from 3 digits.

Very important for children to use dienes equipment along with a place value chart to support.

$263-121=142$

Only when secure with the method should exchanging be introduced.

Using the bar to find missing digits.

It is important for children to use the use of it to aid with problem

315		$315-185=?$
185	$?$	$185+?=315$

the bar in this way to encourage solving.

Multiplication

Vocabulary

Part, whole, multiple, partition, short multiplication and inverse
Children should be able to recall the $2,5,10,3,4$ and 8 times tables.

Multiply a two-digit number by a one digit.

4 children go to the cinema. They each pay $£ 15$. How much do they spend altogether?	Whole unknown	?				Using the bar to solve multiplication problems.
		15	15	15	15	
Division						

Dividing using short division.

Remind children of correct place value, that 69 is equal to 60 and 9 , but in short division, pose:

- How many 3's in 6? = 2, and record it above the 6 tens.
- How many 3's in 9? = 3, and record it above the 9 ones.

Once children demonstrate a full understanding of remainders, and also the short division method taught, they can be taught how to use the method when remainders occur within the calculation (e.g. $42 \div 3$), and be taught to 'carry' the remainder onto the next digit.

Year 4

Addition

Vocabulary

Part, whole, add, addition, sum, more, plus, increase, sum, total, altogether, double, near double, how many more to make..? how much more? ones boundary, tens boundary, hundreds boundary, thousands boundary, tenths boundary, hundredths boundary, inverse, how many more/fewer? Equals sign, is the same as.

Adding numbers with up to 4 digits.
Again this should start with the children using dienes to support them with lots of discussion about the value of each digit.

Using the bar to find missing digits.

It is important for children to use the bar in this way to encourage the use of it to aid with problem solving.
This is not a form of getting the correct answer but helping to guide children to the correct operation.
Alison jogs 6,860 metres and Calvin jogs 5,470 metres. How far do they jog altogether?

Subtraction

Vocabulary

Part, whole, subtract, takeaway, less, minus, decrease, fewer, difference, how many less to make..? how much less? ones boundary, tens boundary, hundreds boundary, thousands boundary, tenths boundary, hundredths boundary, inverse, how many fewer? Equals sign, is the same as.
To subtract with numbers up to four digits including exchanging when children are secure.
Children need to use place value
counters to support their learning.

Using the bar to find missing digits.
It is important for children to use
encourage the use of it to aid with

the bar in this way to problem solving.

Vocabulary

Part, whole, Factor, product

Children to know all times tables to 12×12.
Children

multiplying both two and three digits by a one digit number using place value counters.

A computer costs 5 times as much as a television. The television costs $£ 429$.	Cost of the computer	?		Multiplying using the bar.
How much does the computer cost?		$£ 429$		

Division

Vocabulary

Part, whole, see years 1-3, divide, divided by, divisible by, divided into, share between, groups of factor, factor pair, multiple, times as (big, long, wide ...etc), equals, remainder, quotient, divisor and inverse
Dividing up to three digit numbers by a one digit number using short division.
Only when the children are secure with dividing a two digit number should they move onto a 3 digit number.

With remainders

	H	T	U	
		0	2	5

Dividing using the bar.

Year 5

Addition

Vocabulary

Part, whole, tens of thousands boundary,
Also see previous years
Adding numbers with more than 4 digits including decimals
Using place value charts are key to this as well as place value counters to help with the decimals.

Using the bar to find missing digits.
It is important for children to use the bar in this way to encourage the use of it to aid with problem solving.
This is not a form of getting the correct answer but helping to guide children to the correct operation.

MacDonald sold $£ 9957.68$ worth of hamburgers and $£ 1238.5$ worth of chicken nuggets. How much money did they take altogether?

Subtraction

Vocabulary

Part, whole, tens of thousands boundary,
Also see previous years
Subtract with at least four digit numbers including two decimal places.
Include money, measures and decimals ensuring that children do this practically before the abstract.

Subtract wi

integers and decimals, aligning the decimal point.

Using the bar to find missing digits.

It is important for children to use the bar
in this way to encourage the use of it to aid with problem solving.

A whole to Lapland costs $£ 5005$ for a family of four, the Smith's have only saved $£ 3787.75$, how much money do they still need to find?

$£ 5005$	
$?$	$£ 3787.75$

Multiplication

Vocabulary

Part, whole, cube numbers, prime numbers, square numbers, common factors, prime number, prime factors and composite numbers

Multiplying up to four digit numbers by two digits using long multiplication.
Children need to be taught to approximate first, e.g.for 72×38, they will use rounding: 72×38 is approximately $70 \times 40=$ 2800, and use the approximation to check the reasonableness of their answer.

When children start to multiply $3 \mathrm{~d} \times 3 \mathrm{~d}$ and $4 \mathrm{~d} \times 2 \mathrm{~d}$ etc., they should be confident with the abstract:
To get 744 children have solved 6×124.
To get 2480 they have solved 20×124.

Answer: 3224
Using the bar to support multiplication.

The cost to run a sports centre is $£ 4375$ a week, how much would it cost to run for 16 weeks?

Division

[^0]Dividing with up to four digit numbers by one digit including numbers where remainders are left.

Short division with remainders: Now that pupils are introduced to examples that give rise to remainder answers, division needs to have a real life problem solving context, where pupils consider the meaning of the remainder and how to express it, ie. as a fraction, a decimal, or as a rounded number or value, depending upon the context of the problem.

The 'Chunking' method is used to support the introduction of long division.

Year 6 (supporting transition into Year 7)

Addition

several numbers with up to three places.

Jack went on holiday. His flight cost $£ 70.50$, the hotel $£ 1295$ and spending money £427.89. How much did Jack spend on his holiday?

Subtraction

Vocabulary

Part, whole, See previous years
Subtracting with increasingly large and more complex numbers and decimal values.
Very important to use in a range of contexts- measures and money.

	$\begin{array}{r} \text { "589699 } \\ -\quad 89949 \\ \hline 60750 \\ \hline \end{array}$		
	$\times 180 \cdot 5 \cdot 3 \mathrm{~K} 1{ }^{\prime} 9 \mathrm{~kg}$		
	36.080 kg		
	$69 \cdot 339 \mathrm{~kg}$		

Using the bar for subtraction.

Chloe wants to buy a new car for $£ 6450$. She has $£ 4885.87$ in her savings account. Her Dad gives her $£ 150$ for her birthday. How much more money does she need to save?

$£ 6450$		
$£ 4885.87$	$£ 150$	$?$

Multiplication

Vocabulary

Part, whole, See previous years and common factor

Short and long multiplication with up to two decimal places.

	2	3	6	8
\times			3	4
	9	4	7	2
7	7	z	3	
7	1	0	4	0
7	z	z		
1	0	5	1	2

multiplication.

Division

Vocabulary

see years 4 and 5 Part, whole, long division

Divide at least 4 digits by both single-digit and 2-digit numbers (including decimal

 numbers and quantities)

Short division with remainders: Pupils should continue to use this method, but with numbers to at least 4 digits, and understand how to express remainders as fractions, decimals, whole number remainders, or rounded numbers. Real life problem solving contexts need to be the starting point, where pupils have to consider the most appropriate way to express the remainder.
digit numbers.

Division

$564 \div 13$
$\frac{43.38}{6^{4} 4.50^{11} 0}$
$564 \div 13$

$=43$ r $5=43 \frac{5}{13}=43.4$ (to 1 dp)

Try this equation; $848 \div 16$
Approximation $800 \div 16=50$

Using the bar to help divide.
Paul and David hire a car together at a cost of
$£ 297.50$. Paul pays 6 times more than David.
How much does David pay?

$£ 297.50$						
						$?$

[^0]: Vocabulary see year 4
 Part, whole, common factors, prime number, prime factors, composite numbers, short division, square number, cube number, inverse, power of

